Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proteins ; 91(8): 1163-1172, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37102418

RESUMO

Coproporphyrinogen oxidase (CPO) plays important role in the biosynthesis of heme by catalyzing the coproporphyrinogen III to coproporphyrin III. However, in earlier research, it was regarded as the protoporphyrinogen oxidase (PPO) because it can also catalyze the oxidation of protoporphyrinogen IX to protoporphyrin IX. Identification of the commonalities in CPO and PPO would help us to get a further understanding of the enzyme function. In this work, we explored the role of a non-conserved residue, Asp65 in Bacillus subtilis CPO (bsCPO), whose corresponding residues in PPO from various species are neutral or positive residue (arginine in human PPO or asparagine in tobacco PPO, etc.). We found that Asp65 performs its function by forming a polar interaction network with its surrounding residues in bsCPO, which is important for enzymatic activity. This polar network maintains the substrate binding chamber and stabilizes the micro-environment of the isoalloxazine ring of FAD for the substrate-FAD interaction. Both the comparison of the crystal structures of bsCPO with PPO and our previous work showed that a similar polar interaction network is also present in PPOs. The results confirmed our conjecture that non-conserved residues can form a conserved element to maintain the function of CPO or PPO.


Assuntos
Bacillus subtilis , Coproporfirinogênio Oxidase , Humanos , Coproporfirinogênio Oxidase/química , Coproporfirinogênio Oxidase/metabolismo , Oxirredução , Catálise
2.
PLoS One ; 17(3): e0265318, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35312719

RESUMO

Pearl color is an important factor influencing pearl value, and is affected by the nacre color of the shell in Hyriopsis cumingii. Coproporphyrinogen-III oxidase (CPOX) is a key enzyme in porphyrin synthesis, and porphyrins are involved in color formation in different organisms, including in the nacre color of mussels. In this study, a CPOX gene (HcCPOX) was identified from H. cumingii, and its amino acid sequence was found to contain a coprogen-oxidase domain. HcCPOX mRNA was expressed widely in the tissues of white and purple mussels, and the highest expression was found in the gill, followed by the fringe mantle. The expression of HcCPOX in all tissues of purple mussels (except in the middle mantle) was higher than that of white mussels. Strong hybridization signals for HcCPOX were observed in the dorsal epithelial cells of the outer fold of the mantle. The activity of CPOX in the gill, fringe mantle, and foot of purple mussels was significantly higher than that in white mussels. Moreover, the expression of HcCPOX and CPOX activity were decreased in RNA interference experiments. The findings indicate that HcCPOX might contributes to nacre color formation in H. cumingii by being involved in porphyrin synthesis.


Assuntos
Bivalves , Nácar , Unionidae , Animais , Bivalves/genética , Bivalves/metabolismo , Coproporfirinogênio Oxidase/metabolismo , Coproporfirinogênios/metabolismo , Nácar/metabolismo , Oxirredutases/metabolismo , Unionidae/genética
3.
Genes (Basel) ; 13(2)2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-35205317

RESUMO

Lesion mimic mutants provide ideal genetic materials for elucidating the molecular mechanism of cell death and disease resistance. The maize necrotic leaf mutant (nec-t) is a recessive mutant with necrotic spots and yellow-green leaves. In this study, we found that nec-t was a light and temperature-dependent mutant. Map-based cloning and the allelic test revealed that nec-t was a novel allelic mutant of the Necrotic4 gene. Necrotic4 encodes the coproporphyrinogen III oxidase (CPX1), a key enzyme in the tetrapyrrole pathway, catalyzing coproporphyrinogen III oxidate to protoporphyrinogen IX. Subcellular localization showed that the necrotic4 protein was localized in the chloroplast. Furthermore, RNA-seq analysis showed that the Necrotic4 mutation caused the enhanced chlorophyll degradation and reactive oxygen species (ROS) response. The mechanism of plant lesion formation induced by light and temperature is not clear. Our research provides a basis for understanding the molecular mechanism of necrosis initiation in maize.


Assuntos
Coproporfirinogênio Oxidase , Porfirinas , Coproporfirinogênio Oxidase/genética , Coproporfirinogênio Oxidase/metabolismo , Coproporfirinogênios , Necrose/genética , Oxirredutases , Folhas de Planta/genética , Folhas de Planta/metabolismo
4.
Exp Eye Res ; 215: 108905, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34968474

RESUMO

The BALB.NCT-Cpoxnct is a mutant mouse model for hereditary cataracts. We previously uncovered that the primary cause of the cataracts of BALB.NCT-Cpoxnct is a mutation in the coproporphyrinogen oxidase (Cpox) gene. Because of the mutation, excessive coproporphyrin is accumulated in the BALB.NCT-Cpoxnct lens. In this study, we analyzed the changes in transcriptome and proteins in the lenses of 4- and 12-week-old BALB.NCT-Cpoxnct to further elucidate the molecular etiology of cataracts in this mouse strain. Transcriptome analysis revealed that endoplasmic reticulum (ER) stress was increased in the BALB.NCT-Cpoxnct lens that induced persistent activation of the PERK signaling pathway of the ER stress response. Also, levels of crystallin transcripts and proteins were reduced in the BALB.NCT-Cpoxnct lens. Analysis of proteins disclosed aggregation of crystallins and keratins prior to the manifestation of cataracts in 4-week-old BALB.NCT-Cpoxnct mice. At 12 weeks of age, insoluble crystallins were accumulated in the cataractous BALB.NCT-Cpoxnct lens. Overall, our data suggest the following sequence of events in the BALB.NCT-Cpoxnct lens: accumulated coproporphyrin induces the aggregation of proteins including crystallins. Aggregated proteins increase ER stress that, in turn, leads to the repression of global translation of proteins including crystallins. The decline in the molecular chaperone crystallin aggravates aggregation and insolubilization of proteins. This vicious cycle would eventually lead to cataracts in BALB.NCT-Cpoxnct.


Assuntos
Catarata , Cristalinas , Cristalino , Animais , Catarata/genética , Catarata/metabolismo , Coproporfirinogênio Oxidase/metabolismo , Cristalinas/metabolismo , Estresse do Retículo Endoplasmático , Cristalino/metabolismo , Camundongos , Proteínas/metabolismo
5.
Protein Sci ; 29(3): 789-802, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31930600

RESUMO

Acinetobacter baumannii is well known for causing hospital-associated infections due in part to its intrinsic antibiotic resistance as well as its ability to remain viable on surfaces and resist cleaning agents. In a previous publication, A. baumannii strain AB5075 was studied by transposon mutagenesis and 438 essential gene candidates for growth on rich-medium were identified. The Seattle Structural Genomics Center for Infectious Disease entered 342 of these candidate essential genes into our pipeline for structure determination, in which 306 were successfully cloned into expression vectors, 192 were detectably expressed, 165 screened as soluble, 121 were purified, 52 crystalized, 30 provided diffraction data, and 29 structures were deposited in the Protein Data Bank. Here, we report these structures, compare them with human orthologs where applicable, and discuss their potential as drug targets for antibiotic development against A. baumannii.


Assuntos
Acinetobacter baumannii/química , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Genoma Bacteriano/efeitos dos fármacos , Genoma Bacteriano/genética , Acinetobacter baumannii/genética , Proteínas de Bactérias/genética , Coproporfirinogênio Oxidase/química , Coproporfirinogênio Oxidase/metabolismo , Farmacorresistência Bacteriana/efeitos dos fármacos , Humanos , Metionina tRNA Ligase/química , Metionina tRNA Ligase/metabolismo , Modelos Moleculares , Conformação Proteica , Uroporfirinogênio Descarboxilase/química , Uroporfirinogênio Descarboxilase/metabolismo
6.
Nat Prod Rep ; 37(1): 17-28, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31290896

RESUMO

Covering: 2012 to 2019HemN-like radical S-adenosyl-l-methionine (SAM) enzymes have been recently disclosed to catalyze diverse chemically challenging reactions from primary to secondary metabolic pathways. In this highlight, we summarize the reaction examples catalyzed by HemN-like enzymes to date and the enzymatic mechanisms reported. From the recent mechanistic investigations, we reason that there is a shared initiating mechanism wherein a characteristic SAM methylene radical is proposed to abstract a hydrogen atom from an sp3 carbon or add onto an sp2 carbon center although variations occur thereafter from reaction to reaction, as well as providing a brief insight into some future prospects.


Assuntos
Enzimas/química , Enzimas/metabolismo , S-Adenosilmetionina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Coproporfirinogênio Oxidase/química , Coproporfirinogênio Oxidase/metabolismo , Duocarmicinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Heme/metabolismo , Hidrogênio , Metilação , Peptídeos Cíclicos/metabolismo , Policetídeos/metabolismo , Proteínas Metiltransferases/metabolismo , Tiazóis/metabolismo
7.
FASEB J ; 33(12): 13367-13385, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31553893

RESUMO

Heme is an essential molecule synthetized through a broadly conserved 8-step route that has been lost in trypanosomatid parasites. Interestingly, Leishmania reacquired by horizontal gene transfer from γ-proteobacteria the genes coding for the last 3 enzymes of the pathway. Here we show that intracellular amastigotes of Leishmania major can scavenge heme precursors from the host cell to fulfill their heme requirements, demonstrating the functionality of this partial pathway. To dissect its role throughout the L. major life cycle, the significance of L. major ferrochelatase (LmFeCH), the terminal enzyme of the route, was evaluated. LmFeCH expression in a heterologous system demonstrated its activity. Knockout promastigotes lacking lmfech were not able to use the ferrochelatase substrate protoporphyrin IX as a source of heme. In vivo infection of Phlebotomus perniciosus with knockout promastigotes shows that LmFeCH is not required for their development in the sandfly. In contrast, the replication of intracellular amastigotes was hampered in vitro by the deletion of lmfech. However, LmFeCH-/- parasites produced disease in a cutaneous leishmaniasis murine model in a similar way as control parasites. Therefore, although L. major can synthesize de novo heme from macrophage precursors, this activity is dispensable being an unsuited target for leishmaniasis treatment.-Orrego, L. M., Cabello-Donayre, M., Vargas, P., Martínez-García, M., Sánchez, C., Pineda-Molina, E., Jiménez, M., Molina, R., Pérez-Victoria, J. M. Heme synthesis through the life cycle of the heme auxotrophic parasite Leishmania major.


Assuntos
Ferroquelatase/metabolismo , Heme/biossíntese , Leishmania major/crescimento & desenvolvimento , Leishmaniose Cutânea/metabolismo , Proteínas de Protozoários/metabolismo , Psychodidae/metabolismo , Virulência , Sequência de Aminoácidos , Animais , Coproporfirinogênio Oxidase/metabolismo , Feminino , Ferroquelatase/química , Ferroquelatase/genética , Leishmaniose Cutânea/parasitologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Conformação Proteica , Protoporfirinogênio Oxidase/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Psychodidae/parasitologia , Homologia de Sequência
8.
Biochem Pharmacol ; 169: 113604, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31421132

RESUMO

BACKGROUND: Hydrogen sulfide (H2S) is an endogenous gasotransmitter produced by mammalian cells. The current study investigated the potential role of H2S in the regulation of heme biosynthesis using mice deficient in cystathionine gamma-lyase (CSE), one of the three major mammalian H2S-producing enzymes. METHODS: Wild-type and global CSE-/- mice, as well as mitochondria prepared from their liver were used. In vivo, arterial and venous blood gases were measured, and survival of the mice to severe global hypoxia was monitored. Ex vivo, expression of various heme biosynthetic enzymes including coproporphyrinogen oxidase (CPOX) was measured, and mitochondrial function was evaluated using Extracellular Flux Analysis. Urine samples were collected to measure the oxidized porphyrinogen intermediates. The in vivo/ex vivo studies were complemented with mitochondrial bioenergetic studies in hepatocytes in vitro. Moreover, the potential effect of H2S on the CPOX promoter was studied in cells expressing a CPOX promoter construct system. RESULTS: The main findings are as follows: (1) CSE-/- mice exhibit elevated red blood cell counts and red blood cell mean corpuscular volumes compared to wild-type mice; (2) these changes are associated with elevated plasma and liver heme levels and (3) these alterations are likely due to an induction of CPOX (the sixth enzyme involved in heme biosynthesis) in CSE-/- mice. (4) Based on in vitro promoter data the promoter activation of CPOX is directly influenced by H2S, the product of CSE. With respect to the potential functional relevance of these findings, (5) the increased circulating red blood cell numbers do not correspond to any detectable alterations in blood gas parameters under resting conditions, (6) nor do they affect the hypoxia tolerance of the animals in an acute severe hypoxia model. However, there may be a functional interaction between the CSE system and the CPOX system in terms of mitochondrial bioenergetics: (7) CSE-/- hepatocytes and mitochondria isolated from them exhibit increased oxidative phosphorylation parameters, and (8) this increase is partially blunted after CPOX silencing. Although heme is essential for the biosynthesis of mitochondrial electron chain complexes, and CPOX is required for heme biosynthesis, (9) the observed functional mitochondrial alterations are not associated with detectable changes in mitochondrial electron transport chain protein expression. CONCLUSIONS: The CSE system regulates the expression of CPOX and consequent heme synthesis. These effects in turn, do not influence global oxygen transport parameters, but may regulate mitochondrial electron transport.


Assuntos
Coproporfirinogênio Oxidase/metabolismo , Cistationina gama-Liase/deficiência , Transporte de Elétrons/genética , Eritropoese/genética , Heme/biossíntese , Mitocôndrias/metabolismo , Regulação para Cima/genética , Animais , Coproporfirinogênio Oxidase/genética , Cistationina gama-Liase/genética , Contagem de Eritrócitos , Células Hep G2 , Humanos , Sulfeto de Hidrogênio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação Oxidativa , Transfecção
9.
mSphere ; 4(4)2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31292227

RESUMO

The virulence of the human pathogen Staphylococcus aureus is supported by many heme-dependent proteins, including key enzymes of cellular respiration. Therefore, synthesis of heme is a critical component of staphylococcal physiology. S. aureus generates heme via the coproporphyrin-dependent pathway, conserved across members of the Firmicutes and Actinobacteria In this work, we genetically investigate the oxidation of coproporphyrinogen to coproporphyrin in this heme synthesis pathway. The coproporphyrinogen III oxidase CgoX has previously been identified as the oxygen-dependent enzyme responsible for this conversion under aerobic conditions. However, because S. aureus uses heme during anaerobic nitrate respiration, we hypothesized that coproporphyrin production is able to proceed in the absence of oxygen. Therefore, we tested the contribution to anaerobic heme synthesis of CgoX and two other proteins previously identified as potential oxygen-independent coproporphyrinogen dehydrogenases, NWMN_1486 and NWMN_1636. We have found that CgoX alone is responsible for aerobic and anaerobic coproporphyrin synthesis from coproporphyrinogen and is required for aerobic and anaerobic heme-dependent growth. This work provides an explanation for how S. aureus heme synthesis proceeds under both aerobic and anaerobic conditions.IMPORTANCE Heme is a critical molecule required for aerobic and anaerobic respiration by organisms across kingdoms. The human pathogen Staphylococcus aureus has served as a model organism for the study of heme synthesis and heme-dependent physiology and, like many species of the phyla Firmicutes and Actinobacteria, generates heme through a coproporphyrin intermediate. A critical step in terminal heme synthesis is the production of coproporphyrin by the CgoX enzyme, which was presumed to be oxygen dependent. However, S. aureus also requires heme during anaerobic growth; therefore, the synthesis of coproporphyrin by an oxygen-independent mechanism is required. Here, we identify CgoX as the enzyme performing the oxygen-dependent and -independent synthesis of coproporphyrin from coproporphyrinogen, resolving a key outstanding question in the coproporphyrin-dependent heme synthesis pathway.


Assuntos
Coproporfirinogênio Oxidase/metabolismo , Heme/biossíntese , Staphylococcus aureus/enzimologia , Aerobiose , Anaerobiose , Coproporfirinogênio Oxidase/genética , Coproporfirinogênios/metabolismo , Oxirredução , Staphylococcus aureus/genética , Virulência
10.
Angew Chem Int Ed Engl ; 58(19): 6235-6238, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30884058

RESUMO

HemN is a radical S-adenosyl-l-methionine (SAM) enzyme that catalyzes the oxidative decarboxylation of coproporphyrinogen III to produce protoporphyrinogen IX, an intermediate in heme biosynthesis. HemN binds two SAM molecules in the active site, but how these two SAMs are utilized for the sequential decarboxylation of the two propionate groups of coproporphyrinogen III remains largely elusive. Provided here is evidence showing that in HemN catalysis a SAM serves as a hydrogen relay which mediates a radical-based hydrogen transfer from the propionate to the 5'-deoxyadenosyl (dAdo) radical generated from another SAM in the active site. Also observed was an unexpected shunt product resulting from trapping of the SAM-based methylene radical by the vinyl moiety of the mono-decarboxylated intermediate, harderoporphyrinogen. These results suggest a major revision of the HemN mechanism and reveal a new paradigm of the radical-mediated hydrogen transfer in radical SAM enzymology.


Assuntos
Proteínas de Bactérias/metabolismo , Coproporfirinogênio Oxidase/metabolismo , Biocatálise , Domínio Catalítico , Coproporfirinogênios/metabolismo , Escherichia coli/metabolismo , Hidrogênio/química , Hidrogênio/metabolismo , Metano/análogos & derivados , Metano/química , Ligação Proteica , Protoporfirinas/metabolismo , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo
11.
Biochemistry ; 58(2): 85-93, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30365306

RESUMO

Microorganisms have lifestyles and metabolism adapted to environmental niches, which can be very broad or highly restricted. Molecular oxygen (O2) is currently variably present in microenvironments and has driven adaptation and microbial differentiation over the course of evolution on Earth. Obligate anaerobes use enzymes and cofactors susceptible to low levels of O2 and are restricted to O2-free environments, whereas aerobes typically take advantage of O2 as a reactant in many biochemical pathways and may require O2 for essential biochemical reactions. In this Perspective, we focus on analogous enzymes found in tetrapyrrole biosynthesis, modification, and degradation that are catalyzed by O2-sensitive radical S-adenosylmethionine (SAM) enzymes and by O2-dependent metalloenzymes. We showcase four transformations for which aerobic organisms use O2 as a cosubstrate but anaerobic organisms do not. These reactions include oxidative decarboxylation, methyl and methylene oxidation, ring formation, and ring cleavage. Furthermore, we highlight biochemically uncharacterized enzymes implicated in reactions that resemble those catalyzed by the parallel aerobic and anaerobic enzymes. Intriguingly, several of these reactions require insertion of an oxygen atom into the substrate, which in aerobic enzymes is facilitated by activation of O2 but in anaerobic organisms requires an alternative mechanism.


Assuntos
Enzimas/química , Enzimas/metabolismo , S-Adenosilmetionina/metabolismo , Tetrapirróis/metabolismo , Aerobiose , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Catálise , Clorofila/biossíntese , Coproporfirinogênio Oxidase/química , Coproporfirinogênio Oxidase/metabolismo , Descarboxilação , Heme/metabolismo , Oxirredução , Oxigênio/metabolismo , Porfirinas/biossíntese , Porfirinas/química , Tetrapirróis/biossíntese , Tetrapirróis/química
12.
Eur J Med Genet ; 62(12): 103589, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30476629

RESUMO

Porphyrias are rare diseases caused by alterations in the heme biosynthetic pathway. Depending on the afected enzyme, porphyrin precursors or porphyrins are overproduced, causing acute neurovisceral attacks or dermal photosensitivity, respectively. Hereditary Coproporphyria (HCP) and Variegate Porphyria (VP) are mixed porphyrias since they can present acute and/or cutaneous symptoms. These diseases are caused by a deficiency of coproporphyrinogen oxidase (CPOX) in HCP, and protoporphyrinogen oxidase (PPOX) in VP. Herein, we studied nineteen unrelated Spanish patients with mixed porphyrias. The diagnosis of either, HCP or VP was made on the basis of clinical symptoms, biochemical findings and the identification of the mutation responsible in the CPOX or PPOX genes. Two patients presented both acute and cutaneous symptoms. In most patients, the biochemical data allowed the diagnosis. Among eleven patients with HCP, ten CPOX mutations were identified, including six novel ones: two frameshift (c.32delG and c.1102delC), two nonsense (p.Cys239Ter and p.Tyr365Ter), one missense (p.Trp275Arg) and one amino acid deletion (p.Gly336del). Moreover, seven previously described PPOX mutations were identified in eight patients with VP. The impacts of CPOX mutations p.Trp275Arg and p.Gly336del, were evaluated using prediction softwares and their functional consequences were studied in a prokaryotic expression system. Both alterations were predicted as deleterious by in silico analysis. Aditionally, when these alleles were expressed in E. coli, only p.Trp275Arg retained some residual activity. These results emphasize the usefulness of integrated the biochemical tests and molecular studies in the diagnosis. Furthermore, they extend knowledge on the molecular heterogeneity of mixed porphyrias in Spain.


Assuntos
Porfirias/genética , Adulto , Idoso , Coproporfirinogênio Oxidase/genética , Coproporfirinogênio Oxidase/metabolismo , Feminino , Flavoproteínas/genética , Flavoproteínas/metabolismo , Testes Genéticos/estatística & dados numéricos , Humanos , Mutação com Perda de Função , Masculino , Pessoa de Meia-Idade , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação de Sentido Incorreto , Porfirias/epidemiologia , Protoporfirinogênio Oxidase/genética , Protoporfirinogênio Oxidase/metabolismo , Espanha
13.
J Biol Chem ; 293(32): 12394-12404, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29925590

RESUMO

Protoporphyrinogen IX oxidase (PPO), the last enzyme that is common to both chlorophyll and heme biosynthesis pathways, catalyzes the oxidation of protoporphyrinogen IX to protoporphyrin IX. PPO has several isoforms, including the oxygen-dependent HemY and an oxygen-independent enzyme, HemG. However, most cyanobacteria encode HemJ, the least characterized PPO form. We have characterized HemJ from the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis 6803) as a bona fide PPO; HemJ down-regulation resulted in accumulation of tetrapyrrole precursors and in the depletion of chlorophyll precursors. The expression of FLAG-tagged Synechocystis 6803 HemJ protein (HemJ.f) and affinity isolation of HemJ.f under native conditions revealed that it binds heme b The most stable HemJ.f form was a dimer, and higher oligomeric forms were also observed. Using both oxygen and artificial electron acceptors, we detected no enzymatic activity with the purified HemJ.f, consistent with the hypothesis that the enzymatic mechanism for HemJ is distinct from those of other PPO isoforms. The heme absorption spectra and distant HemJ homology to several membrane oxidases indicated that the heme in HemJ is redox-active and involved in electron transfer. HemJ was conditionally complemented by another PPO, HemG from Escherichia coli. If grown photoautotrophically, the complemented strain accumulated tripropionic tetrapyrrole harderoporphyrin, suggesting a defect in enzymatic conversion of coproporphyrinogen III to protoporphyrinogen IX, catalyzed by coproporphyrinogen III oxidase (CPO). This observation supports the hypothesis that HemJ is functionally coupled with CPO and that this coupling is disrupted after replacement of HemJ by HemG.


Assuntos
Coproporfirinogênio Oxidase/metabolismo , Heme/metabolismo , Protoporfirinogênio Oxidase/metabolismo , Synechocystis/enzimologia , Tetrapirróis/metabolismo , Coproporfirinogênio Oxidase/química , Heme/química , Modelos Moleculares , Oxirredução , Protoporfirinogênio Oxidase/química , Tetrapirróis/química
14.
Proc Natl Acad Sci U S A ; 114(32): E6652-E6659, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28739897

RESUMO

Gram-positive bacteria cause the majority of skin and soft tissue infections (SSTIs), resulting in the most common reason for clinic visits in the United States. Recently, it was discovered that Gram-positive pathogens use a unique heme biosynthesis pathway, which implicates this pathway as a target for development of antibacterial therapies. We report here the identification of a small-molecule activator of coproporphyrinogen oxidase (CgoX) from Gram-positive bacteria, an enzyme essential for heme biosynthesis. Activation of CgoX induces accumulation of coproporphyrin III and leads to photosensitization of Gram-positive pathogens. In combination with light, CgoX activation reduces bacterial burden in murine models of SSTI. Thus, small-molecule activation of CgoX represents an effective strategy for the development of light-based antimicrobial therapies.


Assuntos
Proteínas de Bactérias/metabolismo , Coproporfirinogênio Oxidase/metabolismo , Coproporfirinas/biossíntese , Fármacos Fotossensibilizantes/metabolismo , Fototerapia , Infecções Cutâneas Estafilocócicas/enzimologia , Infecções Cutâneas Estafilocócicas/terapia , Staphylococcus aureus/metabolismo , Animais , Proteínas de Bactérias/genética , Coproporfirinogênio Oxidase/genética , Coproporfirinas/genética , Modelos Animais de Doenças , Camundongos , Staphylococcus aureus/genética
15.
Plant Physiol ; 174(1): 258-275, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28270625

RESUMO

Tetrapyrrole biosynthesis is one of the most essential metabolic pathways in almost all organisms. Coproporphyrinogen III oxidase (CPO) catalyzes the conversion of coproporphyrinogen III into protoporphyrinogen IX in this pathway. Here, we report that mutation in the Arabidopsis (Arabidopsis thaliana) CPO-coding gene At5g63290 (AtHEMN1) adversely affects silique length, ovule number, and seed set. Athemn1 mutant alleles were transmitted via both male and female gametes, but homozygous mutants were never recovered. Plants carrying Athemn1 mutant alleles showed defects in gametophyte development, including nonviable pollen and embryo sacs with unfused polar nuclei. Improper differentiation of the central cell led to defects in endosperm development. Consequently, embryo development was arrested at the globular stage. The mutant phenotype was completely rescued by transgenic expression of AtHEMN1 Promoter and transcript analyses indicated that AtHEMN1 is expressed mainly in floral tissues and developing seeds. AtHEMN1-green fluorescent protein fusion protein was found targeted to mitochondria. Loss of AtHEMN1 function increased coproporphyrinogen III level and reduced protoporphyrinogen IX level, suggesting the impairment of tetrapyrrole biosynthesis. Blockage of tetrapyrrole biosynthesis in the AtHEMN1 mutant led to increased reactive oxygen species (ROS) accumulation in anthers and embryo sacs, as evidenced by nitroblue tetrazolium staining. Our results suggest that the accumulated ROS disrupts mitochondrial function by altering their membrane polarity in floral tissues. This study highlights the role of mitochondrial ROS homeostasis in gametophyte and seed development and sheds new light on tetrapyrrole/heme biosynthesis in plant mitochondria.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Coproporfirinogênio Oxidase/metabolismo , Células Germinativas Vegetais/metabolismo , Mitocôndrias/enzimologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Coproporfirinogênio Oxidase/genética , Coproporfirinogênios/metabolismo , Endosperma/genética , Endosperma/crescimento & desenvolvimento , Endosperma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Células Germinativas Vegetais/crescimento & desenvolvimento , Mitocôndrias/metabolismo , Mutação , Óvulo Vegetal/genética , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/metabolismo , Plantas Geneticamente Modificadas , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
16.
Microbiol Mol Biol Rev ; 81(1)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28123057

RESUMO

The advent of heme during evolution allowed organisms possessing this compound to safely and efficiently carry out a variety of chemical reactions that otherwise were difficult or impossible. While it was long assumed that a single heme biosynthetic pathway existed in nature, over the past decade, it has become clear that there are three distinct pathways among prokaryotes, although all three pathways utilize a common initial core of three enzymes to produce the intermediate uroporphyrinogen III. The most ancient pathway and the only one found in the Archaea converts siroheme to protoheme via an oxygen-independent four-enzyme-step process. Bacteria utilize the initial core pathway but then add one additional common step to produce coproporphyrinogen III. Following this step, Gram-positive organisms oxidize coproporphyrinogen III to coproporphyrin III, insert iron to make coproheme, and finally decarboxylate coproheme to protoheme, whereas Gram-negative bacteria first decarboxylate coproporphyrinogen III to protoporphyrinogen IX and then oxidize this to protoporphyrin IX prior to metal insertion to make protoheme. In order to adapt to oxygen-deficient conditions, two steps in the bacterial pathways have multiple forms to accommodate oxidative reactions in an anaerobic environment. The regulation of these pathways reflects the diversity of bacterial metabolism. This diversity, along with the late recognition that three pathways exist, has significantly slowed advances in this field such that no single organism's heme synthesis pathway regulation is currently completely characterized.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Heme/análogos & derivados , Ferro/química , Tetrapirróis/biossíntese , Ácido Aminolevulínico/metabolismo , Coproporfirinogênio Oxidase/metabolismo , Coproporfirinas/metabolismo , Heme/biossíntese , Protoporfirinas/biossíntese , Protoporfirinas/metabolismo , Uroporfirinogênio Descarboxilase/metabolismo
17.
Mol Neurobiol ; 54(7): 5699-5708, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27644131

RESUMO

Protoporphyrin IX (PpIX) is widely used in photodynamic diagnosis. To date, the details of molecular mechanisms underlying PpIX accumulation in malignant cells after 5-ALA administration remain unclear. The fluorescence of PpIX was studied in human glioma cells. Several cell cultures were established from glioma tumor tissue to study the differences between fluorescence-positive and fluorescence-negative human glioma tumors. The cell cultures demonstrated fluorescence profiles similar to those of source tumor tissues, which allows us to use these cultures in experimental research. Dynamics of the rates of synthesis and degradation of fluorescent protoporphyrin IX was studied in the cultures obtained. In addition, the expression of CPOX, an enzyme involved in PpIX synthesis, was evaluated. mRNA levels of heme biosynthesis enzymes were analyzed, and PpIX fluorescence proved to correlate with the CPOX protein level, whereas no such correlation was observed at the mRNA level. Fluorescence intensity decreased at low levels of the enzyme, which indicates its critical role in PpIX fluorescence. Finally, the fluorescence intensity proved to correlate with the proliferative activity.


Assuntos
Neoplasias Encefálicas/patologia , Coproporfirinogênio Oxidase/metabolismo , Glioma/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Protoporfirinas/farmacologia , Ácido Aminolevulínico/metabolismo , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Coproporfirinogênio Oxidase/genética , Fluorescência , Glioma/patologia , Humanos , Fotoquimioterapia
18.
J BUON ; 21(5): 1068-1075, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27837606

RESUMO

PURPOSE: To investigate the killing effect of photodynamic therapy (PDT) mediated by hematoporphyrin derivative (HPD) on human breast cancer MCF7 and MDA-MB-231 cells in vitro. METHODS: MCF7 and MDA-MB-231 breast cancer cells cultured in vitro were incubated with calcitriol (concentration of 10-8M, 10-10 M, 10-12 M, 10-14 M, 10-16 M, 0 M) to determine a proper concentration. The cells were divided into experimental group (calcitriol, HPD group and laser), HPD group (HPD and laser), calcitriol group (calcitriol and laser), blank laser group (laser alone) and blank group (no drugs and laser). Then the cells were preconditioned with calcitriol for 48 hrs and incubated with HPD for 6 hrs. After light exposure with 630 nm laser, the cells' viability and the reactive oxygen species (ROS) were assessed. After 8 hrs, flow cytometry was applied to detect the rate of cell apoptosis. The fluorescence intensity in cells was detected. Furthermore, the expression of porphyrin synthetic enzymes in pretreated breast cancer cells was analyzed. RESULTS: MTT assay showed that the viability of cells in the experimental group was lowest (p<0.05). The ROS intensity of the experimental group was higher (p<0.01). The rate of cell apoptosis was higher in the experimental group (p<0.05), and the fluorescence of the experimental group was higher (p<0.01). Furthermore, mechanistic studies documented that the expression of the porphyrin synthesis enzyme coproporphyrinogen oxidase (CPOX) was increased by calcitriol at the mRNA level. CONCLUSION: This research revealed a simple, non-toxic and highly effective preconditioning regimen to selectively enhance protoporphyrin IX (PpIX) fluorescence and the response of HPD-PDT in breast cancer search. This finding suggests that the combined treatment of breast cancer cells with calcitriol plus HPD may provide an effective and selective therapeutic modality to enhance HPD-induced PpIX fluorescent quality for improving discrimination of tumor tissue and PDT efficacy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Calcitriol/farmacologia , Hematoporfirinas/farmacologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Sobrevivência Celular/efeitos dos fármacos , Coproporfirinogênio Oxidase/genética , Coproporfirinogênio Oxidase/metabolismo , Relação Dose-Resposta a Droga , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
19.
Biochem J ; 473(21): 3997-4009, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27597779

RESUMO

Bacteria require a haem biosynthetic pathway for the assembly of a variety of protein complexes, including cytochromes, peroxidases, globins, and catalase. Haem is synthesised via a series of tetrapyrrole intermediates, including non-metallated porphyrins, such as protoporphyrin IX, which is well known to generate reactive oxygen species in the presence of light and oxygen. Staphylococcus aureus has an ancient haem biosynthetic pathway that proceeds via the formation of coproporphyrin III, a less reactive porphyrin. Here, we demonstrate, for the first time, that HemY of S. aureus is able to generate both protoporphyrin IX and coproporphyrin III, and that the terminal enzyme of this pathway, HemQ, can stimulate the generation of protoporphyrin IX (but not coproporphyrin III). Assays with hydrogen peroxide, horseradish peroxidase, superoxide dismutase, and catalase confirm that this stimulatory effect is mediated by superoxide. Structural modelling reveals that HemQ enzymes do not possess the structural attributes that are common to peroxidases that form compound I [FeIV==O]+, which taken together with the superoxide data leaves Fenton chemistry as a likely route for the superoxide-mediated stimulation of protoporphyrinogen IX oxidase activity of HemY. This generation of toxic free radicals could explain why HemQ enzymes have not been identified in organisms that synthesise haem via the classical protoporphyrin IX pathway. This work has implications for the divergent evolution of haem biosynthesis in ancestral microorganisms, and provides new structural and mechanistic insights into a recently discovered oxidative decarboxylase reaction.


Assuntos
Proteínas de Bactérias/metabolismo , Heme/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus aureus/enzimologia , Staphylococcus aureus/metabolismo , Catalase/metabolismo , Coproporfirinogênio Oxidase/metabolismo , Coproporfirinas/metabolismo , Radicais Livres/metabolismo , Peroxidase do Rábano Silvestre/metabolismo , Peróxido de Hidrogênio/metabolismo , Modelos Químicos , Protoporfirinogênio Oxidase/metabolismo , Protoporfirinas/metabolismo , Superóxido Dismutase/metabolismo
20.
Plant Physiol Biochem ; 97: 44-51, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26410574

RESUMO

Plants that spontaneously produce lesion mimics or spots, without any signs of obvious adversity, such as pesticide and mechanical damage, or pathogen infection, are so-called lesion mimic mutants (lmms). In rice, many lmms exhibit enhanced resistance to pathogens, which provides a unique opportunity to uncover the molecular mechanism underlying lmms. We isolated a rice light-dependent leaf lesion mimic mutant 1 (llm1). Lesion spots appeared in the leaves of the llm1 mutant at the tillering stage. Furthermore, the mutant llm1 had similar agronomic traits to wild type rice. Trypan blue and diamiobenzidine staining analyses revealed that the lesion spot formation on the llm1 mutant was due to programmed cell death and reactive oxygen species. The chloroplasts were severely damaged in the llm1 mutant, suggesting that chloroplast damage was associated with the formation of lesion spots in llm1. More importantly, llm1 exhibited enhanced resistance to bacterial blight pathogens within increased expression of pathogenesis related genes (PRs). Using a map-based cloning approach, we delimited the LLM1 locus to a 121-kb interval between two simple sequence repeat markers, RM17470 and RM17473, on chromosome 4. We sequenced the candidate genes on the interval and found that a base mutation had substituted adenine phosphate for thymine in the last exon of LOC_Os04g52130, which led to an amino acid change (Asp(388) to Val) in the llm1 mutant. Our investigation showed that the putative coproporphyrinogen III oxidase (CPOX) encoded by LOC_Os04g52130 was produced by LLM1 and that amino acid Asp(388) was essential for CPOX function. Our study provides the basis for further investigations into the mechanism underlying lesion mimic initiation associated with LLM1.


Assuntos
Coproporfirinogênio Oxidase/genética , Oryza/enzimologia , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Cloroplastos/ultraestrutura , Mapeamento Cromossômico , Coproporfirinogênio Oxidase/metabolismo , Resistência à Doença , Loci Gênicos/genética , Luz , Mutação , Oryza/genética , Oryza/imunologia , Oryza/efeitos da radiação , Fenótipo , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sementes/enzimologia , Sementes/genética , Sementes/imunologia , Sementes/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA