Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Virology ; 553: 9-22, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33197754

RESUMO

During an infection, Cauliflower mosaic virus (CaMV) forms inclusion bodies (IBs) mainly composed of viral protein P6, where viral activities occur. Because viral processes occur in IBs, understanding the mechanisms by which they are formed is crucial. FL-P6 expressed in N. benthamiana leaves formed IBs of a variety of shapes and sizes. Small IBs were dynamic, undergoing fusion/dissociation events. Co-expression of actin-binding polypeptides with FL-P6 altered IB size distribution and inhibited movement. This suggests that IB movement is required for fusion and growth. A P6 deletion mutant was discovered that formed a single large IB per cell, which suggests it exhibited altered fusion/dissociation dynamics. Myosin-inhibiting drugs did not affect small IB movement, while those inhibiting actin polymerization did. Large IBs colocalized with components of the aggresome pathway, while small ones generally did not. This suggests a possible involvement of the aggresome pathway in large IB formation.


Assuntos
Caulimovirus/fisiologia , Corpos de Inclusão Viral/fisiologia , Transativadores/metabolismo , Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Corpos Enovelados/metabolismo , Diacetil/análogos & derivados , Diacetil/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Corpos de Inclusão Viral/ultraestrutura , Proteínas dos Microfilamentos/metabolismo , Mutação , Folhas de Planta/virologia , Domínios Proteicos , Nicotiana/virologia , Transativadores/química , Transativadores/genética
2.
mBio ; 11(5)2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32963000

RESUMO

Infection of host cells by the respiratory syncytial virus (RSV) is characterized by the formation of spherical cytoplasmic inclusion bodies (IBs). These structures, which concentrate all the proteins of the polymerase complex as well as some cellular proteins, were initially considered aggresomes formed by viral dead-end products. However, recent studies revealed that IBs are viral factories where viral RNA synthesis, i.e., replication and transcription, occurs. The analysis of IBs by electron microscopy revealed that they are membrane-less structures, and accumulated data on their structure, organization, and kinetics of formation revealed that IBs share the characteristics of cellular organelles, such as P-bodies or stress granules, suggesting that their morphogenesis depends on a liquid-liquid phase separation mechanism. It was previously shown that expression of the RSV nucleoprotein N and phosphoprotein P of the polymerase complex is sufficient to induce the formation of pseudo-IBs. Here, using a series of truncated P proteins, we identified the domains of P required for IB formation and show that the oligomeric state of N, provided it can interact with RNA, is critical for their morphogenesis. We also show that pseudo-IBs can form in vitro when recombinant N and P proteins are mixed. Finally, using fluorescence recovery after photobleaching approaches, we reveal that in cellula and in vitro IBs are liquid organelles. Our results strongly support the liquid-liquid phase separation nature of IBs and pave the way for further characterization of their dynamics.IMPORTANCE Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract illness in infants, elderly, and immunocompromised people. No vaccine or efficient antiviral treatment is available against this virus. The replication and transcription steps of the viral genome are appealing mechanisms to target for the development of new antiviral strategies. These activities take place within cytoplasmic inclusion bodies (IBs) that assemble during infection. Although expression of both the viral nucleoprotein (N) and phosphoprotein (P) allows induction of the formation of these IBs, the mechanism sustaining their assembly remains poorly characterized. Here, we identified key elements of N and P required for the scaffolding of IBs and managed for the first time to reconstitute RSV pseudo-IBs in vitro by coincubating recombinant N and P proteins. Our results provide strong evidence that the biogenesis of RSV IBs occurs through liquid-liquid phase transition mediated by N-P interactions.


Assuntos
Corpos de Inclusão Viral/fisiologia , Nucleoproteínas/metabolismo , Fosfoproteínas/metabolismo , Vírus Sincicial Respiratório Humano/fisiologia , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Cricetinae , Humanos , Rim/citologia , Morfogênese , Nucleoproteínas/genética , Fosfoproteínas/genética , Vírus Sincicial Respiratório Humano/genética , Replicação Viral
3.
J Fish Dis ; 43(7): 719-728, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32476167

RESUMO

Piscine orthoreovirus genotype 1 (PRV-1) is the causative agent of heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon (Salmo salar L.). The virus has also been found in Pacific salmonids in western North America, raising concerns about the risk to native salmon and trout. Here, we report the results of laboratory challenges using juvenile Chinook salmon, coho salmon and rainbow trout injected with tissue homogenates from Atlantic salmon testing positive for PRV-1 or with control material. Fish were sampled at intervals to assess viral RNA transcript levels, haematocrit, erythrocytic inclusions and histopathology. While PRV-1 replicated in all species, there was negligible mortality in any group. We observed a few erythrocytic inclusion bodies in fish from the PRV-1-infected groups. At a few time points, haematocrits were significantly lower in the PRV-1-infected groups relative to controls, but in no case was anaemia noted. The most common histopathological finding was mild, focal myocarditis in both the non-infected controls and PRV-1-infected fish. All cardiac lesions were judged mild, and none were consistent with those of HSMI. Together, these results suggest all three species are susceptible to PRV-1 infection, but in no case did infection cause notable disease in these experiments.


Assuntos
Doenças dos Peixes/virologia , Genótipo , Hematócrito/veterinária , Corpos de Inclusão Viral/fisiologia , Oncorhynchus , Orthoreovirus/fisiologia , Infecções por Reoviridae/veterinária , Animais , Oncorhynchus kisutch , Oncorhynchus mykiss , Orthoreovirus/genética , RNA Viral/análise , Infecções por Reoviridae/virologia
4.
PLoS One ; 14(9): e0221863, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31498825

RESUMO

Boid Inclusion Body Disease (BIBD) is a potentially fatal disease reported in captive boid snakes worldwide that is caused by reptarenavirus infection. Although the detection of intracytoplasmic inclusion bodies (IB) in blood cells serves as the gold standard for the ante mortem diagnosis of BIBD, the mechanisms underlying IB formation and the pathogenesis of BIBD are unknown. Knowledge on the reptile immune system is sparse compared to the mammalian counterpart, and in particular the response towards reptarenavirus infection is practically unknown. Herein, we investigated a breeding collection of 70 Boa constrictor snakes for BIBD, reptarenavirus viraemia, anti-reptarenavirus IgM and IgY antibodies, and population parameters. Using NGS and RT-PCR on pooled blood samples of snakes with and without BIBD, we could identify three different reptarenavirus S segments in the collection. The examination of individual samples by RT-PCR indicated that the presence of University of Giessen virus (UGV)-like S segment strongly correlates with IB formation. We could also demonstrate a negative correlation between BIBD and the presence of anti-UGV NP IgY antibodies. Further evidence of an association between antibody response and BIBD is the finding that the level of anti-reptarenavirus antibodies measured by ELISA was lower in snakes with BIBD. Furthermore, female snakes had a significantly lower body weight when they had BIBD. Taken together our findings suggest that the detection of the UGV-/S6-like S segment and the presence of anti-reptarenavirus IgY antibodies might serve as a prognostic tool for predicting the development of BIBD.


Assuntos
Anticorpos Antivirais/imunologia , Infecções por Arenaviridae/imunologia , Arenaviridae/fisiologia , Corpos de Inclusão Viral/fisiologia , Serpentes/imunologia , Serpentes/virologia , Animais , Anticorpos Antivirais/sangue , Arenaviridae/genética , Arenaviridae/imunologia , Infecções por Arenaviridae/sangue , Infecções por Arenaviridae/diagnóstico , Feminino , Masculino , Serpentes/sangue
5.
J Virol ; 93(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31375591

RESUMO

Nonsegmented negative-strand RNA viruses, including measles virus (MeV), a member of the Paramyxoviridae family, are assumed to replicate in cytoplasmic inclusion bodies. These cytoplasmic viral factories are not membrane bound, and they serve to concentrate the viral RNA replication machinery. Although inclusion bodies are a prominent feature in MeV-infected cells, their biogenesis and regulation are not well understood. Here, we show that infection with MeV triggers inclusion body formation via liquid-liquid phase separation (LLPS), a process underlying the formation of membraneless organelles. We find that the viral nucleoprotein (N) and phosphoprotein (P) are sufficient to trigger MeV phase separation, with the C-terminal domains of the viral N and P proteins playing a critical role in the phase transition. We provide evidence suggesting that the phosphorylation of P and dynein-mediated transport facilitate the growth of these organelles, implying that they may have key regulatory roles in the biophysical assembly process. In addition, our findings support the notion that these inclusions change from liquid to gel-like structures as a function of time after infection, leaving open the intriguing possibility that the dynamics of these organelles can be tuned during infection to optimally suit the changing needs during the viral replication cycle. Our study provides novel insight into the process of formation of viral inclusion factories, and taken together with earlier studies, suggests that Mononegavirales have broadly evolved to utilize LLPS as a common strategy to assemble cytoplasmic replication factories in infected cells.IMPORTANCE Measles virus remains a pathogen of significant global concern. Despite an effective vaccine, outbreaks continue to occur, and globally ∼100,000 measles-related deaths are seen annually. Understanding the molecular basis of virus-host interactions that impact the efficiency of virus replication is essential for the further development of prophylactic and therapeutic strategies. Measles virus replication occurs in the cytoplasm in association with discrete bodies, though little is known of the nature of the inclusion body structures. We recently established that the cellular protein WD repeat-containing protein 5 (WDR5) enhances MeV growth and is enriched in cytoplasmic viral inclusion bodies that include viral proteins responsible for RNA replication. Here, we show that MeV N and P proteins are sufficient to trigger the formation of WDR5-containing inclusion bodies, that these structures display properties characteristic of phase-separated liquid organelles, and that P phosphorylation together with the host dynein motor affect the efficiency of the liquid-liquid phase separation process.


Assuntos
Corpos de Inclusão Viral/fisiologia , Vírus do Sarampo/fisiologia , Sarampo/virologia , Nucleoproteínas/metabolismo , Organelas/fisiologia , Fosfoproteínas/metabolismo , Proteínas Virais/metabolismo , Replicação Viral , Citoplasma/virologia , Células HeLa , Humanos , Corpos de Inclusão Viral/virologia , Extração Líquido-Líquido , Proteínas do Nucleocapsídeo , Nucleoproteínas/genética , Organelas/virologia , Fosfoproteínas/genética , Proteínas Virais/genética
6.
Trop Anim Health Prod ; 51(5): 1065-1071, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30612291

RESUMO

A case-control study was performed to assess prescence of inclusion body hepatitis (IBH) caused by fowl adenoviruses (FAdVs) at Kafr EL-Shiekh Governorate, Egypt, during spring, 2017. The case group consisted of 100 liver and spleen samples collected from 10 broiler chickens flocks (10 samples from each flock) suspected to be infected with IBH depending on clinical manefestations and necropsy examination. Controls were randamly selected from chickens without clinical sings or evidence of the disease on postmortem examination. Molecular screening of the disease disease in collected samples based on the DNA polymerase gene of FAdVs was carried out. Furthermore, the DNA polymerase gene sequence was determined and analyzed with published reference sequences on GeneBank. Respectively, enzyme-linked immunosorbent assay (ELISA) and reverse transcription-polymerase chain reaction (RT-PCR) were used to confirm existence of co-infection with chicken infectious anemia virus (CIAV) and/or infectious bursal disease virus (IBDV in flocks involved in the study. Using PCR, FAdV genome was detected in seven flocks in the case group and one in the control group. FAdV identified in this study revealed close genetic relationship with FAdVs-D previously identified in UK and Canada, suggesting potential virus transmission from these countries. All tested serum samples from diseased chickens were positive for CIAV infection via ELISA while none of the collected bursa of Fabricius samples tested IBDV positive by RT-PCR. Therefore, results obtained from the current study highlighted the importance of implementation of control measures against FAdV and CIAV in Egyptian poultry flocks. This study opens the door for future work toward specific identification of FAdV serotypes circulating in Egyptian poultry farms and molecular characterization of the virus based on hexon gene or full genome sequencing for better understanding of genetic diversity among FAdVs in Egypt at higher reolution.


Assuntos
Infecções por Adenoviridae/veterinária , Aviadenovirus/fisiologia , Galinhas , Hepatite Animal/diagnóstico , Corpos de Inclusão Viral/fisiologia , Doenças das Aves Domésticas/diagnóstico , Infecções por Adenoviridae/diagnóstico , Infecções por Adenoviridae/epidemiologia , Infecções por Adenoviridae/virologia , Animais , Aviadenovirus/classificação , Aviadenovirus/isolamento & purificação , Estudos de Casos e Controles , Galinhas/genética , DNA Polimerase III/análise , Egito , Hepatite Animal/epidemiologia , Hepatite Animal/virologia , Incidência , Filogenia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/virologia , Proteínas Virais/análise
7.
Poult Sci ; 98(2): 621-628, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30358862

RESUMO

Inclusion body hepatitis-hydropericardium syndrome (IBH-HPS) caused by fowl adenovirus type 4 (FAdV-4) has caused huge economic losses for China in the past five years. At present, this disease is controlled in many flocks with the inactivated FAdV vaccine, but the offspring chicks of a layer breeding flock that were vaccinated with this vaccine still became infected and developed IBH-HPS with a 20% mortality rate. Analysis revealed that the NDV-attenuated vaccine in use from the above-mentioned poultry farm was simultaneously contaminated with FAdV-4 and chicken infectious anemia virus (CIAV). The FAdV and CIAV isolated from the vaccine were purified for the artificial preparation of an NDV-attenuated vaccine singly contaminated with FAdV or CIAV, or simultaneously contaminated with both of them. Seven-day-old layers with maternal FAdV antibody were inoculated with the artificially prepared, contaminated vaccines and assessed for corresponding indices. The experiments showed that no obvious symptoms occurred after using the NDV-attenuated vaccine singly contaminated with FAdV or CIAV; however, common IBH and occasional HPS-related death was found in birds after administering the NDV-attenuated vaccine co-contaminated with FAdV and CIAV. In conclusion, this study illustrated that CIAV could assist FAdV in breaking maternal FAdV antibody protection, which then caused the IBH-HPS after vaccination with the co-contaminated NDV vaccine.


Assuntos
Infecções por Adenoviridae/veterinária , Galinhas , Infecções por Circoviridae/veterinária , Hepatite Animal/imunologia , Doenças das Aves Domésticas/imunologia , Infecções por Adenoviridae/imunologia , Infecções por Adenoviridae/virologia , Animais , Aviadenovirus/imunologia , Vírus da Anemia da Galinha/imunologia , Infecções por Circoviridae/imunologia , Infecções por Circoviridae/virologia , Feminino , Hepatite Animal/virologia , Corpos de Inclusão Viral/fisiologia , Vírus da Doença de Newcastle/imunologia , Doenças das Aves Domésticas/virologia , Distribuição Aleatória , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia
8.
mBio ; 9(5)2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30181255

RESUMO

RNA viruses that replicate in the cell cytoplasm typically concentrate their replication machinery within specialized compartments. This concentration favors enzymatic reactions and shields viral RNA from detection by cytosolic pattern recognition receptors. Nonsegmented negative-strand (NNS) RNA viruses, which include some of the most significant human, animal, and plant pathogens extant, form inclusions that are sites of RNA synthesis and are not circumscribed by a membrane. These inclusions share similarities with cellular protein/RNA structures such as P granules and nucleoli, which are phase-separated liquid compartments. Here we show that replication compartments of vesicular stomatitis virus (VSV) have the properties of liquid-like compartments that form by phase separation. Expression of the individual viral components of the replication machinery in cells demonstrates that the 3 viral proteins required for replication are sufficient to drive cytoplasmic phase separation. Therefore, liquid-liquid phase separation, previously linked to organization of P granules, nucleolus homeostasis, and cell signaling, plays a key role in host-pathogen interactions. This work suggests novel therapeutic approaches to the problem of combating NNS RNA viral infections.IMPORTANCE RNA viruses compartmentalize their replication machinery to evade detection by host pattern recognition receptors and concentrate the machinery of RNA synthesis. For positive-strand RNA viruses, RNA replication occurs in a virus-induced membrane-associated replication organelle. For NNS RNA viruses, the replication compartment is a cytoplasmic inclusion that is not circumscribed by a cellular membrane. Such structures were first observed in the cell bodies of neurons from humans infected with rabies virus and were termed Negri bodies. How the replication machinery that forms this inclusion remains associated in the absence of a membrane has been an enduring mystery. In this article, we present evidence that the VSV replication compartments form through phase separation. Phase separation is increasingly recognized as responsible for cellular structures as diverse as processing bodies (P-bodies) and nucleoli and was recently demonstrated for rabies virus. This article further links the fields of host-pathogen interaction with that of phase separation.


Assuntos
Grânulos Citoplasmáticos/virologia , Interações entre Hospedeiro e Microrganismos , Corpos de Inclusão Viral/fisiologia , Vesiculovirus/fisiologia , Proteínas Virais/metabolismo , Replicação Viral , Animais , Compartimento Celular , Linhagem Celular , Chlorocebus aethiops , RNA Viral , Células Vero , Proteínas Virais/genética
9.
Avian Dis ; 62(1): 57-64, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29620455

RESUMO

The aim of the present study was to further unravel the pathophysiologic mechanisms of inclusion body hepatitis (IBH). In a first trial, the susceptibility of specific-pathogen-free (SPF) broilers to fowl aviadenovirus (FAdV) infections was investigated. Regardless of viral dose, route of infection, and susceptibility to disease on day 1, the 3-week-old SPF broilers showed resistance to IBH, with no mortality being recorded throughout the experiment. In a second trial, SPF broilers were orally infected at 3 weeks of age with a FAdV-E strain, and their digestive and metabolic processes were monitored. The birds' performance decreased from 7 days postinfection (dpi) onward, and hepato- and pancreatomegaly were found at necropsy at 4, 7, and 10 dpi and at 7 dpi, respectively. Clinical chemistry revealed transient hyperlipasemia at 4 dpi and hyperglycemia from 4 dpi onwards, with 25% of infected birds showing glycemia levels suggestive of diabetes mellitus. Histopathology findings included typical adenoviral hepatitis in the liver, while in the pancreas, inflammation characterized by multifocal infiltrations of lymphocytes, together with shrinkage of acinar cells, loss of acinar arrangement, and hyperplasia of islet cells, was noticed. Additionally, the pancreatic tissue had tendentiously lower levels of enzyme activity, and in the ileum, the digestibility of fat was significantly impaired. Hence, our data reinforce the concept of age-related resistance to experimentally induced IBH. Additionally, we demonstrated that FAdV-induced pancreatitis in broilers interferes with the digestive process and evolves into a dysmetabolic condition that resembles diabetes, affecting the health and zootechnical performance of birds, and therefore providing an important component of IBH pathogenesis.


Assuntos
Infecções por Adenoviridae/veterinária , Aviadenovirus/fisiologia , Galinhas , Hepatite Viral Animal/fisiopatologia , Corpos de Inclusão Viral/fisiologia , Pancreatite/veterinária , Doenças das Aves Domésticas/fisiopatologia , Infecções por Adenoviridae/metabolismo , Infecções por Adenoviridae/fisiopatologia , Infecções por Adenoviridae/virologia , Fatores Etários , Animais , Infecções Assintomáticas , Digestão , Suscetibilidade a Doenças/metabolismo , Suscetibilidade a Doenças/fisiopatologia , Suscetibilidade a Doenças/veterinária , Suscetibilidade a Doenças/virologia , Hepatite Viral Animal/metabolismo , Hepatite Viral Animal/virologia , Pancreatite/metabolismo , Pancreatite/fisiopatologia , Pancreatite/virologia , Doenças das Aves Domésticas/metabolismo , Doenças das Aves Domésticas/virologia , Organismos Livres de Patógenos Específicos
10.
J Virol ; 92(5)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29237839

RESUMO

Replication of negative-strand RNA viruses occurs in association with discrete cytoplasmic foci called inclusion bodies. Whereas inclusion bodies represent a prominent subcellular structure induced by viral infection, our knowledge of the cellular protein components involved in inclusion body formation and function is limited. Using measles virus-infected HeLa cells, we found that the WD repeat-containing protein 5 (WDR5), a subunit of histone H3 lysine 4 methyltransferases, was selectively recruited to virus-induced inclusion bodies. Furthermore, WDR5 was found in complexes containing viral proteins associated with RNA replication. WDR5 was not detected with mitochondria, stress granules, or other known secretory or endocytic compartments of infected cells. WDR5 deficiency decreased both viral protein production and infectious virus yields. Interferon production was modestly increased in WDR5-deficient cells. Thus, our study identifies WDR5 as a novel viral inclusion body-associated cellular protein and suggests a role for WDR5 in promoting viral replication.IMPORTANCE Measles virus is a human pathogen that remains a global concern, with more than 100,000 measles-related deaths annually despite the availability of an effective vaccine. As measles continues to cause significant morbidity and mortality, understanding the virus-host interactions at the molecular level that affect virus replication efficiency is important for development and optimization of treatment procedures. Measles virus is an RNA virus that encodes six genes and replicates in the cytoplasm of infected cells in discrete cytoplasmic replication bodies, though little is known of the biochemical nature of these structures. Here, we show that the cellular protein WDR5 is enriched in the cytoplasmic viral replication factories and enhances virus growth. WDR5-containing protein complex includes viral proteins responsible for viral RNA replication. Thus, we have identified WDR5 as a host factor that enhances the replication of measles virus.


Assuntos
Citoplasma/virologia , Histona-Lisina N-Metiltransferase/metabolismo , Corpos de Inclusão Viral/fisiologia , Vírus do Sarampo/fisiologia , Sarampo/virologia , Proteínas Virais/metabolismo , Replicação Viral , Células HeLa , Histona-Lisina N-Metiltransferase/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Sarampo/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Proteínas Virais/genética
11.
J Virol ; 91(24)2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-28978704

RESUMO

Human metapneumovirus (HMPV) causes significant upper and lower respiratory disease in all age groups worldwide. The virus possesses a negative-sense single-stranded RNA genome of approximately 13.3 kb encapsidated by multiple copies of the nucleoprotein (N), giving rise to helical nucleocapsids. In addition, copies of the phosphoprotein (P) and the large RNA polymerase (L) decorate the viral nucleocapsids. After viral attachment, endocytosis, and fusion mediated by the viral glycoproteins, HMPV nucleocapsids are released into the cell cytoplasm. To visualize the subsequent steps of genome transcription and replication, a fluorescence in situ hybridization (FISH) protocol was established to detect different viral RNA subpopulations in infected cells. The FISH probes were specific for detection of HMPV positive-sense RNA (+RNA) and viral genomic RNA (vRNA). Time course analysis of human bronchial epithelial BEAS-2B cells infected with HMPV revealed the formation of inclusion bodies (IBs) from early times postinfection. HMPV IBs were shown to be cytoplasmic sites of active transcription and replication, with the translation of viral proteins being closely associated. Inclusion body formation was consistent with an actin-dependent coalescence of multiple early replicative sites. Time course quantitative reverse transcription-PCR analysis suggested that the coalescence of inclusion bodies is a strategy to efficiently replicate and transcribe the viral genome. These results provide a better understanding of the steps following HMPV entry and have important clinical implications.IMPORTANCE Human metapneumovirus (HMPV) is a recently discovered pathogen that affects human populations of all ages worldwide. Reinfections are common throughout life, but no vaccines or antiviral treatments are currently available. In this work, a spatiotemporal analysis of HMPV replication and transcription in bronchial epithelial cell-derived immortal cells was performed. HMPV was shown to induce the formation of large cytoplasmic granules, named inclusion bodies, for genome replication and transcription. Unlike other cytoplasmic structures, such as stress granules and processing bodies, inclusion bodies are exclusively present in infected cells and contain HMPV RNA and proteins to more efficiently transcribe and replicate the viral genome. Though inclusion body formation is nuanced, it corresponds to a more generalized strategy used by different viruses, including filoviruses and rhabdoviruses, for genome transcription and replication. Thus, an understanding of inclusion body formation is crucial for the discovery of innovative therapeutic targets.


Assuntos
Replicação do DNA , Células Epiteliais/virologia , Genoma Viral , Corpos de Inclusão Viral/fisiologia , Metapneumovirus/genética , Metapneumovirus/fisiologia , Brônquios/citologia , Brônquios/virologia , Linhagem Celular , Citoplasma/virologia , Células Epiteliais/citologia , Humanos , Hibridização in Situ Fluorescente , RNA Viral , Análise Espaço-Temporal , Proteínas Virais/metabolismo , Replicação Viral
12.
Virology ; 512: 39-47, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28915404

RESUMO

Zaire Ebolavirus (EBOV) causes a severe feverish disease with high case fatality rates. Transcription of EBOV is dependent on the activity of the nucleocapsid protein VP30 which represents an essential viral transcription factor. Activity of VP30 is regulated via phosphorylation at six N-terminal serine residues. Recent data demonstrated that dynamic phosphorylation and dephosphorylation of serine residue 29 is essential for transcriptional support activity of VP30. To analyze the spatio/temporal dynamics of VP30 phosphorylation, we generated a peptide antibody recognizing specifically VP30 phosphorylated at serine 29. Using this antibody we could demonstrate that (i) the majority of VP30 molecules in EBOV-infected cells is dephosphorylated at the crucial position serine 29, (ii) both, VP30 phosphorylation and dephosphorylation take place in viral inclusion bodies that are induced by the nucleoprotein NP and (iii) NP influences the phosphorylation state of VP30.


Assuntos
Corpos de Inclusão Viral/fisiologia , Nucleoproteínas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas do Core Viral/metabolismo , Proteínas Virais/metabolismo , Linhagem Celular , Regulação Viral da Expressão Gênica/fisiologia , Humanos , Proteínas do Nucleocapsídeo , Fosforilação , Fatores de Transcrição/genética , Proteínas Virais/genética , Replicação Viral/fisiologia
13.
J Infect Dis ; 212 Suppl 2: S316-21, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26185094

RESUMO

Ebola virus (EBOV) protein 24 antagonizes the host interferon (IFN) response by hijacking select nuclear importin-α isoforms. Thereby, it blocks STAT1-mediated IFN-α/ß and IFN-γ synthesis. However, owing to the lack of importin-α knockout animal models in the past, their role in EBOV pathogenesis remained largely unknown. Here, we demonstrate that importin-α7 is involved in the formation of EBOV inclusion bodies and replication. However, deletion of the gene encoding importin-α7 was not sufficient to increase survival rates among mice infected with EBOV.


Assuntos
Ebolavirus/patogenicidade , Doença pelo Vírus Ebola/metabolismo , Doença pelo Vírus Ebola/virologia , Corpos de Inclusão Viral/fisiologia , Virulência/fisiologia , alfa Carioferinas/metabolismo , Animais , Linhagem Celular , Chlorocebus aethiops , Replicação do DNA/genética , Ebolavirus/genética , Ebolavirus/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células Vero , Proteínas Virais/metabolismo , Virulência/genética , Replicação Viral/genética
14.
J Gen Virol ; 95(Pt 11): 2531-2539, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25006078

RESUMO

The occlusion-derived viruses (ODVs) of baculoviruses are responsible for oral infection of insect hosts, whereas budded viruses (BVs) are responsible for systemic infection within the host. The ODV membrane proteins play crucial roles in mediating virus entry into midgut epithelium cells to initiate infection and are important factors in host-range determination. For Autographa californica multiple nucleopolyhedrovirus (AcMNPV), seven conserved ODV membrane proteins have been shown to be essential for oral infectivity and are called per os infectivity factors (PIFs). Information on the function of the individual PIF proteins in virus entry is limited, partly due to the lack of a good in vitro system for monitoring ODV entry. Here, we constructed a baculovirus with EGFP fused to the nucleocapsid to monitor virus entry into primary midgut epithelium cells ex vivo using confocal fluorescence microscopy. The EGFP-labelled virus showed similar BV virulence and ODV infectivity as WT virus. The ability to bind and enter host cells was then visualized for WT AcMNPV and viruses with mutations in P74 (PIF0), PIF1 or PIF2, showing that P74 is required for ODV binding, whilst PIF1 and PIF2 play important roles in the entry of ODV after binding to midgut cells. This is the first live imaging of ODV entry into midgut cells and complements the genetic and biochemical evidence for the role of PIFs in the oral infection process.


Assuntos
Nucleopoliedrovírus/fisiologia , Nucleopoliedrovírus/patogenicidade , Animais , Sistema Digestório/virologia , Células Epiteliais/virologia , Proteínas de Fluorescência Verde/genética , Corpos de Inclusão Viral/fisiologia , Mutação , Nucleopoliedrovírus/genética , Proteínas Recombinantes de Fusão/genética , Células Sf9 , Spodoptera , Proteínas do Envelope Viral/fisiologia , Virulência/genética , Virulência/fisiologia , Fatores de Virulência/fisiologia , Internalização do Vírus
15.
Viruses ; 4(10): 2218-32, 2012 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-23202461

RESUMO

During infection, many viruses induce cellular remodeling, resulting in the formation of insoluble aggregates/inclusions, usually containing viral structural proteins. Identification of aggregates has become a useful diagnostic tool for certain viral infections. There is wide variety of viral aggregates, which differ by their location, size, content and putative function. The role of aggregation in the context of a specific virus is often poorly understood, especially in the case of plant viruses. The aggregates are utilized by viruses to house a large complex of proteins of both viral and host origin to promote virus replication, translation, intra- and intercellular transportation. Aggregated structures may protect viral functional complexes from the cellular degradation machinery. Alternatively, the activation of host defense mechanisms may involve sequestration of virus components in aggregates, followed by their neutralization as toxic for the host cell. The diversity of virus-induced aggregates in mammalian and plant cells is the subject of this review.


Assuntos
Corpos de Inclusão Viral/fisiologia , Células Vegetais/virologia , Vírus de Plantas/patogenicidade , Plantas/virologia , Animais , Transporte Biológico , Núcleo Celular/virologia , Citoplasma/virologia , Vírus de DNA/genética , Vírus de DNA/patogenicidade , Vírus de DNA/fisiologia , Interações Hospedeiro-Patógeno , Mamíferos/virologia , Vírus de Plantas/genética , Vírus de Plantas/fisiologia , Vírus de RNA/genética , Vírus de RNA/patogenicidade , Vírus de RNA/fisiologia , Montagem de Vírus , Viroses/virologia , Replicação Viral
16.
J Gen Virol ; 91(Pt 9): 2322-30, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20505010

RESUMO

The minimal virus requirements for the generation of influenza virus-like particle (VLP) assembly and budding were reassessed. Using neuraminidase (NA) from the H5N1 and H1N1 subtypes, it was found that the expression of NA alone was sufficient to generate and release VLPs. Biochemical and functional characterization of the NA-containing VLPs demonstrated that they were morphologically similar to influenza virions. The NA oligomerization was comparable to that of the live virus, and the enzymic activity, whilst not required for the release of NA-VLPs, was preserved. Together, these findings indicate that NA plays a key role in virus budding and morphogenesis, and demonstrate that NA-VLPs represent a useful tool in influenza research.


Assuntos
Vírus da Influenza A Subtipo H1N1/fisiologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/fisiologia , Neuraminidase/fisiologia , Proteínas Virais/fisiologia , Montagem de Vírus/fisiologia , Liberação de Vírus/fisiologia , Linhagem Celular , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/fisiologia , Humanos , Corpos de Inclusão Viral/genética , Corpos de Inclusão Viral/fisiologia , Corpos de Inclusão Viral/ultraestrutura , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/ultraestrutura , Virus da Influenza A Subtipo H5N1/ultraestrutura , Microscopia Eletrônica de Transmissão , Neuraminidase/genética , Transfecção , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/fisiologia , Proteínas Virais/genética , Montagem de Vírus/genética , Liberação de Vírus/genética
17.
Plant Physiol ; 149(2): 1005-16, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19028879

RESUMO

The gene VI product (P6) of Cauliflower mosaic virus (CaMV) is a multifunctional protein known to be a major component of cytoplasmic inclusion bodies formed during CaMV infection. Although these inclusions are known to contain virions and are thought to be sites of translation from the CaMV 35S polycistronic RNA intermediate, the precise role of these bodies in the CaMV infection cycle remains unclear. Here, we examine the functionality and intracellular location of a fusion between P6 and GFP (P6-GFP). We initially show that the ability of P6-GFP to transactivate translation is comparable to unmodified P6. Consequently, our work has direct application for the large body of literature in which P6 has been expressed ectopically and its functions characterized. We subsequently found that P6-GFP forms highly motile cytoplasmic inclusion bodies and revealed through fluorescence colocalization studies that these P6-GFP bodies associate with the actin/endoplasmic reticulum network as well as microtubules. We demonstrate that while P6-GFP inclusions traffic along microfilaments, those associated with microtubules appear stationary. Additionally, inhibitor studies reveal that the intracellular movement of P6-GFP inclusions is sensitive to the actin inhibitor, latrunculin B, which also inhibits the formation of local lesions by CaMV in Nicotiana edwardsonii leaves. The motility of P6 along microfilaments represents an entirely new property for this protein, and these results imply a role for P6 in intracellular and cell-to-cell movement of CaMV.


Assuntos
Actinas/fisiologia , Caulimovirus/fisiologia , Corpos de Inclusão Viral/fisiologia , Microtúbulos/fisiologia , Transativadores/fisiologia , Proteínas Virais/fisiologia , Caulimovirus/genética , Retículo Endoplasmático/fisiologia , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas dos Microfilamentos/fisiologia , Transfecção
18.
EMBO J ; 27(15): 2102-12, 2008 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-18615098

RESUMO

Replication of Cauliflower mosaic virus (CaMV), a plant double-stranded DNA virus, requires the viral translational transactivator protein P6. Although P6 is known to form cytoplasmic inclusion bodies (viroplasms) so far considered essential for virus biology, a fraction of the protein is also present in the nucleus. Here, we report that monomeric P6 is imported into the nucleus through two importin-alpha-dependent nuclear localization signals, and show that this process is mandatory for CaMV infectivity and is independent of translational transactivation and viroplasm formation. One nuclear function of P6 is to suppress RNA silencing, a gene regulation mechanism with antiviral roles, commonly counteracted by dedicated viral suppressor proteins (viral silencing suppressors; VSRs). Transgenic P6 expression in Arabidopsis is genetically equivalent to inactivating the nuclear protein DRB4 that facilitates the activity of the major plant antiviral silencing factor DCL4. We further show that a fraction of P6 immunoprecipitates with DRB4 in CaMV-infected cells. This study identifies both genetic and physical interactions between a VSR to a host RNA silencing component, and highlights the importance of subcellular compartmentalization in VSR function.


Assuntos
Arabidopsis/fisiologia , Caulimovirus/fisiologia , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/fisiologia , Interferência de RNA/fisiologia , Proteínas de Ligação a RNA/fisiologia , Proteínas Virais/fisiologia , Transporte Ativo do Núcleo Celular/fisiologia , Sequência de Aminoácidos , Arabidopsis/virologia , Citoplasma/metabolismo , Corpos de Inclusão Viral/fisiologia , Dados de Sequência Molecular , Mutação , Sinais de Localização Nuclear/metabolismo , Proteínas de Ligação a RNA/genética , Ribonuclease III , Ribonucleases/fisiologia , Replicação Viral/fisiologia
19.
Dis Aquat Organ ; 76(2): 169-72, 2007 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-17760390

RESUMO

Juvenile seawater-reared chinook salmon Oncorhynchus tshawytscha at a hatchery on Baranoff Island, Alaska, USA, sustained chronic mortality associated with anemia and mixed infections by various obligate and opportunistic pathogens including a cytoplasmic erythrocytic virus resembling the agent of erythrocytic inclusion body syndrome (EIBS). This is the first case report of EIBS in Alaska and is a range extension of the disease.


Assuntos
Eritrócitos/virologia , Doenças dos Peixes/virologia , Corpos de Inclusão Viral/fisiologia , Salmão/virologia , Viroses/veterinária , Vírus/patogenicidade , Alaska/epidemiologia , Animais , Eritrócitos/patologia , Doenças dos Peixes/epidemiologia , Corpos de Inclusão Viral/virologia , Microscopia Eletrônica de Transmissão/veterinária , Prevalência , Síndrome , Viroses/epidemiologia , Viroses/patologia , Vírus/isolamento & purificação , Vírus/ultraestrutura
20.
Virology ; 369(2): 309-23, 2007 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-17825340

RESUMO

During respiratory syncytial virus (RSV) infection there is a close physical interaction between the filamentous actin (F-actin) and the virus, involving both inclusion bodies and the virus filaments. This interaction appears to occur relatively early in the replication cycle, and can be detected from 8 h post-infection. Furthermore, during virus assembly we obtained evidence for the participation of an F-actin-associated signalling pathway involving phosphatidyl-3-kinase (PI3K). Treatment with the PI3K inhibitor LY294002 prevented the formation of virus filaments, although no effect was observed either on virus protein expression, or on trafficking of the virus glycoproteins to the cell surface. Inhibition of the activity of Rac GTPase, a down-stream effector of PI3K, by treatment with the Rac-specific inhibitor NSC23766 gave similar results. These data suggest that an intimate interaction occurs between actin and RSV, and that actin-associated signalling pathway, involving PI3K and Rac GTPase, may play an important role during virus assembly.


Assuntos
Actinas/fisiologia , Vírus Sincicial Respiratório Humano/fisiologia , Vírus Sincicial Respiratório Humano/ultraestrutura , Montagem de Vírus/fisiologia , Aminoquinolinas/farmacologia , Linhagem Celular , Cromonas/farmacologia , Citoesqueleto/ultraestrutura , Citoesqueleto/virologia , Inibidores Enzimáticos/farmacologia , Humanos , Corpos de Inclusão Viral/fisiologia , Corpos de Inclusão Viral/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinases/fisiologia , Inibidores de Fosfoinositídeo-3 Quinase , Pirimidinas/farmacologia , Transdução de Sinais , Proteínas rac de Ligação ao GTP/antagonistas & inibidores , Proteínas rac de Ligação ao GTP/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA