Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.273
Filtrar
1.
eNeuro ; 11(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38749701

RESUMO

The voltage-gated calcium channel subunit α2δ-2 controls calcium-dependent signaling in neurons, and loss of this subunit causes epilepsy in both mice and humans. To determine whether mice without α2δ-2 demonstrate hippocampal activation or histopathological changes associated with seizure activity, we measured expression of the activity-dependent gene c-fos and various histopathological correlates of temporal lobe epilepsy (TLE) in hippocampal tissue from wild-type (WT) and α2δ-2 knock-out (CACNA2D2 KO) mice using immunohistochemical staining and confocal microscopy. Both genotypes demonstrated similarly sparse c-fos and ΔFosB expressions within the hippocampal dentate granule cell layer (GCL) at baseline, consistent with no difference in basal activity of granule cells between genotypes. Surprisingly, when mice were assayed 1 h after handling-associated convulsions, KO mice had fewer c-fos-positive cells but dramatically increased ΔFosB expression in the dentate gyrus compared with WT mice. After administration of a subthreshold pentylenetetrazol dose, however, KO mice dentate had significantly more c-fos expression compared with WT mice. Other histopathological markers of TLE in these mice, including markers of neurogenesis, glial activation, and mossy fiber sprouting, were similar between WT and KO mice, apart from a small but statistically significant increase in hilar mossy cell density, opposite to what is typically found in mice with TLE. This suggests that the differences in seizure-associated dentate gyrus function in the absence of α2δ-2 protein are likely due to altered functional properties of the network without associated structural changes in the hippocampus at the typical age of seizure onset.


Assuntos
Hipocampo , Camundongos Knockout , Proteínas Proto-Oncogênicas c-fos , Convulsões , Animais , Convulsões/metabolismo , Convulsões/genética , Convulsões/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Masculino , Canais de Cálcio/metabolismo , Canais de Cálcio/genética , Camundongos Endogâmicos C57BL , Pentilenotetrazol , Camundongos , Modelos Animais de Doenças , Neurônios/metabolismo , Neurônios/patologia , Convulsivantes/toxicidade
2.
J Mol Neurosci ; 74(2): 50, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38693434

RESUMO

Aneuploidy, having an aberrant genome, is gaining increasing attention in neurodegenerative diseases. It gives rise to proteotoxic stress as well as a stereotypical oxidative shift which makes these cells sensitive to internal and environmental stresses. A growing body of research from numerous laboratories suggests that many neurodegenerative disorders, especially Alzheimer's disease and frontotemporal dementia, are characterised by neuronal aneuploidy and the ensuing apoptosis, which may contribute to neuronal loss. Using Drosophila as a model, we investigated the effect of induced aneuploidy in GABAergic neurons. We found an increased proportion of aneuploidy due to Mad2 depletion in the third-instar larval brain and increased cell death. Depletion of Mad2 in GABAergic neurons also gave a defective climbing and seizure phenotype. Feeding animals an antioxidant rescued the climbing and seizure phenotype. These findings suggest that increased aneuploidy leads to higher oxidative stress in GABAergic neurons which causes cell death, climbing defects, and seizure phenotype. Antioxidant feeding represents a potential therapy to reduce the aneuploidy-driven neurological phenotype.


Assuntos
Aneuploidia , Neurônios GABAérgicos , Estresse Oxidativo , Fenótipo , Animais , Neurônios GABAérgicos/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Convulsões/genética , Convulsões/metabolismo , Drosophila melanogaster/genética , Encéfalo/metabolismo , Drosophila/genética
3.
Sci Rep ; 14(1): 8104, 2024 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582752

RESUMO

GCaMP is a genetically encoded calcium indicator (GECI) widely used in neuroscience research. It measures intracellular Ca2+ level by fluorescence changes as it directly binds to Ca2+. In this process, the effect of this calcium buffer on the intracellular calcium signaling and cell physiology is often not taken into consideration. However, growing evidence from calcium imaging studies shows GCaMP expression under certain conditions can generate aberrant activity, such as seizures. In this study, we examined the effect of GCaMP6 expression in the dentate gyrus (DG) on epileptogenesis. We found that viral expression of GCaMP6s but not GCaMP6f in the DG induces tonic-clonic seizures several weeks after viral injection. Cell-type specific expression of GCaMP6s revealed the granule cells (GCs) as the key player in GCaMP6s-induced epilepsy. Finally, by using slice electrophysiology, we demonstrated that GCaMP6s expression increases neuronal excitability in the GCs. Together, this study highlights the ability of GCaMP6s in DG-associated epileptogenesis.


Assuntos
Cálcio , Neurônios , Humanos , Cálcio/metabolismo , Neurônios/metabolismo , Convulsões/genética , Convulsões/metabolismo , Sinalização do Cálcio , Cálcio da Dieta/metabolismo , Giro Denteado/metabolismo
4.
J Neuroimmune Pharmacol ; 19(1): 16, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652402

RESUMO

Our previous research demonstrated that allergic rhinitis could impact behavior and seizure threshold in male mice. However, due to the complex hormonal cycles and hormonal influences on behavior in female mice, male mice are more commonly used for behavioral tests. In this study, we aimed to determine whether these findings were replicable in female mice and to explore the potential involvement of sexual hormones in regulating neuroinflammation in an allergic model. Our results indicate that pain threshold was decreased in female mice with allergic rhinitis and the levels of IL-23/IL-17A/IL-17R were increased in their Dorsal root ganglia. However, unlike males, female mice with AR did not display neuropsychological symptoms such as learning and memory deficits, depression, and anxiety-like behavior. This was along with decreased levels of DNA methyl transferase 1 (DNMT1) and inflammatory cytokines in their hippocampus. Ovariectomized mice were used to mitigate hormonal effects, and the results showed that they had behavioral changes and neuroinflammation in their hippocampus similar to male mice, as well as increased levels of DNMT1. These findings demonstrate sex differences in how allergic rhinitis affects behavior, pain sensitivity, and seizure thresholds. Furthermore, our data suggest that DNMT1 may be influenced by sexual hormones, which could play a role in modulating inflammation in allergic conditions.


Assuntos
Modelos Animais de Doenças , Doenças Neuroinflamatórias , Limiar da Dor , Rinite Alérgica , Convulsões , Caracteres Sexuais , Animais , Feminino , Camundongos , Masculino , Rinite Alérgica/metabolismo , Rinite Alérgica/psicologia , Limiar da Dor/fisiologia , Doenças Neuroinflamatórias/metabolismo , Convulsões/metabolismo , Comportamento Animal/fisiologia , Ovariectomia , DNA (Citosina-5-)-Metiltransferase 1/metabolismo
5.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 515-522, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38597443

RESUMO

OBJECTIVE: To explore the inhibitory effect of saikosonin a (SSa) on pentylenetetrazol-induced acute epilepsy seizures in a mouse model of depression and explore the mechanism mediating this effect. METHODS: Male C57BL/6J mouse models of depression was established by oral administration of corticosterone via drinking water for 3 weeks, and acute epileptic seizures were induced by intraperitoneal injection of a single dose of pentylenetetrazole. The effect of intraperitoneal injection of SSa prior to the treatment on depressive symptoms and epileptic seizures were assessed using behavioral tests, epileptic seizure grading and hippocampal morphology observation. ELISA was used to detect blood corticosterone levels of the mice, and RTqPCR was performed to detect the pro- and anti-inflammatory factors. Microglia activation in the mice was observed using immunofluorescence staining. RESULTS: The mouse model of corticosterone-induced depression showed body weight loss and obvious depressive behaviors with significantly increased serum corticosterone level (all P < 0.05). Compared with those with pentylenetetrazole-induced epilepsy alone, the epileptic mice with comorbid depression showed significantly shorter latency of epileptic seizures, increased number, grade and duration of of seizures, reduced Nissl bodies in hippocampal CA1 and CA3 neurons, increased number of Iba1-positive cells, and significantly enhanced hippocampal expressions of IL-1ß, IL-10, TNF-α and IFN-γ. Pretreatment of the epileptic mice with SSa significantly prolonged the latency of epileptic seizures, reduced the number, duration, and severity of seizures, increased the number of Nissl bodies, decreased the number of Iba1-positive cells, and reduced the expression levels of IL-1ß, IL-10, TNF-α, and IFN-γ in the hippocampus (P < 0.05). CONCLUSION: Depressive state aggravates epileptic seizures, increases microglia activation, and elevates inflammation levels. SSA treatment can alleviate acute epileptic seizures in mouse models of depression possibly by suppressing microglia activation-mediated inflammation.


Assuntos
Epilepsia , Ácido Oleanólico/análogos & derivados , Pentilenotetrazol , Saponinas , Masculino , Camundongos , Animais , Pentilenotetrazol/efeitos adversos , Interleucina-10 , Microglia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Depressão , Corticosterona/metabolismo , Corticosterona/farmacologia , Corticosterona/uso terapêutico , Camundongos Endogâmicos C57BL , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/metabolismo , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Hipocampo/metabolismo , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Modelos Animais de Doenças
6.
Discov Med ; 36(183): 842-852, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38665032

RESUMO

BACKGROUND: Following traumatic brain injury (TBI), an imbalance arises in the central nervous system within the hippocampus region, resulting in the proliferation of mossy cell fibers, causing abnormal membrane discharge. Moreover, disruptions in cellular neurotransmitter secretion induce post-traumatic epilepsy. Extensive experimental and clinical data indicate that the orexin system plays a regulatory role in the hippocampal central nervous system, but the specific regulatory effects are unclear. Therefore, further experimental evaluation of its relevance is needed. OBJECTIVE: This study aims to investigate the effects of orexin receptor agonists (OXA) on the seizure threshold and intensity in controlled cortical impact (CCI) mice, and to understand the role of the orexin system in post-traumatic epilepsy (PTE). METHODS: Male C57BL/6 mice weighing 18-22 g were randomly divided into three groups: Sham, CCI, and CCI+OXA. The three groups of mice were sequentially constructed with models, implanted with electrodes, and established drug-delivery cannulas. After a 30-day recovery, the Sham and CCI groups were injected with physiological saline through the administration cannulas, while the CCI+OXA group was injected with OXA. Subsequently, all mice underwent electrical stimulation every 30 minutes for a total of 15 times. Epileptic susceptibility, duration, intensity, and cognitive changes were observed. Concurrently, the expression levels and changes of GABAergic neurons in the hippocampus of each group were examined by immunofluorescence. RESULTS: Injecting OXA into hippocampal CA1 reduces the threshold of post-traumatic seizures, prolongs the post-discharge duration, prolongs seizure duration, reduces cognitive ability, and exacerbates the loss of GABAergic neurons in the hippocampal region. CONCLUSIONS: Based on the results, we can find that injecting OXA antagonists into the CA1 region of the hippocampus can treat or prevent the occurrence and progression of post-traumatic epilepsy.


Assuntos
Lesões Encefálicas Traumáticas , Camundongos Endogâmicos C57BL , Orexinas , Animais , Masculino , Camundongos , Orexinas/metabolismo , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Receptores de Orexina/metabolismo , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/patologia , Epilepsia/etiologia , Epilepsia/metabolismo , Convulsões/etiologia , Convulsões/metabolismo
7.
Prostaglandins Other Lipid Mediat ; 172: 106836, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599513

RESUMO

Dravet syndrome is an intractable epilepsy with a high seizure burden that is resistant to current anti-seizure medications. There is evidence that neuroinflammation plays a role in epilepsy and seizures, however few studies have specifically examined neuroinflammation in Dravet syndrome under conditions of a higher seizure burden. Here we used an established genetic mouse model of Dravet syndrome (Scn1a+/- mice), to examine whether a higher seizure burden impacts the number and morphology of microglia in the hippocampus. Moreover, we examined whether a high seizure burden influences classical inflammatory mediators in this brain region. Scn1a+/- mice with a high seizure burden induced by thermal priming displayed a localised reduction in microglial cell density in the granule cell layer and subgranular zone of the dentate gyrus, regions important to postnatal neurogenesis. However, microglial cell number and morphology remained unchanged in other hippocampal subfields. The high seizure burden in Scn1a+/- mice did not affect hippocampal mRNA expression of classical inflammatory mediators such as interleukin 1ß and tumour necrosis factor α, but increased cyclooxygenase 2 (COX-2) expression. We then quantified hippocampal levels of prostanoids that arise from COX-2 mediated metabolism of fatty acids and found that Scn1a+/- mice with a high seizure burden displayed increased hippocampal concentrations of numerous prostaglandins, notably PGF2α, PGE2, PGD2, and 6-K-PGF1A, compared to Scn1a+/- mice with a low seizure burden. In conclusion, a high seizure burden increased hippocampal concentrations of various prostaglandin mediators in a mouse model of Dravet syndrome. Future studies could interrogate the prostaglandin pathways to further better understand their role in the pathophysiology of Dravet syndrome.


Assuntos
Modelos Animais de Doenças , Epilepsias Mioclônicas , Hipocampo , Canal de Sódio Disparado por Voltagem NAV1.1 , Prostaglandinas , Convulsões , Animais , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/metabolismo , Epilepsias Mioclônicas/patologia , Camundongos , Hipocampo/metabolismo , Hipocampo/patologia , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Convulsões/metabolismo , Convulsões/genética , Convulsões/patologia , Prostaglandinas/metabolismo , Masculino , Microglia/metabolismo , Microglia/patologia
8.
Acta Physiol (Oxf) ; 240(6): e14146, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38606882

RESUMO

AIM: The Repressor Element-1 Silencing Transcription Factor (REST) is an epigenetic master regulator playing a crucial role in the nervous system. In early developmental stages, REST downregulation promotes neuronal differentiation and the acquisition of the neuronal phenotype. In addition, postnatal fluctuations in REST expression contribute to shaping neuronal networks and maintaining network homeostasis. Here we investigate the role of the early postnatal deletion of neuronal REST in the assembly and strength of excitatory and inhibitory synaptic connections. METHODS: We investigated excitatory and inhibitory synaptic transmission by patch-clamp recordings in acute neocortical slices in a conditional knockout mouse model (RestGTi) in which Rest was deleted by delivering PHP.eB adeno-associated viruses encoding CRE recombinase under the control of the human synapsin I promoter in the lateral ventricles of P0-P1 pups. RESULTS: We show that, under physiological conditions, Rest deletion increased the intrinsic excitability of principal cortical neurons in the primary visual cortex and the density and strength of excitatory synaptic connections impinging on them, without affecting inhibitory transmission. Conversely, in the presence of a pathological excitation/inhibition imbalance induced by pentylenetetrazol, Rest deletion prevented the increase in synaptic excitation and decreased seizure severity. CONCLUSION: The data indicate that REST exerts distinct effects on the excitability of cortical circuits depending on whether it acts under physiological conditions or in the presence of pathologic network hyperexcitability. In the former case, REST preserves a correct excitatory/inhibitory balance in cortical circuits, while in the latter REST loses its homeostatic activity and may become pro-epileptogenic.


Assuntos
Homeostase , Proteínas Repressoras , Animais , Homeostase/fisiologia , Camundongos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Camundongos Knockout , Transmissão Sináptica/fisiologia , Convulsões/genética , Convulsões/metabolismo , Convulsões/fisiopatologia , Rede Nervosa/fisiologia , Rede Nervosa/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiologia
9.
Prog Neurobiol ; 237: 102612, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642602

RESUMO

Recurrent seizures lead to accumulation of the activity-dependent transcription factor ∆FosB in hippocampal dentate granule cells in both mouse models of epilepsy and mouse models of Alzheimer's disease (AD), which is also associated with increased incidence of seizures. In patients with AD and related mouse models, the degree of ∆FosB accumulation corresponds with increasing severity of cognitive deficits. We previously found that ∆FosB impairs spatial memory in mice by epigenetically regulating expression of target genes such as calbindin that are involved in synaptic plasticity. However, the suppression of calbindin in conditions of neuronal hyperexcitability has been demonstrated to provide neuroprotection to dentate granule cells, indicating that ∆FosB may act over long timescales to coordinate neuroprotective pathways. To test this hypothesis, we used viral-mediated expression of ∆JunD to interfere with ∆FosB signaling over the course of several months in transgenic mice expressing mutant human amyloid precursor protein (APP), which exhibit spontaneous seizures and develop AD-related neuropathology and cognitive deficits. Our results demonstrate that persistent ∆FosB activity acts through discrete modes of hippocampal target gene regulation to modulate neuronal excitability, limit recurrent seizure activity, and provide neuroprotection to hippocampal dentate granule cells in APP mice.


Assuntos
Precursor de Proteína beta-Amiloide , Giro Denteado , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-fos , Convulsões , Animais , Giro Denteado/metabolismo , Camundongos , Convulsões/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Neuroproteção/fisiologia , Modelos Animais de Doenças , Doença de Alzheimer/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Humanos
10.
Cell Biochem Funct ; 42(3): e4003, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38597235

RESUMO

Neuronal pentraxin 2 (Nptx2), a member of the synaptic protein family linked to excitatory synaptic formation, is found to be upregulated in epileptic mice, yet its role in epilepsy has been unclear. In vivo, we constructed a mouse model of epilepsy by using kainic acid induction. In vitro experiments, a Mg2+-free medium was used to induce epileptiform discharges in neurons. The results showed that the Nptx2 was upregulated in epileptic mice. Moreover, Nptx2 knockdown reduced the number of seizures and seizure duration. Knocking down Nptx2 not only reduced the number and duration of seizures but also showed a decrease in electroencephalogram amplitude. Behavioral tests indicated improvements in learning and memory abilities after Nptx2 knockdown. The Nissl staining and Timms staining revealed that Nptx2 silencing mitigated epilepsy-induced brain damage. The immunofluorescence staining revealed that Nptx2 absence resulted in a reduction of apoptosis. Nptx2 knockdown reduced Bax, cleaved caspase3, and cleaved caspase9 expression, while increased Bcl-2 expression. Notably, Nptx2 knockdown inhibited GluA1 phosphorylation at the S831 site and reduced the GluA1 membrane expression. The PSD95 expression declined in the epilepsy model, while the Nptx2 knockdown reversed it. Collectively, our study indicated that Nptx2 silencing not only alleviated brain damage and neuron apoptosis but also improved learning and memory ability in epileptic mice, suggesting Nptx2 as a promising target for epilepsy treatment.


Assuntos
Epilepsia , Proteínas do Tecido Nervoso , Convulsões , Animais , Camundongos , Proteína C-Reativa/genética , Proteína C-Reativa/metabolismo , Epilepsia/induzido quimicamente , Epilepsia/metabolismo , Hipocampo/metabolismo , Fosforilação , Convulsões/induzido quimicamente , Convulsões/metabolismo
11.
Biomolecules ; 14(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38540798

RESUMO

Although granule cell dispersion (GCD) in the hippocampus is known to be an important feature associated with epileptic seizures in temporal lobe epilepsy (TLE), the endogenous molecules that regulate GCD are largely unknown. In the present study, we have examined whether there is any change in AEG-1 expression in the hippocampus of a kainic acid (KA)-induced mouse model of TLE. In addition, we have investigated whether the modulation of astrocyte elevated gene-1 (AEG-1) expression in the dentate gyrus (DG) by intracranial injection of adeno-associated virus 1 (AAV1) influences pathological phenotypes such as GCD formation and seizure susceptibility in a KA-treated mouse. We have identified that the protein expression of AEG-1 is upregulated in the DG of a KA-induced mouse model of TLE. We further demonstrated that AEG-1 upregulation by AAV1 delivery in the DG-induced anticonvulsant activities such as the delay of seizure onset and inhibition of spontaneous recurrent seizures (SRS) through GCD suppression in the mouse model of TLE, while the inhibition of AEG-1 expression increased susceptibility to seizures. The present observations suggest that AEG-1 is a potent regulator of GCD formation and seizure development associated with TLE, and the significant induction of AEG-1 in the DG may have therapeutic potential against epilepsy.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Animais , Camundongos , Astrócitos/metabolismo , Giro Denteado/metabolismo , Epilepsia/metabolismo , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/tratamento farmacológico , Hipocampo/metabolismo , Ácido Caínico/efeitos adversos , Ácido Caínico/metabolismo , Convulsões/induzido quimicamente , Convulsões/genética , Convulsões/metabolismo
12.
Pharmacol Biochem Behav ; 239: 173755, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38527654

RESUMO

INTRODUCTION: One of the mechanisms of epileptgenesis is impairment of inhibitory neural circuits. Several studies have compared neural changes among subtypes of gamma-aminobutyric acid-related (GABAergic) neurons after acquired epileptic seizure. However, it is unclear that GABAergic neural modifications that occur during acquisition process of epileptic seizure. METHODS: Male rats were injected with pentylenetetrazole (PTZ kindling: n = 30) or saline (control: n = 15) every other day to observe the development of epileptic seizure stages. Two time points were identified: the point at which seizures were most difficult to induce, and the point at which seizures were most easy to induce. The expression of GABAergic neuron-related proteins in the hippocampus was immunohistochemically compared among GABAergic subtypes at each of these time points. RESULTS: Bimodal changes in seizure stages were observed in response to PTZ kindling. The increase of seizure stage was transiently suppressed after 8 or 10 injections, and then progressed again by the 16th injection. Based on these results, we defined 10 injections as a short-term injection period during which seizures are less likely to occur, and 20 injections as a long-term injection period during which continuous seizures are likely to occur. The immunohistochemical analysis showed that hippocampal glutamic acid decarboxylase 65 (GAD65) expression was increased after short-term kindling but unchanged after long-term kindling. Increased GAD65 expression was limited to somatostatin-positive (SOM+) cells among several GABAergic subtypes. By contrast, GAD, GABA, GABAAR α1, GABABR1, and VGAT cells showed no change following short- or long-term PTZ kindling. CONCLUSION: PTZ kindling induces bimodal changes in the epileptic seizure stage. Seizure stage is transiently suppressed after short-term PTZ injection with GAD65 upregulation in SOM+ cells. The seizure stage is progressed again after long-term PTZ injection with GAD65 reduction to baseline level.


Assuntos
Glutamato Descarboxilase , Hipocampo , Interneurônios , Excitação Neurológica , Pentilenotetrazol , Somatostatina , Animais , Masculino , Glutamato Descarboxilase/metabolismo , Excitação Neurológica/efeitos dos fármacos , Excitação Neurológica/metabolismo , Ratos , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Interneurônios/metabolismo , Somatostatina/metabolismo , Ratos Sprague-Dawley , Convulsões/induzido quimicamente , Convulsões/metabolismo
13.
Epilepsia ; 65(5): 1475-1487, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38470097

RESUMO

OBJECTIVE: We previously demonstrated that interleukin-1 receptor-mediated immune activation contributes to seizure severity and memory loss in anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis. In the present study, we assessed the role of the myeloid differentiation primary response gene 88 (MyD88), an adaptor protein in Toll-like receptor signaling, in the key phenotypic characteristics of anti-NMDAR encephalitis. METHODS: Monoclonal anti-NMDAR antibodies or control antibodies were infused into the lateral ventricle of MyD88 knockout mice (MyD88-/-) and control C56BL/6J mice (wild type [WT]) via osmotic minipumps for 2 weeks. Seizure responses were measured by electroencephalography. Upon completion of the infusion, the motor, anxiety, and memory functions of the mice were assessed. Astrocytic (glial fibrillary acidic protein [GFAP]) and microglial (ionized calcium-binding adaptor molecule 1 [Iba-1]) activation and transcriptional activation for the principal inflammatory mediators involved in seizures were determined using immunohistochemistry and quantitative real-time polymerase chain reaction, respectively. RESULTS: As shown before, 80% of WT mice infused with anti-NMDAR antibodies (n = 10) developed seizures (median = 11, interquartile range [IQR] = 3-25 in 2 weeks). In contrast, only three of 14 MyD88-/- mice (21.4%) had seizures (0, IQR = 0-.25, p = .01). The WT mice treated with antibodies also developed memory loss in the novel object recognition test, whereas such memory deficits were not apparent in MyD88-/- mice treated with anti-NMDAR antibodies (p = .03) or control antibodies (p = .04). Furthermore, in contrast to the WT mice exposed to anti-NMDAR antibodies, the MyD88-/- mice had a significantly lower induction of chemokine (C-C motif) ligand 2 (CCL2) in the hippocampus (p = .0001, Sidak tests). There were no significant changes in the expression of GFAP and Iba-1 in the MyD88-/- mice treated with anti-NMDAR or control antibodies. SIGNIFICANCE: These findings suggest that MyD88-mediated signaling contributes to the seizure and memory phenotype in anti-NMDAR encephalitis and that CCL2 activation may participate in the expression of these features. The removal of MyD88 inflammation may be protective and therapeutically relevant.


Assuntos
Encefalite Antirreceptor de N-Metil-D-Aspartato , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide , Convulsões , Transdução de Sinais , Animais , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Camundongos , Convulsões/metabolismo , Convulsões/imunologia , Transdução de Sinais/fisiologia , Encefalite Antirreceptor de N-Metil-D-Aspartato/imunologia , Masculino , Eletroencefalografia , Proteínas de Ligação ao Cálcio/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas dos Microfilamentos/metabolismo , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/imunologia , Disfunção Cognitiva/etiologia
14.
Neurochem Int ; 176: 105727, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38555055

RESUMO

Temporal lobe epilepsy (TLE), the most common type of drug-resistant epilepsy, severely affects quality of life. However, the underlying mechanism of TLE remains unclear and deserves further exploration. Sorbs2, a key synaptic regulatory protein, plays an important role in the regulation of synaptic transmission in the mammalian brain. In this study, we aimed to investigate the expression pattern of Sorbs2 in a kainic acid (KA)-induced TLE mouse model and in patients with TLE to further determine whether Sorbs2 is involved in seizure activity and to explore the potential mechanism by which Sorbs2 affects seizures in this TLE mouse model. First, we found that the expression of Sorbs2 was obviously increased in the hippocampus and cortex of a TLE mouse model and in the temporal cortex of TLE patients, indicating an abnormal expression pattern of Sorbs2 in TLE. Importantly, subsequent behavioral analyses and local field potential (LFP) analyses of a TLE mouse model demonstrated that the downregulation of hippocampal Sorbs2 could prolong the latency to spontaneous recurrent seizures (SRSs) and protect against SRSs. We also found that the knockdown of Sorbs2 in the hippocampus could decrease excitatory synaptic transmission in pyramidal neurons (PNs) in the hippocampal CA1 region and reduce the expression levels of the AMPAR subunits GluA1 and GluA2. Thus, we speculated that Sorbs2 may promote epileptogenesis and the development of TLE by affecting AMPAR-mediated excitatory synaptic transmission in PNs in the CA1 region. Therefore, reducing the expression of hippocampal Sorbs2 could restrain epileptogenesis and the development of TLE.


Assuntos
Epilepsia do Lobo Temporal , Camundongos Endogâmicos C57BL , Receptores de AMPA , Convulsões , Transmissão Sináptica , Epilepsia do Lobo Temporal/metabolismo , Epilepsia do Lobo Temporal/induzido quimicamente , Animais , Receptores de AMPA/metabolismo , Transmissão Sináptica/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Masculino , Convulsões/metabolismo , Convulsões/induzido quimicamente , Camundongos , Humanos , Feminino , Ácido Caínico/farmacologia , Ácido Caínico/toxicidade , Adulto , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Adulto Jovem
15.
Nat Commun ; 15(1): 2180, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467626

RESUMO

Epilepsy is a chronic and heterogenous disease characterized by recurrent unprovoked seizures, that are commonly resistant to antiseizure medications. This study applies a transcriptome network-based approach across epilepsies aiming to improve understanding of molecular disease pathobiology, recognize affected biological mechanisms and apply causal reasoning to identify therapeutic hypotheses. This study included the most common drug-resistant epilepsies (DREs), such as temporal lobe epilepsy with hippocampal sclerosis (TLE-HS), and mTOR pathway-related malformations of cortical development (mTORopathies). This systematic comparison characterized the global molecular signature of epilepsies, elucidating the key underlying mechanisms of disease pathology including neurotransmission and synaptic plasticity, brain extracellular matrix and energy metabolism. In addition, specific dysregulations in neuroinflammation and oligodendrocyte function were observed in TLE-HS and mTORopathies, respectively. The aforementioned mechanisms are proposed as molecular hallmarks of DRE with the identified upstream regulators offering opportunities for drug-target discovery and development.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia do Lobo Temporal , Humanos , Redes Reguladoras de Genes , Hipocampo/metabolismo , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/genética , Convulsões/metabolismo , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Epilepsia Resistente a Medicamentos/genética
16.
Biomed Pharmacother ; 173: 116385, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460369

RESUMO

Lilii Bulbus (Lilium lancifolium Thunberg) has a proneurogenic effect on the hippocampus. However, its effects on epilepsy and associated pathological features remain unknown. In this study, we investigated the antiseizure effects of a water extract of Lilii Bulbus (WELB) in mouse model of pentylenetetrazol (PTZ)-induced seizure. Mice were injected with PTZ once every 48 h until full kindling was achieved. WELB (100 and 500 mg/kg) was orally administered once daily before PTZ administration and during the kindling process. We found that WELB treatment protected against PTZ-induced low seizure thresholds and high seizure severity. Further, WELB-treated mice showed attenuated PTZ kindling-induced anxiety and memory impairment. Immunostaining and immunoblots showed that hyperactivation and ectopic migration of dentate granule cells (DGCs) were significantly reduced by WELB treatment in PTZ kindling-induced seizure mice. Staining for mossy fiber sprouting (MFS) using Timm staining and ZnT3 showed that WELB treatment significantly decreased PTZ kindling-induced MFS. Furthermore, the increased or decreased expression of proteins related to ectopic DGCs (Reelin and Dab-1), MFS (Netrin-1, Sema3A, and Sema3F), and their downstream effectors (ERK, AKT, and CREB) in the hippocampus of PTZ kindling mice was significantly restored by WELB treatment. Overall, our findings suggest that WELB is a potential antiseizure drug that acts by reducing ectopic DGCs and MFS and modulating epileptogenesis-related signaling in the hippocampus.


Assuntos
Excitação Neurológica , Semaforinas , Animais , Camundongos , Netrina-1 , Pentilenotetrazol , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/metabolismo
17.
Ageing Res Rev ; 96: 102248, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408490

RESUMO

Temporal lobe epilepsy (TLE) is the most common form of epileptic syndrome. It has been established that due to its complex pathogenesis, a considerable proportion of TLE patients often progress to drug-resistant epilepsy. Ferroptosis has emerged as an important neuronal death mechanism in TLE, which is primarily influenced by lipid accumulation and oxidative stress. In previous studies of ferroptosis, more attention has been focused on the impact of changes in the levels of proteins related to the redox equilibrium and signaling pathways on epileptic seizures. However, it is worth noting that the oxidative-reduction changes in different organelles may have different pathophysiological significance in the process of ferroptosis-related diseases. Mitochondria, as a key organelle involved in ferroptosis, its structural damage and functional impairment can lead to energy metabolism disorders and disruption of the excitatory inhibitory balance, significantly increasing the susceptibility to epileptic seizures. Therefore, secondary mitochondrial dysfunction in the process of ferroptosis could play a crucial role in TLE pathogenesis. This review focuses on ferroptosis and mitochondria, discussing the pathogenic role of ferroptosis-related mitochondrial dysfunction in TLE, thus aiming to provide novel insights and potential implications of ferroptosis-related secondary mitochondrial dysfunction in epileptic seizures and to offer new insights for the precise exploration of ferroptosis-related therapeutic targets for TLE patients.


Assuntos
Epilepsia do Lobo Temporal , Ferroptose , Doenças Mitocondriais , Humanos , Epilepsia do Lobo Temporal/metabolismo , Epilepsia do Lobo Temporal/patologia , Convulsões/complicações , Convulsões/metabolismo , Convulsões/patologia , Mitocôndrias/metabolismo , Doenças Mitocondriais/complicações , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia
18.
Brain Res ; 1831: 148820, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38417653

RESUMO

Epilepsy is a prevalent chronic neurological disorder characterized by recurrent seizures and brain dysfunction. Existing antiepileptic drugs (AEDs) mainly act on neurons and provide symptomatic control of seizures, but they do not modify the progression of epilepsy and may cause serious adverse effects. Increasing evidence suggests that reactive astrogliosis is critical in the pathophysiology of epilepsy. However, the function of reactive astrocytes in epilepsy has not been thoroughly explored. To provide a new perspective on the role of reactive astrocytes in epileptogenesis, we identified human astrocyte-specific genes and found 131 of these genes significantly differentially expressed in human temporal lobe epilepsy (TLE) datasets. Multiple astrocytic functions, such as cell adhesion, cell morphogenesis, actin filament-based process, apoptotic cell clearance and response to oxidative stress, were found to be promoted. Moreover, multiple altered astrocyte-specific genes were enriched in phagocytosis, perisynaptic astrocyte processes (PAPs), plasticity, and synaptic functions. Nine hub genes (ERBB2, GFAP, NOTCH2, ITGAV, ABCA1, AQP4, LRP1, GJA1, and YAP1) were identified by protein-protein interaction (PPI) network analysis. The correlation between the expression of these hub genes and seizure frequency, as well as epilepsy-related factors, including inflammatory mediators, complement factors, glutamate excitotoxicity and astrocyte reactivity, were analyzed. Additionally, upstream transcription factors of the hub genes were predicted. Finally, astrogliosis and the expression of the hub genes were validated in an epileptic rat model. Our findings reveal the various changes in astrocyte function associated with epilepsy and provide candidate astrocyte-specific genes that could be potential antiepileptogenic targets.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Ratos , Humanos , Animais , Epilepsia do Lobo Temporal/metabolismo , Astrócitos/metabolismo , Gliose/metabolismo , Convulsões/metabolismo , Epilepsia/metabolismo
19.
J Ethnopharmacol ; 327: 117982, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38423411

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cynanchum otophyllum C.K.Schneid.PI.Wilson, commonly referred as ''Qingyangshen'' (QYS), is a traditional folk medicine from Yunnan, renowned for its efficacy in neurological and psychiatric disorders. Glycosides isolated from QYS have shown promise in alleviating epilepsy, however, mechanisms of action and specific molecular targets remain to be elucidated. AIM OF THE STUDY: The study aimed to evaluate the anticonvulsant effects of Qingyangshen glycosides M1 (M1), a C21 steroidal glycoside from QYS, on pentylenetetrazol (PTZ)-induced convulsions in zebrafish (Danio rerio), and its neuroprotective effect on Glutamate (Glu)-induced damage to PC12 cells, and importantly to identify its potential molecular targets. MATERIALS AND METHODS: To evaluate anticonvulsant activity of M1, 7 days-post-fertilization (7-dpf) animals were pretreated (by immersion) and then exposed to PTZ (10 mM) solution. Furthermore, Glu-induced PC12 cell damage was employed to investigate the neuroprotective and anti-apoptotic capacity. Cells were pretreated with various concentrations of M1 (0-10 µM) for 12 h and then co-treated with Glu (15 mM) for an additional 24 h. The cell viability, apoptosis rate and apoptosis-related proteins (p-PI3K, PI3K, Akt, p-Akt, CREB, p-CREB, BDNF, Bax and Bcl-2) were measured using CCK-8, annexin V/PI and Western blot assays. To model the expected interaction between M1 and candidate cannabinoid receptor type 1 (CB1R), ERK phosphorylation, molecular docking, and drug affinity responsive target stability (DARTS) techniques were employed. Finally, CB1R antagonist Rimonabant (Rim) was validated by co-administration in both zebrafish and cells to confirm the requirement of CB1R for M1 efficacy. RESULTS: At a concentration of 400 µM, M1 dramatically reversed PTZ-induced convulsive-like behaviors in zebrafish, as evidenced by a significant reduction in locomotor activity. In the context of Glu-induced cytotoxicity, M1 (10 µM) demonstrated a notable increase in cell viability and suppressed apoptosis through modulation of the Bax/Bcl-2 ratio and activation of the PI3K/Akt/CREB/BDNF signaling axis. These effects were facilitated through CB1R activation. In contrast, Rim dampened the beneficial activities of M1 as a cannabinoid agonist. CONCLUSIONS: These results demonstrated that M1 as a potential CB1R activator, exhibiting anticonvulsive effects in a PTZ-induced zebrafish model and neuroprotective properties via the PI3K/Akt/CREB/BDNF signaling axis in a Glu-induced PC12 cell injury model. Notably, the observed seizure relief attenuated by CB1R chemical antagonism.


Assuntos
Fármacos Neuroprotetores , Proteínas Proto-Oncogênicas c-akt , Humanos , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glicosídeos/farmacologia , Glicosídeos/uso terapêutico , Glicosídeos/química , Peixe-Zebra , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Proteína X Associada a bcl-2 , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Simulação de Acoplamento Molecular , China , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/metabolismo , Proteínas Reguladoras de Apoptose , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2 , Pentilenotetrazol/toxicidade , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
20.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338726

RESUMO

Phenobarbital (PB) remains the first-line medication for neonatal seizures. Yet, seizures in many newborns, particularly those associated with perinatal ischemia, are resistant to PB. Previous animal studies have shown that in postnatal day P7 mice pups with ischemic stroke induced by unilateral carotid ligation, the tyrosine receptor kinase B (TrkB) antagonist ANA12 (N-[2-[[(hexahydro-2-oxo-1H-azepin-3-yl)amino]carbonyl]phenyl]-benzo[b]thiophene-2-carboxamide, 5 mg/kg) improved the efficacy of PB in reducing seizure occurrence. To meet optimal standards of effectiveness, a wider range of ANA12 doses must be tested. Here, using the unilateral carotid ligation model, we tested the effectiveness of higher doses of ANA12 (10 and 20 mg/kg) on the ability of PB to reduce seizure burden, ameliorate cell death (assessed by Fluoro-Jade staining), and affect neurodevelopment (righting reflex, negative geotaxis test, open field test). We found that a single dose of ANA12 (10 or 20 mg/kg) given 1 h after unilateral carotid ligation in P7 pups reduced seizure burden and neocortical and striatal neuron death without impairing developmental reflexes. In conclusion, ANA12 at a range of doses (10-20 mg/kg) enhanced PB effectiveness for the treatment of perinatal ischemia-related seizures, suggesting that this agent might be a clinically safe and effective adjunctive agent for the treatment of pharmacoresistant neonatal seizures.


Assuntos
Epilepsia , Hipóxia-Isquemia Encefálica , Animais , Camundongos , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Animais Recém-Nascidos , Modelos Animais de Doenças , Convulsões/tratamento farmacológico , Convulsões/etiologia , Convulsões/metabolismo , Fenobarbital/farmacologia , Fenobarbital/uso terapêutico , Epilepsia/tratamento farmacológico , Isquemia/tratamento farmacológico , Hipóxia-Isquemia Encefálica/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA