Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cells ; 10(12)2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34943900

RESUMO

Glycine is an important neurotransmitter in vertebrates, performing both excitatory and inhibitory actions. Synaptic levels of glycine are tightly controlled by the action of two glycine transporters, GlyT1 and GlyT2, located on the surface of glial cells and neurons, respectively. Only limited information is available on glycinergic neurotransmission in invertebrates, and the evolution of glycinergic neurotransmission is poorly understood. Here, by combining phylogenetic and gene expression analyses, we characterized the glycine transporter complement of amphioxus, an important invertebrate model for studying the evolution of chordates. We show that amphioxus possess three glycine transporter genes. Two of these (GlyT2.1 and GlyT2.2) are closely related to GlyT2 of vertebrates, whereas the third (GlyT) is a member of an ancestral clade of deuterostome glycine transporters. GlyT2.2 expression is predominantly non-neural, whereas GlyT and GlyT2.1 are widely expressed in the amphioxus nervous system and are differentially expressed, respectively, in neurons and glia. Vertebrate glycinergic neurons express GlyT2 and glia GlyT1, suggesting that the evolution of the chordate glycinergic system was accompanied by a paralog-specific inversion of gene expression. Despite this genetic divergence between amphioxus and vertebrates, we found strong evidence for conservation in the role glycinergic neurotransmission plays during larval swimming, the implication being that the neural networks controlling the rhythmic movement of chordate bodies may be homologous.


Assuntos
Evolução Molecular , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Glicina/genética , Transmissão Sináptica/genética , Animais , Cordados/genética , Cordados/crescimento & desenvolvimento , Regulação da Expressão Gênica/genética , Variação Genética/genética , Glicina/metabolismo , Anfioxos/genética , Larva/genética , Larva/crescimento & desenvolvimento , Neuroglia/metabolismo , Neurônios/metabolismo , Filogenia
2.
Dev Biol ; 448(2): 342-352, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30563648

RESUMO

During metamorphosis of solitary ascidians, part of the larval tubular nervous system is recruited to form the adult central nervous system (CNS) through neural stem-like cells called ependymal cells. The anteroposterior (AP) gene expression patterning of the larval CNS regionalize the distribution of the ependymal cells, which contains the positional information of the neurons of the adult nervous system. In colonial ascidians, the CNS of asexually developed zooids has the same morphology of the one of the post-metamorphic zooids. However, its development follows a completely different organogenesis that lacks embryogenesis, a larval phase and metamorphosis. In order to describe neurogenesis during asexual development (blastogenesis), we followed the expression of six CNS AP patterning genes conserved in chordates and five neural-related genes to determine neural cell identity in Botryllus schlosseri. We observed that a neurogenesis occurs de novo on each blastogenic cycle starting from a neurogenic transitory structure, the dorsal tube. The dorsal tube partially co-opts the AP patterning of the larval CNS markers, and potentially combine the neurogenesis role and provider of positional clues for neuron patterning. This study shows how a larval developmental module is reused in a direct asexual development in order to generate the same structures.


Assuntos
Padronização Corporal/genética , Cordados/crescimento & desenvolvimento , Cordados/genética , Neurogênese/genética , Animais , Biomarcadores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Larva/genética
3.
BMC Evol Biol ; 18(1): 120, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-30075704

RESUMO

BACKGROUND: Mesoderm is generally considered to be a germ layer that is unique to Bilateria, and it develops into diverse tissues, including muscle, and in the case of vertebrates, the skeleton and notochord. Studies on various deuterostome animals have demonstrated that fibroblast growth factor (FGF) signaling is required for the formation of many mesodermal structures, such as vertebrate somites, from which muscles are differentiated, and muscles in sea urchin embryos, suggesting an ancient role of FGF signaling in muscle development. However, the formation of trunk muscles in invertebrate chordates is FGF-independent, leading to ambiguity about this ancient role in deuterostomes. To further understand the role of FGF signaling during deuterostome evolution, we investigated the development of mesodermal structures during embryogenesis and metamorphosis in Ptychodera flava, an indirect-developing hemichordate that has larval morphology similar to echinoderms and adult body features that are similar to chordates. RESULTS: Here we show that genes encoding FGF ligands, FGF receptors and transcription factors that are known to be involved in mesoderm formation and myogenesis are expressed dynamically during embryogenesis and metamorphosis. FGF signaling at the early gastrula stage is required for the specification of the mesodermal cell fate in P. flava. The mesoderm cells are then differentiated stepwise into the hydroporic canal, the pharyngeal muscle and the muscle string; formation of the last two muscular structures are controlled by FGF signaling. Moreover, augmentation of FGF signaling during metamorphosis accelerated the process, facilitating the transformation from cilia-driven swimming larvae into muscle-driven worm-like juveniles. CONCLUSIONS: Our data show that FGF signaling is required for mesoderm induction and myogenesis in the P. flava embryo, and it is reiteratively used for the morphological transition during metamorphosis. The dependence of muscle development on FGF signaling in both planktonic larvae and sand-burrowing worms supports its ancestral role in deuterostomes.


Assuntos
Cordados/embriologia , Cordados/crescimento & desenvolvimento , Desenvolvimento Embrionário/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Mesoderma/embriologia , Mesoderma/metabolismo , Metamorfose Biológica/genética , Transdução de Sinais , Animais , Cordados/genética , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento , Larva/crescimento & desenvolvimento , Ligantes , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Integr Comp Biol ; 58(2): 276-281, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30137315

RESUMO

Sensory hair cells are highly specialized cells that form the basis for our senses of hearing, orientation to gravity, and perception of linear acceleration (head translation in space) and angular acceleration (head rotation). In many species of fish and aquatic amphibians, hair cells mediate perception of water movement through the lateral line system, and electroreceptors derived from hair cell precursors mediate electric field detection. In tunicates, cells of the mechanosensory coronal organ on the incurrent siphon meet the structural, functional, and developmental criteria to be described as hair cells, and they function to deflect large particles from entering the animal. The past two decades have witnessed significant breakthroughs in our understanding of hair cell biology and how their specialized structures influence their functions. This symposium combines the approaches of developmental biology, evolutionary biology, and physiology to share the gains of recent research in understanding hair cell function in different model systems. We brought together researchers working on sensory hair cells in organisms spanning the chordates in order to examine the depth and breadth of hair cell evolution. It is clear that these specialized cells serve a range of functions in different animals, due to evolutionary tinkering with a basic specialized cell type. This collection of papers will serve to mark the progress that has been made in this field and also stimulate the next wave of progress in this exciting field.


Assuntos
Cordados/fisiologia , Células Ciliadas Auditivas/fisiologia , Sistema da Linha Lateral/fisiologia , Animais , Evolução Biológica , Cordados/crescimento & desenvolvimento
5.
J Mass Spectrom ; 53(6): 465-475, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29524286

RESUMO

In many amphibians, the granular glands can be grouped in special regions forming macroglands. This is the case of toads, characterized by the presence of a pair of parotoid macroglands, strategically located to give protection by poison release in case of attacks. The product secreted consists of a wide variety of chemical compounds including proteins, peptides, biogenic amines, toxic steroidal bufadienolides, and various alkaloids, depending on the species. In this work, using Rhinella arenarum, we have performed, for the first time, the matrix assisted-ultraviolet laser desorption/ionization mass spectrometry and tandem mass spectrometry characterization of the components of the secretion used as crude material, just suspended in MeOH (or MeCN). The crude sample as a whole (whole suspension) was spotted on the matrix assisted-ultraviolet laser desorption plate for analysis. Electrospray ionization-Orbitrap was used for cross-checking experiments. The pattern of signals obtained at m/z ranges 600 to 800 and 1200 to 1600 could be assigned as the argininyl bufadienolide esters fingerprint characteristic of female and male. Variation patterns for gender (female, male), age (non-reproductive, reproductive), and season (non-reproductive, reproductive) are described.


Assuntos
Arginina/análogos & derivados , Arginina/análise , Bufanolídeos/análise , Cordados/fisiologia , Glândula Parótida/metabolismo , Animais , Arginina/metabolismo , Bufanolídeos/metabolismo , Cordados/crescimento & desenvolvimento , Cromatografia Líquida de Alta Pressão/métodos , Ésteres/análise , Ésteres/metabolismo , Feminino , Masculino , Análise de Componente Principal/métodos , Estações do Ano , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem/métodos
6.
Dev Genes Evol ; 227(5): 319-338, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28871438

RESUMO

COE genes encode transcription factors that have been found in all metazoans examined to date. They possess a distinctive domain structure that includes a DNA-binding domain (DBD), an IPT/TIG domain and a helix-loop-helix (HLH) domain. An intriguing feature of the COE HLH domain is that in jawed vertebrates it is composed of three helices, compared to two in invertebrates. We report the isolation and expression of two COE genes from the brook lamprey Lampetra planeri and compare these to COE genes from the lampreys Lethenteron japonicum and Petromyzon marinus. Molecular phylogenetic analyses do not resolve the relationship of lamprey COE genes to jawed vertebrate paralogues, though synteny mapping shows that they all derive from duplication of a common ancestral genomic region. All lamprey genes encode conserved DBD, IPT/TIG and HLH domains; however, the HLH domain of lamprey COE-A genes encodes only two helices while COE-B encodes three helices. We also identified COE-B splice variants encoding either two or three helices in the HLH domain, along with other COE-A and COE-B splice variants affecting the DBD and C-terminal transactivation regions. In situ hybridisation revealed expression in the lamprey nervous system including the brain, spinal cord and cranial sensory ganglia. We also detected expression of both genes in mesenchyme in the pharyngeal arches and underlying the notochord. This allows us to establish the primitive vertebrate expression pattern for COE genes and compare this to that of invertebrate chordates and other animals to develop a model for COE gene evolution in chordates.


Assuntos
Cordados/genética , Evolução Molecular , Proteínas de Peixes/genética , Lampreias/genética , Splicing de RNA , Sintenia , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Linhagem da Célula , Cordados/crescimento & desenvolvimento , Cordados/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Lampreias/crescimento & desenvolvimento , Lampreias/metabolismo , Filogenia , Homologia de Sequência , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
7.
Curr Opin Genet Dev ; 39: 55-62, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27318694

RESUMO

Vertebrate mineralized skeletal tissues are widely considered as an evolutionary novelty. Despite the importance of these tissues to the adaptation and radiation of vertebrate animals, the evolutionary origin of vertebrate skeletal tissues remains largely unclear. Cephalochordates (Amphioxus) occupy a key phylogenetic position and can serve as a valuable model for studying the evolution of vertebrate skeletal tissues. Here we summarize recent advances in amphioxus developmental biology and comparative genomics that can help to elucidate the evolutionary origins of the vertebrate skeletal tissues and their underlying developmental gene regulatory networks (GRN). By making comparisons to the developmental studies in vertebrate models and recent discoveries in paleontology and genomics, it becomes evident that the collagen matrix-based connective tissues secreted by the somite-derived cells in amphioxus likely represent the rudimentary skeletal tissues in chordates. We propose that upon the foundation of this collagenous precursor, novel tissue mineralization genes that arose from gene duplications were incorporated into an ancestral mesodermal GRN that makes connective and supporting tissues, leading to the emergence of highly-mineralized skeletal tissues in early vertebrates.


Assuntos
Desenvolvimento Ósseo/genética , Evolução Molecular , Anfioxos/genética , Vertebrados/genética , Animais , Cordados/genética , Cordados/crescimento & desenvolvimento , Biologia do Desenvolvimento , Redes Reguladoras de Genes/genética , Anfioxos/crescimento & desenvolvimento , Mesoderma/crescimento & desenvolvimento , Mesoderma/metabolismo
8.
J Morphol ; 277(5): 634-70, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26968432

RESUMO

Bone ornamentation, in the form of rounded pits framed by a network of ridges, is a frequent feature among a great diversity of gnathostome taxa. However, the basic osteogenic processes controlling the differentiation and development of these reliefs remain controversial. The present study is a broad comparative survey of this question with the classical methods used in hard tissue histology and paleohistology. Distinct processes, unevenly distributed among taxa, are involved in the creation and growth of pits and ridges. The simplest one is mere differential growth between pit bottom (slow growth) and ridge top (faster growth). The involvement of several complex remodeling processes, with the local succession of resorption and reconstruction cycles, is frequent and occurs in all major gnathostome clades. Some broad, inclusive clades (e.g., Temnospondyli) display consistency in the mechanisms controlling ornamentation, whereas other clades (e.g., Actinopterygii) are characterized by the diversity of the mechanisms involved. If osteogenic mechanisms are taken into account, bone ornamentation should be considered as a character extremely prone to homoplasy. Maximum likelihood (ML) optimizations reveal that the plesiomorphic mechanism creating ornamentation is differential apposition rate over pits (slow growth) and ridges (faster growth). In some taxas e.g., temnospondyls vs lissamphibians or pseudosuchians, bone ornamentation is likely to be a homoplastic feature due to a convergence process driven by similar selective pressures. ML models of character evolution suggest that the presence of resorption in the development of ornamentation may be selectively advantageous, although support for this conclusion is only moderate.


Assuntos
Evolução Biológica , Desenvolvimento Ósseo/fisiologia , Cordados/anatomia & histologia , Cordados/crescimento & desenvolvimento , Morfogênese/fisiologia , Animais , Osso e Ossos
9.
BMC Evol Biol ; 16: 57, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26940763

RESUMO

BACKGROUND: The ParaHox genes play an integral role in the anterior-posterior (A-P) patterning of the nervous system and gut of most animals. The ParaHox cluster is an ideal system in which to study the evolution and regulation of developmental genes and gene clusters, as it displays similar regulatory phenomena to its sister cluster, the Hox cluster, but offers a much simpler system with only three genes. RESULTS: Using Ciona intestinalis transgenics, we isolated a regulatory element upstream of Branchiostoma floridae Gsx that drives expression within the central nervous system of Ciona embryos. The minimal amphioxus enhancer region required to drive CNS expression has been identified, along with surrounding sequence that increases the efficiency of reporter expression throughout the Ciona CNS. TCF/Lef binding sites were identified and mutagenized and found to be required to drive the CNS expression. Also, individual contributions of TCF/Lef sites varied across the regulatory region, revealing a partial division of function across the Bf-Gsx-Up regulatory element. Finally, when all TCF/Lef binding sites are mutated CNS expression is not only abolished, but a latent repressive function is also unmasked. CONCLUSIONS: We have identified a B. floridae Gsx upstream regulatory element that drives CNS expression within transgenic Ciona intestinalis, and have shown that this CNS expression is dependent upon TCF/Lef binding sites. We examine the evolutionary and developmental implications of these results, and discuss the possibility of TCF/Lef not only as a regulator of chordate Gsx, but as a deeply conserved regulatory factor controlling all three ParaHox genes across the Metazoa.


Assuntos
Cordados/genética , Proteínas de Homeodomínio/genética , Animais , Sistema Nervoso Central/crescimento & desenvolvimento , Sistema Nervoso Central/metabolismo , Cordados/crescimento & desenvolvimento , Cordados/metabolismo , Ciona intestinalis/genética , Ciona intestinalis/crescimento & desenvolvimento , Evolução Molecular , Anfioxos/genética , Fatores de Transcrição TCF/metabolismo
10.
Sci Rep ; 4: 7167, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25418599

RESUMO

Wnt4 gene plays a role in developmental processes in mammals. However, little is known regarding its function in teleosts. We cloned and characterized the full-length half-smooth tongue sole (Cynoglossus semilaevis) wnt4a gene (CS-wnt4a). CS-wnt4a cDNA was 1746 bp in length encoding 353aa. CS-wnt4a expression level was highest in the testis, and gradually increased in the developing gonads until 1 year of age. In situ hybridization revealed that CS-wnt4a expression level was highest in stage II oocytes and sperm in the adult ovary and testis, respectively. CS-wnt4a expression level was significantly up-regulated in the gonads after exposure to high temperature. The level of methylation of the CS-wnt4a first exon was negatively correlated with the expression of CS-wnt4a. The branch-site model suggested that vertebrate wnt4a differed significantly from that of wnt4b, and that the selective pressures differed between ancestral aquatic and terrestrial organisms. Two positively selected sites were found in the ancestral lineages of teleost fish, but none in the ancestral lineages of mammals. One positively selected site was located on the α-helices of the 3D structure, the other on the random coil. Our results are of value for further study of the function of wnt4 and the mechanism of selection.


Assuntos
Cordados/metabolismo , Proteína Wnt4/genética , Proteína Wnt4/metabolismo , Sequência de Aminoácidos , Animais , Cordados/crescimento & desenvolvimento , Clonagem Molecular , Metilação de DNA , Evolução Molecular , Feminino , Gônadas/metabolismo , Masculino , Dados de Sequência Molecular , Oócitos/metabolismo , Filogenia , Estrutura Terciária de Proteína , Alinhamento de Sequência , Espermatozoides/metabolismo , Temperatura , Testículo/metabolismo , Distribuição Tecidual , Regulação para Cima , Proteína Wnt4/classificação
11.
Artigo em Inglês | MEDLINE | ID: mdl-24389090

RESUMO

In teleosts, the pseudobranch is hemibranchial, with a gill-like structure located near the first gill. We hypothesized that the pseudobranch of the milkfish might exhibit osmoregulatory ability similar to that of the gills. In this study, the obtained Na(+), K(+)-ATPase (NKA) activity and protein abundance profiles showed that these parameters were higher in the pseudobranchs of the seawater (SW)- than the freshwater (FW)-acclimated milkfish, opposite the situation in the gills. The pseudobranch of the milkfish contained two types of NKA-immunoreactive cells, chloride cells (CCs) and pseudobranch-type cells (PSCs). To further clarify the roles of CCs and PSCs in the pseudobranch, we investigated the distributions of two ion transporters: the Na(+), K(+), 2Cl(-) cotransporter (NKCC) and the cystic fibrosis transmembrane conductance regulator (CFTR). NKCC on the basolateral membrane and CFTR on the apical membrane were found only in pseudobranchial CCs of SW-acclimated individuals. Taken together, the results distinguished NKA-IR CCs and PSCs in the pseudobranch of milkfish using antibodies against NKCC and CFTR as markers. In addition, increases in the numbers and sizes of CCs as well as in NKA expression observed upon salinity challenge indicated the potential roles of pseudobranchs in hypo-osmoregulation in this euryhaline teleost.


Assuntos
Aclimatação , Cordados/crescimento & desenvolvimento , Brânquias/enzimologia , ATPase Trocadora de Sódio-Potássio/química , Animais , Água Doce , Salinidade , Água do Mar , ATPase Trocadora de Sódio-Potássio/metabolismo , Equilíbrio Hidroeletrolítico
12.
PLoS Genet ; 9(10): e1003818, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098142

RESUMO

In animal development, secreted signaling molecules evoke all-or-none threshold responses of target gene transcription to specify cell fates. In the chordate Ciona intestinalis, the neural markers Otx and Nodal are induced at early embryonic stages by Fgf9/16/20 signaling. Here we show that three additional signaling molecules act negatively to generate a sharp expression boundary for neural genes. EphrinA signaling antagonizes FGF signaling by inhibiting ERK phosphorylation more strongly in epidermal cells than in neural cells, which accentuates differences in the strength of ERK activation. However, even weakly activated ERK activates Otx and Nodal transcription occasionally, probably because of the inherently stochastic nature of signal transduction processes and binding of transcription factors to target sequences. This occasional and undesirable activation of neural genes by weak residual ERK activity is directly repressed by Smad transcription factors activated by Admp and Gdf1/3-like signaling, further sharpening the differential responses of cells to FGF signaling. Thus, these signaling pathways coordinate to evoke a threshold response that delineates a sharp expression boundary.


Assuntos
Embrião não Mamífero , Desenvolvimento Embrionário/genética , Efrinas/genética , Transdução de Sinais/genética , Animais , Padronização Corporal , Diferenciação Celular/genética , Cordados/crescimento & desenvolvimento , Ciona intestinalis/genética , Ciona intestinalis/crescimento & desenvolvimento , Efrinas/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição Otx/genética , Fosforilação , Transcrição Gênica
13.
Biol Bull ; 224(3): 227-36, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23995746

RESUMO

The larvae of non-vertebrate chordate ascidians consist of countable numbers of cells. With this feature, ascidians provide us with excellent models for studying cellular events in the construction of the chordate body. This review discusses the recent observations of morphogenetic movements and cell cycles and divisions along with tissue specifications during ascidian embryogenesis. Unequal cleavages take place at the posterior blastomeres during the early cleavage stages of ascidians, and the structure named the centrosome-attracting body restricts the position of the nuclei near the posterior pole to achieve the unequal cleavages. The most-posterior cells differentiate into the primordial germ cells. The gastrulation of ascidians starts as early as the 110-cell stage. During gastrulation, the endodermal cells show two-step changes in cell shape that are crucial for gastrulation. The ascidian notochord is composed of only 40 cells. The 40 cells align to form a single row by an event named the convergent extension, and then the notochord cells undergo vacuolation to transform the notochord into a single hollowed tube. The strictly restricted number of notochord cells is achieved by the regulated number of cell divisions coupled with the differentiation of the cells conducted by a key transcription factor, Brachyury. The dorsally located neural tube is a characteristic of chordates. During the closure of the ascidian neural tube, the epidermis surrounding the neural plate moves toward the midline to close the neural fold. This morphogenetic movement is allowed by an elongation of interphase in the epidermal cell cycles.


Assuntos
Cordados/embriologia , Cordados/crescimento & desenvolvimento , Urocordados/embriologia , Urocordados/crescimento & desenvolvimento , Animais , Ciclo Celular , Diferenciação Celular , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Larva/crescimento & desenvolvimento , Modelos Animais , Morfogênese
14.
Dev Dyn ; 242(6): 752-66, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23444326

RESUMO

BACKGROUND: An important question behind vertebrate evolution is whether the cranial placodes originated de novo, or if their precursors were present in the ancestor of chordates. In this respect, tunicates are of particular interest as they are considered the closest relatives to vertebrates. They are also the only chordate group possessing species that reproduce both sexually and asexually, allowing both types of development to be studied to address whether embryonic pathways have been co-opted during budding to build the same structures. RESULTS: We studied the expression of members of the transcriptional network associated with vertebrate placodal formation (Six, Eya, and FoxI) in the colonial tunicate Botryllus schlosseri. During both sexual and asexual development, each transcript is expressed in branchial fissures and in two discrete regions proposed to be homologues to groups of vertebrate placodes. DISCUSSION: Results reinforce the idea that placode origin predates the origin of vertebrates and that the molecular network involving these genes was co-opted in the evolution of asexual reproduction. Considering that gill slit formation in deuterostomes is based on similar expression patterns, we discuss possible alternative evolutionary scenarios depicting gene co-option as critical step in placode and pharynx evolution.


Assuntos
Evolução Biológica , Cordados/genética , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Urocordados/genética , Animais , Encéfalo/embriologia , Cordados/crescimento & desenvolvimento , DNA Complementar/metabolismo , Perfilação da Expressão Gênica , Hibridização In Situ , Ativação Linfocitária , Filogenia , Transcrição Gênica , Urocordados/crescimento & desenvolvimento
15.
Integr Comp Biol ; 52(6): 829-34, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22966063

RESUMO

Enteropneust hemichordates share several characteristics with chordates, such as a Hox-specified anterior-posterior axis, pharyngeal gill slits, a dorsal central nervous system (CNS), and a juvenile postanal tail. Ptychoderid hemichordates, such as the indirect-developer Ptychodera flava, have feeding larvae and a remarkable capacity to regenerate their CNS. We compared neurulation of ptychoderid hemichordates and chordates using histological analyses, and found many similarities in CNS development. In ptychoderid hemichordates, which lack a notochord, the proboscis skeleton develops from endoderm after neurulation. The position of the proboscis skeleton directly under the nerve cord suggests that it serves a structural role similar to the notochord of chordates. These results suggest that either the CNS preceded evolution of the notochord or that the notochord has been lost in hemichordates. The evolution of the notochord remains ambiguous, but it may have evolved from endoderm, not mesoderm.


Assuntos
Invertebrados/embriologia , Neurulação , Animais , Evolução Biológica , Sistema Nervoso Central/embriologia , Cordados/embriologia , Cordados/crescimento & desenvolvimento , Invertebrados/crescimento & desenvolvimento , Larva/anatomia & histologia , Larva/crescimento & desenvolvimento , Metamorfose Biológica
16.
Genomics ; 99(6): 361-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22440388

RESUMO

Rel/NF-κB family genes are important transcriptional factors regulating vital activities of immunity response, but no Rel/NF-κB gene has been identified in amphioxus. In this study, we have not only identified and characterized a Rel-like gene from Brachiastoma belcheri, but also extensively studied the evolution of Rel gene subfamily. We found that: 1) the amphioxus genome contains an AmphiREL gene encoding a Rel/NF-κB homolog, and AmphiREL gene was involved in the innate immune response of LPS stimulation in amphioxus. 2) Gene synteny comparison and structure comparison suggested that AmphiREL is an orthologous gene of human RELB, and is a paralogous gene of human RELA and REL. 3) Structural changes of Rel subfamily proteins are diverse during the evolution process, and imply their functional diversity. 4) The Rel subfamily genes have undergone very strong purifying selection. Together, our results provide important clues for understanding the evolution and function of Rel subfamily genes.


Assuntos
Cordados/crescimento & desenvolvimento , Cordados/genética , Evolução Molecular , Genes rel , Lipopolissacarídeos/metabolismo , Sequência de Aminoácidos , Animais , Clonagem Molecular , Imunidade Inata , Dados de Sequência Molecular , NF-kappa B/genética , NF-kappa B/metabolismo , Água do Mar , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
Development ; 138(22): 4819-30, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22028023

RESUMO

The phylogenetic position of amphioxus, together with its relatively simple and evolutionarily conserved morphology and genome structure, has led to its use as a model for studies of vertebrate evolution. In particular, the recent development of technical approaches, as well as access to the complete amphioxus genome sequence, has provided the community with tools with which to study the invertebrate-chordate to vertebrate transition. Here, we present this animal model, discussing its life cycle, the model species studied and the experimental techniques that it is amenable to. We also summarize the major findings made using amphioxus that have informed us about the evolution of vertebrate traits.


Assuntos
Evolução Biológica , Cordados , Biologia do Desenvolvimento , Animais , Cordados/genética , Cordados/crescimento & desenvolvimento , Estágios do Ciclo de Vida/genética , Estágios do Ciclo de Vida/fisiologia , Modelos Animais , Modelos Biológicos , Filogenia , Vertebrados/genética , Vertebrados/crescimento & desenvolvimento
18.
PLoS One ; 6(4): e18520, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21525973

RESUMO

A methodology for inducing spawning in captivity of the lancelet Branchiostoma lanceolatum has been developed recently with animals collected at the Racou beach, in the southern coast of France. An increasing amount of laboratories around the world are now working on the evolution of developmental mechanisms (Evo-Devo) using amphioxus collected in this site. Thus, today, the development of new aquaculture techniques for keeping amphioxus in captivity is needed and the study of the natural conditions at which amphioxus is exposed in the Racou beach during their spawning season becomes necessary. We have investigated the amphioxus distribution, size frequency, and population structure in the Racou beach during its natural spawning season using multivariate methods (redundancy analysis and multiple regression). We found a clear preference of amphioxus for sandy sites, something that seems to be a general behaviour of different amphioxus species around the world. We have also estimated the amphioxus growth rate and we show how the animals are preferentially localized in shallow waters during April and June.


Assuntos
Praias , Cruzamento , Cordados/crescimento & desenvolvimento , Estações do Ano , Animais , Ecossistema , França , Larva/crescimento & desenvolvimento , Densidade Demográfica , Dinâmica Populacional , Análise de Regressão , Temperatura
20.
J Genet Genomics ; 37(9): 637-45, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20933216

RESUMO

The secreted Wnt signaling inhibitor Dickkopf1 (Dkk1) plays key role in vertebrate head induction. Its receptor Kremen synergizes with Dkk1 in Wnt inhibition. Here we have carried out expression and functional studies of the Dkk and Kremen genes in amphioxus (Branchiostoma belcheri). During embryonic and larval development, BbDkk1/2/4 is expressed in the posterior mesoendoderm, anterior somatic mesoderm and the pharyngeal regions. Its expression becomes restricted to the pharyngeal region on the left side at larval stages. In 45 h larvae, BbDkk1/2/4 is expressed specifically in the cerebral vesicle. BbDkk3 was only detected at larval stages in the mid-intestine region. Seven Kremen related genes were identified in the genome of the Florida amphioxus (Branchiostoma floridae), clustered in 4 scaffolds, and are designated Kremen1-4 and Kremen-like 1-3, respectively. In B. belcheri, Kremen1 is strongly expressed in the mesoendoderm during early development and Kremen3 is expressed asymmetrically in spots in the larval pharyngeal region. In luciferase reporter assays, BbDkk1/2/4 can strongly inhibit Wnt signaling, while BbDkk3, BbKremen1 and BbKremen3 can not. No co-operative effect was observed between amphioxus Dkk1/2/4 and Kremens, suggesting that the interaction between Dkk and Kremen likely originated later during evolution.


Assuntos
Cordados/embriologia , Cordados/genética , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Membrana/genética , Animais , Cordados/crescimento & desenvolvimento , Clonagem Molecular , Genômica , Larva/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA