Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol ; 148(1): 21, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150562

RESUMO

Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disorder caused by the expansion of GGC trinucleotide repeats in NOTCH2NLC gene. Despite identifying uN2CpolyG, a toxic polyglycine (polyG) protein translated by expanded GGC repeats, the exact pathogenic mechanisms of NIID remain unclear. In this study, we investigated the role of polyG by expressing various forms of NOTCH2NLC in mice: the wild-type, the expanded form with 100 GGC repeats (either translating or not translating into uN2CpolyG), and the mutated form that encodes a pure polyG without GGC-repeat RNA and the C-terminal stretch (uN2CpolyG-dCT). Both uN2CpolyG and uN2CpolyG-dCT induced the formation of inclusions composed by filamentous materials and resulted in neurodegenerative phenotypes in mice, including impaired motor and cognitive performance, shortened lifespan, and pathologic lesions such as white-matter lesions, microgliosis, and astrogliosis. In contrast, expressing GGC-repeat RNA alone was non-pathogenic. Through bulk and single-nuclei RNA sequencing, we identified common molecular signatures linked to the expression of uN2CpolyG and uN2CpolyG-dCT, particularly the upregulation of inflammation and microglia markers, and the downregulation of immediate early genes and splicing factors. Importantly, microglia-mediated inflammation was visualized in NIID patients using positron emission tomography, correlating with levels of white-matter atrophy. Furthermore, microglia ablation ameliorated neurodegenerative phenotypes and transcriptional alterations in uN2CpolyG-expressing mice but did not affect polyG inclusions. Together, these results demonstrate that polyG is crucial for the pathogenesis of NIID and highlight the significant role of microglia in polyG-induced neurodegeneration.


Assuntos
Corpos de Inclusão Intranuclear , Microglia , Doenças Neurodegenerativas , Animais , Microglia/patologia , Microglia/metabolismo , Corpos de Inclusão Intranuclear/patologia , Corpos de Inclusão Intranuclear/metabolismo , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Camundongos , Camundongos Transgênicos , Expansão das Repetições de Trinucleotídeos/genética , Humanos , Masculino , Feminino
2.
J Comp Neurol ; 532(8): e25662, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39136357

RESUMO

Despite myriad technological advances in neuroscience, the nervous system harbors morphological phenomena that continue to defy explanation. First described by the classical microscopists, including Santiago Ramon y Cajal, at the end of the 19th century, the neuronal intranuclear rodlet (INR) has mystified neurohistologists and microscopists for centuries. In this review article, we will provide an overview of the discovery of the INR as well as the subsequent attempts to elucidate its nature and functional significance. We outline our own studies of this structure over the past three decades, focusing on its elusive nature, its interactions with other nuclear organelles, and on disease-related quantitative changes in Alzheimer's disease. We then describe our somewhat serendipitous discovery that these structures are filamentous aggregates of the nucleotide-synthesizing metabolic enzyme inosine monophosphate dehydrogenase. The filamentation of metabolic enzymes to form mesoscale cellular structures called "rods and rings" or "cytoophidia" (Greek for "cellular snakes") is a recently described phenomenon that remains to be systematically investigated in the nervous system. Thus, this review provides an intriguing historical juxtaposition in neuroscience, inculcating the neuronal INR, once a mere morphological curiosity, into one of the most rapidly evolving fields in contemporary cell biology.


Assuntos
Neurônios , Humanos , Animais , Corpos de Inclusão Intranuclear/metabolismo , Doença de Alzheimer/história , Doença de Alzheimer/patologia , História do Século XX
3.
J Clin Invest ; 134(14)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38787785

RESUMO

Pathogenic variants in valosin-containing protein (VCP) cause multisystem proteinopathy (MSP), a disease characterized by multiple clinical phenotypes including inclusion body myopathy, Paget's disease of the bone, and frontotemporal dementia (FTD). How such diverse phenotypes are driven by pathogenic VCP variants is not known. We found that these diseases exhibit a common pathologic feature: ubiquitinated intranuclear inclusions affecting myocytes, osteoclasts, and neurons. Moreover, knock-in cell lines harboring MSP variants show a reduction in nuclear VCP. Given that MSP is associated with neuronal intranuclear inclusions comprised of TDP-43 protein, we developed a cellular model whereby proteostatic stress results in the formation of insoluble intranuclear TDP-43 aggregates. Consistent with a loss of nuclear VCP function, cells harboring MSP variants or cells treated with VCP inhibitor exhibited decreased clearance of insoluble intranuclear TDP-43 aggregates. Moreover, we identified 4 compounds that activate VCP primarily by increasing D2 ATPase activity, where pharmacologic VCP activation appears to enhance clearance of insoluble intranuclear TDP-43 aggregate. Our findings suggest that VCP function is important for nuclear protein homeostasis, that impaired nuclear proteostasis may contribute to MSP, and that VCP activation may be a potential therapeutic by virtue of enhancing the clearance of intranuclear protein aggregates.


Assuntos
Proteínas de Ligação a DNA , Miosite de Corpos de Inclusão , Proteostase , Proteína com Valosina , Animais , Humanos , Camundongos , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Demência Frontotemporal/patologia , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Demência Frontotemporal/tratamento farmacológico , Corpos de Inclusão Intranuclear/metabolismo , Corpos de Inclusão Intranuclear/patologia , Corpos de Inclusão Intranuclear/genética , Miosite de Corpos de Inclusão/metabolismo , Miosite de Corpos de Inclusão/patologia , Miosite de Corpos de Inclusão/genética , Miosite de Corpos de Inclusão/tratamento farmacológico , Osteíte Deformante/metabolismo , Osteíte Deformante/genética , Osteíte Deformante/patologia , Osteíte Deformante/tratamento farmacológico , Agregados Proteicos/efeitos dos fármacos , Proteinopatias TDP-43/metabolismo , Proteinopatias TDP-43/patologia , Proteinopatias TDP-43/genética , Proteinopatias TDP-43/tratamento farmacológico , Proteína com Valosina/metabolismo , Proteína com Valosina/genética
4.
Nat Commun ; 15(1): 3215, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615096

RESUMO

Spatial compartmentalization is a key facet of protein quality control that serves to store disassembled or non-native proteins until triage to the refolding or degradation machinery can occur in a regulated manner. Yeast cells sequester nuclear proteins at intranuclear quality control bodies (INQ) in response to various stresses, although the regulation of this process remains poorly understood. Here we reveal the SUMO modification of the small heat shock protein Btn2 under DNA damage and place Btn2 SUMOylation in a pathway promoting protein clearance from INQ structures. Along with other chaperones, and degradation machinery, Btn2-SUMO promotes INQ clearance from cells recovering from genotoxic stress. These data link small heat shock protein post-translational modification to the regulation of protein sequestration in the yeast nucleus.


Assuntos
Proteínas de Choque Térmico Pequenas , Corpos de Inclusão Intranuclear , Proteínas de Transporte Vesicular , Dano ao DNA , Proteínas de Choque Térmico Pequenas/genética , Proteínas de Choque Térmico Pequenas/metabolismo , Corpos de Inclusão Intranuclear/genética , Corpos de Inclusão Intranuclear/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sumoilação , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
7.
Neurobiol Dis ; 190: 106391, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38145851

RESUMO

CGG repeat expansion in NOTCH2NLC is the genetic cause of neuronal intranuclear inclusion disease (NIID). Previous studies indicated that the CGG repeats can be translated into polyglycine protein (N2CpolyG) which was toxic to neurons by forming intranuclear inclusions (IIs). However, little is known about the factors governing polyG IIs formation as well as its molecular pathogenesis. Considering that neurogenetic disorders usually involve interactions between genetic and environmental stresses, we investigated the effect of stress on the formation of IIs. Our results revealed that under hyperosmotic stress, N2CpolyG translocated from the cytoplasm to the nucleus and formed IIs in SH-SY5Y cells, recapitulating the pathological hallmark of NIID patients. Furthermore, N2CpolyG interacted/ co-localized with an RNA-binding protein FUS in the IIs of cellular model and NIID patient tissues, thereby disrupting stress granule formation in cytoplasm under hyperosmotic stress. Consequently, dysregulated expression of microRNAs was found both in NIID patients and cellular model, which could be restored by FUS overexpression in cultured cells. Overall, our findings indicate a mechanism of stress-induced pathological changes as well as neuronal damage, and a potential strategy for the treatment of NIID.


Assuntos
Neuroblastoma , Doenças Neurodegenerativas , Humanos , Corpos de Inclusão Intranuclear/genética , Corpos de Inclusão Intranuclear/metabolismo , Corpos de Inclusão Intranuclear/patologia , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Neuroblastoma/patologia , Doenças Neurodegenerativas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA