Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 359
Filtrar
1.
BMC Vet Res ; 20(1): 209, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38760785

RESUMO

BACKGROUND: Bovine coronavirus (BCoV) is implicated in severe diarrhea in calves and contributes to the bovine respiratory disease complex; it shares a close relationship with human coronavirus. Similar to other coronaviruses, remarkable variability was found in the genome and biology of the BCoV. In 2022, samples of feces were collected from a cattle farm. A virus was isolated from 7-day-old newborn calves. In this study, we present the genetic characteristics of a new BCoV isolate. The complete genomic, spike protein, and nucleocapsid protein gene sequences of the BCoV strain, along with those of other coronaviruses, were obtained from the GenBank database. Genetic analysis was conducted using MEGA7.0 and the Neighbor-Joining (NJ) method. The reference strains' related genes were retrieved from GenBank for comparison and analysis using DNAMAN. RESULTS: The phylogenetic tree and whole genome consistency analysis showed that it belonged to the GIIb subgroup, which is epidemic in Asia and America, and was quite similar to the Chinese strains in the same cluster. Significantly, the S gene was highly consistent with QH1 (MH810151.1) isolated from yak. This suggests that the strain may have originated from interspecies transmission involving mutations of wild strains. The N gene was conserved and showed high sequence identity with the epidemic strains in China and the USA. CONCLUSIONS: Genetic characterization suggests that the isolated strain could be a new mutant from a wild-type lineage, which is in the same cluster as most Chinese epidemic strains but on a new branch.


Assuntos
Doenças dos Bovinos , Infecções por Coronavirus , Coronavirus Bovino , Genoma Viral , Filogenia , Animais , Bovinos , Coronavirus Bovino/genética , Coronavirus Bovino/isolamento & purificação , China/epidemiologia , Doenças dos Bovinos/virologia , Doenças dos Bovinos/epidemiologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Infecções por Coronavirus/epidemiologia , Fezes/virologia , Glicoproteína da Espícula de Coronavírus/genética , Animais Recém-Nascidos
2.
Vet Ital ; 60(1)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38722261

RESUMO

Obtaining the complete or near-complete genome sequence of pathogens is becoming increasingly crucial for epidemiology, virology, clinical science and practice. This study aimed to detect viruses and conduct genetic characterization of genomes using metagenomics in order to identify the viral agents responsible for a calf's diarrhoea. The findings showed that bovine coronavirus (BCoV) and bovine rotavirus (BRV) are the primary viral agents responsible for the calf's diarrhoea. The current study successfully obtained the first-ever near-complete genome sequence of a bovine coronavirus (BCoV) from Türkiye. The G+C content was 36.31% and the genetic analysis revealed that the Turkish BCoV strain is closely related to respiratory BCoV strains from France and Ireland, with high nucleotide sequence and amino acid identity and similarity. In the present study, analysis of the S protein of the Turkish BCoV strain revealed the presence of 13 amino acid insertions, one of which was found to be shared with the French respiratory BCoV. The study also identified a BRV strain through metagenomic analysis and detected multiple mutations within the structural and non-structural proteins of the BRV strain, suggesting that the BRV Kirikkale strain may serve as an ancestor for reassortants with interspecies transmission, especially involving rotaviruses that infect rabbits and giraffes.


Assuntos
Coronavirus Bovino , Genoma Viral , Metagenômica , Rotavirus , Animais , Metagenômica/métodos , Coronavirus Bovino/genética , Coronavirus Bovino/isolamento & purificação , Bovinos , Rotavirus/genética , Rotavirus/isolamento & purificação , Rotavirus/classificação , Turquia , Doenças dos Bovinos/virologia , Infecções por Rotavirus/veterinária , Infecções por Rotavirus/virologia
3.
Viruses ; 16(4)2024 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-38675932

RESUMO

In this study, virological surveillance focused on coronaviruses in marmots in the Alpine region in 2022, captured as part of a population control reduction program in the Livigno area. Seventy-six faecal samples were randomly collected from marmots at the time of capture and release and tested for genome detection of pan-coronavirus, pan-pestivirus, canine distemper virus, and influenza A and D virus. Nine faecal samples were positive in the Pan-CoV RT-PCR, while all were negative for the other viruses. Pan-coronavirus positives were further identified using Illumina's complete genome sequencing, which showed the highest homology with Bovine Coronavirus previously detected in roe deer in the Alps. Blood samples (n.35) were collected randomly from animals at release and tested for bovine coronavirus (BCoV) antibodies using competitive ELISA and VNT. Serological analyses revealed that 8/35 sera were positive for BCoV antibodies in both serological tests. This study provides molecular and serological evidence of the presence of BCoV in an alpine marmot population due to a likely spillover event. Marmots share areas and pastures with roe deer and other wild ruminants, and environmental transmission is a concrete possibility.


Assuntos
Anticorpos Antivirais , Coronavirus Bovino , Fezes , Marmota , Filogenia , Animais , Coronavirus Bovino/genética , Coronavirus Bovino/isolamento & purificação , Marmota/virologia , Fezes/virologia , Anticorpos Antivirais/sangue , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Infecções por Coronavirus/diagnóstico , Bovinos , Ensaio de Imunoadsorção Enzimática , Genoma Viral
4.
Am J Vet Res ; 85(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38457927

RESUMO

OBJECTIVE: Compare immune responses induced by 2 commercial intranasal (IN) modified-live viral (MLV) vaccines given individually or coadministered and evaluate prevention of infection and lung pathology following bovine herpesvirus-1 (BHV-1) challenge. ANIMALS: 36 male Holstein calves (ages, 5 to 12 days). METHODS: In a randomized complete block design, each calf received an IN injection of either vaccine diluent (Placebo), an MLV vaccine containing bovine herpesvirus-1 (BHV-1; N3), bovine coronavirus vaccine (BC), or both N3 and BC (BC + N3) with a booster 4 weeks later. Nasal secretions and blood were collected weekly. Three weeks after the booster, the calves were challenged with BHV-1, sampled for virus shedding, and euthanized 10 days later to quantify lung pathology. The study period was September 7, 2020, to April 6, 2021. RESULTS: Calves were seropositive for BHV-1 and BC before vaccination. No significant difference in BC-specific serum immunoglobin G and nasal immunoglobin A antibody responses in the BC versus BC + N3 group or BHV-1-specific serum immunoglobin G and nasal immunoglobin A antibody responses in the N3 versus BC + N3 group. Cytokine responses to BHV-1 and BC did not differ among groups. BHV-1 shedding after challenge was significantly reduced in N3 groups versus Placebo and BC. There was a significant reduction in lung pathology in the N3 + BC group versus Placebo. CLINICAL RELEVANCE: This study provides evidence an MLV vaccine containing BHV-1 and an MLV BC vaccine can be coadministered to neonatal calves without significantly altering immune responses to the 2 viruses or compromising the prevention of BHV-1 respiratory disease. Calves receiving the BC + N3 vaccine had a significant reduction in lung pathology after BHV-1 aerosol challenge.


Assuntos
Administração Intranasal , Animais Recém-Nascidos , Doenças dos Bovinos , Infecções por Coronavirus , Coronavirus Bovino , Infecções por Herpesviridae , Herpesvirus Bovino 1 , Vacinas Atenuadas , Vacinas Virais , Animais , Bovinos , Herpesvirus Bovino 1/imunologia , Administração Intranasal/veterinária , Masculino , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Coronavirus Bovino/imunologia , Doenças dos Bovinos/prevenção & controle , Doenças dos Bovinos/virologia , Doenças dos Bovinos/imunologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/prevenção & controle , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Rinotraqueíte Infecciosa Bovina/prevenção & controle , Rinotraqueíte Infecciosa Bovina/imunologia , Eliminação de Partículas Virais , Anticorpos Antivirais/sangue , Distribuição Aleatória
5.
Microbiol Spectr ; 12(4): e0395423, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38483513

RESUMO

Coronaviruses (CoVs), including severe acute respiratory syndrome coronavirus 2, can infect a variety of mammalian and avian hosts with significant medical and economic consequences. During the life cycle of CoV, a coordinated series of subgenomic RNAs, including canonical subgenomic messenger RNA and non-canonical defective viral genomes (DVGs), are generated with different biological implications. Studies that adopted the Nanopore sequencer (ONT) to investigate the landscape and dynamics of viral RNA subgenomic transcriptomes applied arbitrary bioinformatics parameters without justification or experimental validation. The current study used bovine coronavirus (BCoV), which can be performed under biosafety level 2 for library construction and experimental validation using traditional colony polymerase chain reaction and Sanger sequencing. Four different ONT protocols, including RNA direct and cDNA direct sequencing with or without exonuclease treatment, were used to generate RNA transcriptomic libraries from BCoV-infected cell lysates. Through rigorously examining the k-mer, gap size, segment size, and bin size, the optimal cutoffs for the bioinformatic pipeline were determined to remove the sequence noise while keeping the informative DVG reads. The sensitivity and specificity of identifying DVG reads using the proposed pipeline can reach 82.6% and 99.6% under the k-mer size cutoff of 15. Exonuclease treatment reduced the abundance of RNA transcripts; however, it was not necessary for future library preparation. Additional recovery of clipped BCoV nucleotide sequences with experimental validation expands the landscape of the CoV discontinuous RNA transcriptome, whose biological function requires future investigation. The results of this study provide the benchmarks for library construction and bioinformatic parameters for studying the discontinuous CoV RNA transcriptome.IMPORTANCEFunctional defective viral genomic RNA, containing all the cis-acting elements required for translation or replication, may play different roles in triggering cell innate immune signaling, interfering with the canonical subgenomic messenger RNA transcription/translation or assisting in establishing persistence infection. This study does not only provide benchmarks for library construction and bioinformatic parameters for studying the discontinuous coronavirus RNA transcriptome but also reveals the complexity of the bovine coronavirus transcriptome, whose functional assays will be critical in future studies.


Assuntos
Coronavirus Bovino , Nanoporos , Animais , Bovinos , RNA Subgenômico , RNA Viral/genética , Coronavirus Bovino/genética , Genômica , Exonucleases , Mamíferos
6.
Can Vet J ; 65(3): 250-258, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38434170

RESUMO

Objective: This study addressed the current gap in knowledge of neonatal prime-boost immune responses for the control of bovine coronavirus (BCoV) respiratory disease in weaning-age beef cattle. Animals: Study 1 and Study 2 had 33 and 22 commercial cross neonatal beef calves, respectively. Procedures: Study 1 compared BCoV-neutralizing antibody concentrations of control calves with 3 groups of calves differentially vaccinated with mucosal and/or systemic BCoV modified live virus (MLV) vaccines. Study 2 compared specific and neutralizing antibody concentrations among mucosally BCoV primed groups of calves that were differentially systemically boosted. Results: In Study 1, calves that were mucosally primed and systemically boosted had higher BCoV-neutralizing antibody concentrations than the control group at weaning. In Study 2, boosting mucosally primed calves by injecting inactivated or MLV vaccine resulted in anamnestic BCoV-specific antibody responses at weaning. Conclusion: Neonatal mucosal priming and systemic boosting resulted in anamnestic BCoV antibody responses at weaning. Clinical relevance: Prime-boost vaccination should be considered for control of BCoV respiratory disease.


Comparaison des réponses en anticorps ELISA neutralisant le virus et spécifiques du virus chez des nouveau-nés bovins vaccinés par amorces-rappels différenciés contre le coronavirus bovin. Objectif: Cette étude a abordé le manque actuel de connaissances sur les réponses immunitaires néonatales de stimulation pour maitriser la maladie respiratoire à coronavirus bovin (BCoV) chez les bovins de boucherie en âge de sevrage. Animaux: Les études 1 et 2 portaient respectivement sur 33 et 22 veaux de boucherie néonatals croisés commerciaux. Procédures: L'étude 1 a comparé les concentrations d'anticorps neutralisant le BCoV de veaux témoins avec 3 groupes de veaux vaccinés de manière différentielle avec des vaccins à virus vivant modifié (MLV) contre le BCoV pour administration par voie mucosale et/ou systémique. L'étude 2 a comparé les concentrations d'anticorps spécifiques et neutralisants parmi des groupes de veaux sensibilisés au BCoV par voie mucosale et qui ont eu un rappel par voie systémique différentielle. Résultats: Dans l'étude 1, les veaux qui avaient reçu une amorce au niveau des muqueuses et un rappel systémique présentaient des concentrations d'anticorps neutralisant le BCoV plus élevées que le groupe témoin au sevrage. Dans l'étude 2, le rappel des veaux amorcés par voie mucosale par l'injection d'un vaccin inactivé ou MLV a entraîné une réponse anamnestique en anticorps spécifiques du BCoV au sevrage. Conclusion: En période néonatale, l'amorce par voie mucosale et le renforcement systémique ont entraîné des réponses anamnestiques en anticorps BCoV au sevrage. Pertinence clinique: La vaccination de rappel doit être envisagée pour maitriser la maladie respiratoire causée par le BCoV.(Traduit par Dr Serge Messier).


Assuntos
Coronavirus Bovino , Bovinos , Animais , Formação de Anticorpos , Ensaio de Imunoadsorção Enzimática/veterinária , Anticorpos Neutralizantes , Vacinação/veterinária , Vacinas Atenuadas
7.
J Dairy Sci ; 107(6): 3836-3846, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38135039

RESUMO

Respiratory tract infections remain a major problem during calf rearing, especially among milk (formula)-fed veal. Preconditioning of calves through appropriate colostrum management and vaccination could be helpful to address this issue. The objective of this study was to investigate whether the presence of serum antibodies against major respiratory tract pathogens (bovine respiratory syncytial virus, parainfluenza 3 virus, bovine coronavirus, Mycoplasmopsis bovis, Histophilus somni, Pasteurella multocida, and Mannheimia haemolytica) and total serum IgG concentration in calves upon arrival at the veal facility were associated with the occurrence of clinical bovine respiratory disease (BRD) or lung consolidation in the first 3 wk, as assessed by both the Wisconsin BRD scorecard (based on 5 clinical signs: cough, rectal temperature, ear position, and nasal and ocular discharge) and by quick thoracic ultrasound scanning. Additionally, the association between calves' serostatus production parameters were explored. A prospective cohort study was conducted among 442 male dairy calves on a large veal calf facility in Belgium. Both clinical scoring and quick thoracic ultrasound scanning were performed on all calves at 4 key moments in the production cycle: arrival at the facility, initiation of first metaphylactic antimicrobial treatment at peak incidence of BRD (wk 1), end of the first metaphylactic treatment (short-term evaluation) and at wk 10 (long-term evaluation). Mixed effects logit regression models were fitted to quantify relationships. The outcomes of interest were clinical respiratory disease (Wisconsin BRD scorecard positive), lung consolidation (≥1 cm or ≥ 3 cm), average daily weight gain, and cold carcass weight. In the first week of production, incidence of lung consolidation (≥1 cm) quickly increased from 14.9% upon arrival to 43.0% at the peak of the BRD incidence, while clinical BRD increased from 3.6% to 16.1%. The main finding of this study was that calves who were seropositive for bovine respiratory syncytial virus and bovine coronavirus at arrival had reduced odds of developing lung consolidation at the peak of the outbreak, 0.58 odds ratio (95% CI: 0.38-0.89) and 0.37 odds ratio (95% CI: 0.20-0.69), respectively. No relationships between serum IgG concentration at arrival and the development of lung consolidations or clinical respiratory disease were found. Nevertheless, on average, throughout the first 10 wk of the fattening cycle, calves with failed transfer of passive immunity (serum IgG < 7.5 g/L) gained 40 g/d (95% CI: 10-70 g/d) less weight (average daily gain). Hence, ensuring that calves have a positive serostatus for these respiratory tract pathogens before entering the facility may help lower the incidence of lung consolidations, subsequently reducing treatment incidence and the adverse effects on primary economic outcomes.


Assuntos
Doenças dos Bovinos , Animais , Bovinos , Vírus Sincicial Respiratório Bovino , Masculino , Estudos Prospectivos , Doenças Respiratórias/veterinária , Infecções Respiratórias/veterinária , Coronavirus Bovino
8.
Pol J Vet Sci ; 26(4): 559-569, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38088300

RESUMO

Racecadotril, used as an antidiarrheal drug in humans and some animals such as the dog, inhibits peripheral enkephalinase, which degrades enkephalins and enkephalinase inhibition induces a selective increase in chloride absorption from the intestines. The study material consisted of 46 calves with infectious diarrhea and 14 healthy calves in the age 2-20 days. The calves were divided into eight groups; healthy calves (HG), healthy calves administered racecadotril (HRG), calves with E.coli-associated diarrhea (ECG), calves with E.coli-associated diarrhea administered racecadotril (ECRG), calves with bovine Rotavirus/Coronavirus-associated diarrhea (VG), calves with bovine Rotavirus/Coronavirus-associated diarrhea administered racecadotril (VRG), calves with C. parvum-associated diarrhea (CG) and calves with C. parvum-associated diarrhea administered racecadotril (CRG). Calves in the racecadotril groups received oral racecadotril at a dose of 2.5 mg/kg twice a day for 3 days. A routine clinical examination of all calves was performed. Hemogram and blood gas measurements were made from the blood samples. Standard diarrhea treatment was applied to the HG, ECG, CG, and VG groups. Clinical score parameters such as appetite, feces quality, dehydration, standing and death and some blood gas and hemogram parameters were evaluated to determine the clinical efficacy of racecadotril. Clinical score parameters were determined observationally. Blood gas measurements were performed using a blood gas analyzer. The hemogram was performed using an automated hematologic analyzer. Statistically significant differences were determined in the blood pH, bicarbonate, base deficit, lactate, and total leukocyte count in calves with diarrhea compared to healthy calves. After the treatments, these parameters were found to be within normal limits. At the end of treatment, 42 of the 46 diarrheal calves recovered, while 4 died. We found that racecadotril was effective in improving both clinical recovery and feces consistency in neonatal calves with diarrhea caused by E. coli. As a result, it can be stated that racecadotril, which has an antisecretory effect, is beneficial in the treatment of bacterial diarrhea caused by such as E. coli.


Assuntos
Doenças dos Bovinos , Coronavirus Bovino , Doenças do Cão , Rotavirus , Humanos , Animais , Bovinos , Cães , Escherichia coli , Neprilisina/uso terapêutico , Diarreia/tratamento farmacológico , Diarreia/veterinária , Diarreia/microbiologia , Resultado do Tratamento , Doenças dos Bovinos/tratamento farmacológico , Doenças dos Bovinos/microbiologia , Fezes/microbiologia
9.
Sci Rep ; 13(1): 22106, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092824

RESUMO

Among the causative agents of neonatal diarrhoea in calves, two of the most prevalent are bovine coronavirus (BCoV) and the intracellular parasite Cryptosporidium parvum. Although several studies indicate that co-infections are associated with greater symptom severity, the host-pathogen interplay remains unresolved. Here, our main objective was to investigate the modulation of the transcriptome of HCT-8 cells during single and co-infections with BCoV and C. parvum. For this, HCT-8 cells were inoculated with (1) BCoV alone, (2) C. parvum alone, (3) BCoV and C. parvum simultaneously. After 24 and 72 h, cells were harvested and analyzed using high-throughput RNA sequencing. Following differential expression analysis, over 6000 differentially expressed genes (DEGs) were identified in virus-infected and co-exposed cells at 72 hpi, whereas only 52 DEGs were found in C. parvum-infected cells at the same time point. Pathway (KEGG) and gene ontology (GO) analysis showed that DEGs in the virus-infected and co-exposed cells were mostly associated with immune pathways (such as NF-κB, TNF-α or, IL-17), apoptosis and regulation of transcription, with a more limited effect exerted by C. parvum. Although the modulation observed in the co-infection was apparently dominated by the virus, over 800 DEGs were uniquely expressed in co-exposed cells at 72 hpi. Our findings provide insights on possible biomarkers associated with co-infection, which could be further explored using in vivo models.


Assuntos
Coinfecção , Coronavirus Bovino , Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Animais , Bovinos , Cryptosporidium parvum/genética , Transcriptoma , Criptosporidiose/parasitologia , Cryptosporidium/genética , Coronavirus Bovino/genética
12.
Vopr Virusol ; 67(6): 465-474, 2023 02 07.
Artigo em Russo | MEDLINE | ID: mdl-37264836

RESUMO

INTRODUCTION: Bovine coronaviruses (BCoVs) are causative agents of diarrhea, respiratory diseases in calves and winter cow dysentery. The study of genetic diversity of these viruses is topical issue. The purpose of the research is studying the genetic diversity of BCoV isolates circulating among dairy cattle in Siberia. MATERIALS AND METHODS: Specimens used in this study were collected from animals that died or was forcedly slaughtered before the start of the study. The target for amplification were nucleotide sequences of S and N gene regions. RESULTS: Based on the results of RT-PCR testing, virus genome was present in 16.3% of samples from calves with diarrheal syndrome and in 9.9% with respiratory syndrome. The nucleotide sequences of S gene region were determined for 18 isolates, and N gene sequences - for 12 isolates. Based on S gene, isolates were divided into two clades each containing two subclades. First subclade of first clade (European line) included 11 isolates. Second one included classic strains Quebec and Mebus, strains from Europe, USA and Korea, but none of sequences from this study belonged to this subclade. 6 isolates belonged to first subclade of second clade (American-Asian line). Second subclade (mixed line) included one isolate. N gene sequences formed two clades, one of them included two subclades. First subclade included 3 isolates (American-Asian line), and second subclade (mixed) included one isolate. Second clade (mixed) included 8 sequences. No differences in phylogenetic grouping between intestinal and respiratory isolates, as well as according to their geographic origin were identified. CONCLUSION: The studied population of BCoV isolates is heterogeneous. Nucleotide sequence analysis is a useful tool for studying molecular epidemiology of BCoV. It can be beneficial for choice of vaccines to be used in a particular geographic region.


Assuntos
Betacoronavirus 1 , Doenças dos Bovinos , Infecções por Coronavirus , Coronavirus Bovino , Coronavirus , Feminino , Bovinos , Animais , Coronavirus Bovino/genética , Coronavirus/genética , Filogenia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Diarreia/epidemiologia , Diarreia/veterinária , Variação Genética , Doenças dos Bovinos/epidemiologia
13.
Sci Rep ; 13(1): 9800, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328590

RESUMO

Inactivation of influenza A virus by radiofrequency (RF) energy exposure at levels near Institute of Electrical and Electronics Engineers (IEEE) safety thresholds has been reported. The authors hypothesized that this inactivation was through a structure-resonant energy transfer mechanism. If this hypothesis is confirmed, such a technology could be used to prevent transmission of virus in occupied public spaces where RF irradiation of surfaces could be performed at scale. The present study aims to both replicate and expand the previous work by investigating the neutralization of bovine coronavirus (BCoV), a surrogate of SARS-CoV-2, by RF radiation in 6-12 GHz range. Results showed an appreciable reduction in BCoV infectivity (up to 77%) due to RF exposure to certain frequencies, but failed to generate enough reduction to be considered clinically significant.


Assuntos
COVID-19 , Coronavirus Bovino , Animais , Bovinos , Humanos , SARS-CoV-2 , Ondas de Rádio/efeitos adversos , Inativação de Vírus
15.
Viruses ; 15(3)2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36992344

RESUMO

Bovine coronavirus (BCoV) is one of the major viral pathogens of cattle, responsible for economic losses and causing a substantial impact on animal welfare. Several in vitro 2D models have been used to investigate BCoV infection and its pathogenesis. However, 3D enteroids are likely to be a better model with which to investigate host-pathogen interactions. This study established bovine enteroids as an in vitro replication system for BCoV, and we compared the expression of selected genes during the BCoV infection of the enteroids with the expression previously described in HCT-8 cells. The enteroids were successfully established from bovine ileum and permissive to BCoV, as shown by a seven-fold increase in viral RNA after 72 h. Immunostaining of differentiation markers showed a mixed population of differentiated cells. Gene expression ratios at 72 h showed that pro-inflammatory responses such as IL-8 and IL-1A remained unchanged in response to BCoV infection. Expression of other immune genes, including CXCL-3, MMP13, and TNF-α, was significantly downregulated. This study shows that the bovine enteroids had a differentiated cell population and were permissive to BCoV. Further studies are necessary for a comparative analysis to determine whether enteroids are suitable in vitro models to study host responses during BCoV infection.


Assuntos
Doenças dos Bovinos , Infecções por Coronavirus , Coronavirus Bovino , Animais , Bovinos , Coronavirus Bovino/genética , Íleo
16.
Viruses ; 15(3)2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36992378

RESUMO

Bovine respiratory diseases (BRD) are associated with various predisposing factors, such as physical and physiological stress factors, and bacterial and viral pathogens. These stressors and viruses suppress immune defenses, leading to bacterial growth in the upper respiratory tract and invasion of pathogens into the lower respiratory tract. Therefore, continuous monitoring of the causative pathogens would contribute to the early detection of BRD. Nasal swabs and sera from 63 clinically healthy calves were continuously collected from seven farms in Iwate prefecture from 2019 to 2021. We attempted to monitor dynamics of BRD-associated pathogens by multiplex real-time RT-PCR (RT-qPCR) using their nasal swab samples. In addition, we attempted to monitor fluctuation of antibody titers against each BRD-associated pathogen by virus neutralization test (VNT) using their sera. In contrast, nasal swabs from 89 calves infected with BRD were collected from 28 farms in Iwate prefecture from 2019 to 2021. We attempted to analyze their nasal swab samples by multiplex RT-qPCR aim to detect BRD-associated pathogens that are dominant in this region. As a result, our analyses using samples from clinically healthy calves showed that positive results by multiplex RT-qPCR were closely related to a significant increase of antibody titers by VNT in bovine coronavirus (BCoV), bovine torovirus (BToV), and bovine respiratory syncytial virus (BRSV). In addition, our data exhibited that BCoV, BToV, BRSV, bovine parainfluenza virus 3, and Mycoplasma bovis have been more frequently detected in calves infected with BRD compared to those detected in clinically healthy calves. Moreover, the data presented herein revealed co-infections by combination multiple viral pathogens with bacterial pathogens are closely involved in the onset of BRD. Taken together, our study demonstrates multiplex RT-qPCR which can simultaneously analyze multiple pathogens, including viruses and bacteria, and is useful for the early detection of BRD.


Assuntos
Doenças dos Bovinos , Coronavirus Bovino , Vírus Sincicial Respiratório Bovino , Doenças Respiratórias , Animais , Bovinos , Doenças dos Bovinos/diagnóstico , Doenças Respiratórias/veterinária , Nariz , Traqueia
17.
Viruses ; 15(3)2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36992417

RESUMO

Bovine Coronavirus (BCoV) is a major pathogen associated with neonatal calf diarrhea. Standard practice dictates that to prevent BCoV diarrhea, dams should be immunized in the last stage of pregnancy to increase BCoV-specific antibody (Ab) titers in serum and colostrum. For the prevention to be effective, calves need to suck maternal colostrum within the first six to twelve hours of life before gut closure to ensure a good level of passive immunity. The high rate of maternal Ab transfer failure resulting from this process posed the need to develop alternative local passive immunity strategies to strengthen the prevention and treatment of BCoV diarrhea. Immunoglobulin Y technology represents a promising tool to address this gap. In this study, 200 laying hens were immunized with BCoV to obtain spray-dried egg powder enriched in specific IgY Abs to BCoV on a large production scale. To ensure batch-to-batch product consistency, a potency assay was statistically validated. With a sample size of 241, the BCoV-specific IgY ELISA showed a sensitivity and specificity of 97.7% and 98.2%, respectively. ELISA IgY Abs to BCoV correlated with virus-neutralizing Ab titers (Pearson correlation, R2 = 0.92, p < 0.001). Most importantly, a pilot efficacy study in newborn calves showed a significant delay and shorter duration of BCoV-associated diarrhea and shedding in IgY-treated colostrum-deprived calves. Calves were treated with milk supplemented with egg powder (final IgY Ab titer to BCoV ELISA = 512; VN = 32) for 14 days as a passive treatment before a challenge with BCoV and were compared to calves fed milk with no supplementation. This is the first study with proof of efficacy of a product based on egg powder manufactured at a scale that successfully prevents BCoV-associated neonatal calf diarrhea.


Assuntos
Doenças dos Bovinos , Coronavirus Bovino , Gravidez , Animais , Bovinos , Feminino , Galinhas , Pós , Animais Recém-Nascidos , Anticorpos Antivirais/análise , Diarreia/prevenção & controle , Diarreia/veterinária , Doenças dos Bovinos/prevenção & controle
18.
Viruses ; 15(2)2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36851669

RESUMO

Bovine respiratory disease (BRD) is a major health problem within the global cattle industry. This disease has a complex aetiology, with viruses playing an integral role. In this study, metagenomics was used to sequence viral nucleic acids in the nasal swabs of BRD-affected cattle. The viruses detected included those that are well known for their association with BRD in Australia (bovine viral diarrhoea virus 1), as well as viruses known to be present but not fully characterised (bovine coronavirus) and viruses that have not been reported in BRD-affected cattle in Australia (bovine rhinitis, bovine influenza D, and bovine nidovirus). The nasal swabs from a case-control study were subsequently tested for 10 viruses, and the presence of at least one virus was found to be significantly associated with BRD. Some of the more recently detected viruses had inconsistent associations with BRD. Full genome sequences for bovine coronavirus, a virus increasingly associated with BRD, and bovine nidovirus were completed. Both viruses belong to the Coronaviridae family, which are frequently associated with disease in mammals. This study has provided greater insights into the viral pathogens associated with BRD and highlighted the need for further studies to more precisely elucidate the roles viruses play in BRD.


Assuntos
Doenças dos Bovinos , Coronavirus Bovino , Nidovirales , Doenças Respiratórias , Animais , Bovinos , Estudos de Casos e Controles , Viroma , Traqueia , Nariz , Coronavirus Bovino/genética , Mamíferos
19.
Microb Pathog ; 176: 106009, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36736543

RESUMO

Bovine coronavirus (BCoV) is one of the important pathogens that cause calf diarrhea (CD), winter dysentery (WD), and the bovine respiratory disease complex (BRDC), and spreads worldwide. An infection of BCoV in cattle can lead to death of young animals, stunted growth, reduced milk production, and milk quality, thus bringing serious economic losses to the bovine industry. Therefore, it is necessary to prevent and control the spread of BCoV. Here, a systematic review and meta-analysis was conducted to assess the prevalence of BCoV in cattle in China before 2022. A total of 57 articles regarding the prevalence of BCoV in cattle in China were collected from five databases (PubMed, ScienceDirect, CNKI, VIP, and Wan Fang). Based on the inclusion criteria, a total of 15,838 samples were included, and 6,136 were positive cases. The overall prevalence of BCoV was 30.8%, with the highest prevalence rate (60.5%) identified in South China and the lowest prevalence (15.6%) identified in Central China. We also analyzed other subgroup information, included sampling years, sample sources, detection methods, breeding methods, age, type of cattle, presence of diarrhea, and geographic and climatic factors. The results indicated that BCoV was widely prevalent in China. Among all subgroups, the sample sources, detection methods, breeding methods, and presence or absence of diarrheal might be potential risk factors responsible for BCoV prevalence. It is recommended to strengthen the detection of BCoV in cattle, in order to effectively control the spread of BCoV.


Assuntos
Doenças dos Bovinos , Coronavirus Bovino , Disenteria , Bovinos , Animais , Prevalência , Doenças dos Bovinos/epidemiologia , Diarreia/veterinária , China/epidemiologia , Fezes
20.
J Basic Microbiol ; 63(5): 519-529, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36538736

RESUMO

Bovine coronavirus (BCoV) is a member of pathogenic Betacoronaviruses that has been circulating for several decades in multiple host species. Given the similarity between BCoV and human coronaviruses, the current study aimed to review the complete genomes of 107 BCoV strains available on the GenBank database, collected between 1983 and 2017 from different countries. The maximum-likelihood based phylogenetic analysis revealed three main BCoV genogroups: GI, GII, and GIII. GI is further divided into nine subgenogroups: GI-a to GI-i. The GI-a to GI-d are restricted to Japan, and GI-e to GI-i to the USA. The evolutionary relationships were also inferred using phylogenetic network analysis, revealing two major distinct networks dominated by viruses identified in the USA and Japan, respectively. The USA strains-dominated Network Cluster includes two sub-branches: France/Germany and Japan/China in addition to the United States, while Japan strains-dominated Network Cluster is limited to Japan. Twelve recombination events were determined, including 11 intragenogroup (GI) and one intergenogroup (GII vs. GI-g). The breakpoints of the recombination events were mainly located in ORF1ab and the spike glycoprotein ORF. Interestingly, 10 of 12 recombination events occurred between Japan strains, one between the USA strains, and one from intercontinental recombination (Japan vs. USA). These findings suggest that geographical characteristics, and population density with closer contact, might significantly impact the BCoV infection and co-infection and boost the emergence of more complex virus lineages.


Assuntos
Doenças dos Bovinos , Infecções por Coronavirus , Coronavirus Bovino , Animais , Bovinos , Humanos , Filogenia , Funções Verossimilhança , Infecções por Coronavirus/epidemiologia , Recombinação Genética , Doenças dos Bovinos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA