Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dev Biol ; 458(1): 88-97, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669335

RESUMO

Atrioventricular valve development requires endothelial-to-mesenchymal transition (EndMT) that induces cushion endocardial cells to give rise to mesenchymal cells crucial to valve formation. In the adult endothelium, deletion of the docking protein FRS2α induces EndMT by activating TGFß signaling in a miRNA let-7-dependent manner. To study the role of endothelial FRS2α during embryonic development, we generated mice with an inducible endothelial-specific deletion of Frs2α (FRS2αiECKO). Analysis of the FRS2αiECKO embryos uncovered a combination of impaired EndMT in AV cushions and defective maturation of AV valves leading to development of thickened, abnormal valves when Frs2α was deleted early (E7.5) in development. At the same time, no AV valve developmental abnormalities were observed after late (E10.5) deletion. These observations identify FRS2α as a pivotal controller of cell fate transition during both EndMT and post-EndMT valvulogenesis.


Assuntos
Coxins Endocárdicos/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Membrana/fisiologia , Animais , Contagem de Células , Linhagem da Célula , Comunicação Atrioventricular/embriologia , Comunicação Atrioventricular/genética , Coxins Endocárdicos/citologia , Coxins Endocárdicos/patologia , Células Endoteliais/citologia , Deleção de Genes , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Mesoderma/citologia , Mesoderma/embriologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/fisiologia , Valva Mitral/anormalidades , Valva Mitral/embriologia , Morfogênese/genética , Fenótipo , Valva Tricúspide/anormalidades , Valva Tricúspide/embriologia
2.
Curr Top Dev Biol ; 132: 395-416, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30797515

RESUMO

Heart formation involves a complex series of tissue rearrangements, during which regions of the developing organ expand, bend, converge, and protrude in order to create the specific shapes of important cardiac components. Much of this morphogenesis takes place while cardiac function is underway, with blood flowing through the rapidly contracting chambers. Fluid forces are therefore likely to influence the regulation of cardiac morphogenesis, but it is not yet clear how these biomechanical cues direct specific cellular behaviors. In recent years, the optical accessibility and genetic amenability of zebrafish embryos have facilitated unique opportunities to integrate the analysis of flow parameters with the molecular and cellular dynamics underlying cardiogenesis. Consequently, we are making progress toward a comprehensive view of the biomechanical regulation of cardiac chamber emergence, atrioventricular canal differentiation, and ventricular trabeculation. In this review, we highlight a series of studies in zebrafish that have provided new insight into how cardiac function can shape cardiac morphology, with a particular focus on how hemodynamics can impact cardiac cell behavior. Over the long-term, this knowledge will undoubtedly guide our consideration of the potential causes of congenital heart disease.


Assuntos
Líquidos Corporais/fisiologia , Coração/embriologia , Coração/fisiologia , Morfogênese , Peixe-Zebra/embriologia , Animais , Fenômenos Biomecânicos , Diferenciação Celular/genética , Coxins Endocárdicos/citologia , Coxins Endocárdicos/embriologia , Coxins Endocárdicos/metabolismo , Endocárdio/citologia , Endocárdio/embriologia , Endocárdio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Coração/anatomia & histologia , Peixe-Zebra/genética
3.
Dev Dyn ; 247(8): 1005-1017, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29920846

RESUMO

BACKGROUND: The origin of the intercalated cushions that develop into the anterior cusp of the pulmonary valve (PV) and the noncoronary cusp of the aortic valve (AV) is not well understood. RESULTS: Cre transgenes in combination with the Rosa TdTomato-EGFP reporter were used to generate three-dimensional lineage mapping of AV and PV cusps during intercalated cushion development. Tie2-Cre;EGFP was used to mark endothelial-derived mesenchymal cells, Wnt1-Cre;EGFP for cardiac neural crest and cardiac Troponin T (Tnnt2)Cre;EGFP, for myocardial lineage. The highest percentage of intercalated cushion cells at embryonic day (E) 12.5 was Tnnt2-Cre; EGFP positive; 68.0% for the PV and 50.0% AV. Neither Tnnt2 mRNA nor Tnnt2-Cre protein was expressed in the intercalated cushions; and the Tnnt2-Cre lineage intercalated cushion cells were also positive for the mesenchymal markers Sox9 and versican. Tnnt2-Cre lineage was present within the forming intercalated cushions from E11.5 and was present in the intercalated cushion derived PV and AV cusps and localized to the fibrosa layer at postnatal day 0. CONCLUSIONS: Intercalated cushions of the developing outflow tract are populated with Tnnt2-Cre derived cells, a Cre reporter previously used for tracing and excision of myocardial cells and not previously associated with mesenchymal cells. Developmental Dynamics 247:1005-1017, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Linhagem da Célula , Coxins Endocárdicos/citologia , Animais , Valva Aórtica/crescimento & desenvolvimento , Embrião de Mamíferos , Células-Tronco Mesenquimais , Camundongos , Miocárdio/citologia , Valva Pulmonar/crescimento & desenvolvimento , Troponina T
4.
J Cell Physiol ; 233(3): 1887-1894, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28513838

RESUMO

Nephronectin (NPNT), a highly conserved extracellular matrix protein, plays an important role in regulating cell adhesion, differentiation, spreading, and survival. NPNT protein belongs to the epidermal growth factor (EGF)-like superfamily and exhibits several common structural determinants; including EGF-like repeat domains, MAM domain (Meprin, A5 Protein, and Receptor Protein-Tyrosine Phosphatase µ), RGD motif (Arg-Gly-Asp) and a coiled-coil domain. It regulates integrins-mediated signaling pathways via the interaction of its RGD motif with integrin α8ß1. Recent studies revealed that NPNT is involved in kidney development, renal injury repair, atrioventricular canal differentiation, pulmonary function, and muscle cell niche maintenance. Moreover, NPNT regulates osteoblast differentiation and mineralization, as well as osteogenic angiogenesis. Altered expression of NPNT has been linked with the progression of certain types of cancers, such as spontaneous breast tumor metastasis and malignant melanoma. Interestingly, NPNT gene expression can be regulated by a range of external factors such as tumor necrosis factor alpha (TNF-α), transforming growth factor beta (TGF-ß), oncostatin M (OSM), bone morphogenic protein 2 (BMP2), Wnt3a, Vitamin D3 , and microRNA-378 (miR378). Further understanding the cellular and molecular mechanisms by which NPNT regulates tissue homeostasis in an organ-specific manner is critical in exploring NPNT as a therapeutic target for tissue regeneration and tissue engineering.


Assuntos
Osso e Ossos/irrigação sanguínea , Proteínas da Matriz Extracelular/metabolismo , Rim/embriologia , Neoplasias/patologia , Neovascularização Fisiológica/fisiologia , Osteogênese/fisiologia , Animais , Adesão Celular/fisiologia , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Coxins Endocárdicos/citologia , Coxins Endocárdicos/embriologia , Homeostase/fisiologia , Humanos , Rim/citologia , Camundongos , Transdução de Sinais/fisiologia
5.
Development ; 144(23): 4322-4327, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29183943

RESUMO

Myocardial contractility and blood flow provide essential mechanical cues for the morphogenesis of the heart. In general, endothelial cells change their migratory behavior in response to shear stress patterns, according to flow directionality. Here, we assessed the impact of shear stress patterns and flow directionality on the behavior of endocardial cells, the specialized endothelial cells of the heart. At the early stages of zebrafish heart valve formation, we show that endocardial cells are converging to the valve-forming area and that this behavior depends upon mechanical forces. Quantitative live imaging and mathematical modeling allow us to correlate this tissue convergence with the underlying flow forces. We predict that tissue convergence is associated with the direction of the mean wall shear stress and of the gradient of harmonic phase-averaged shear stresses, which surprisingly do not match the overall direction of the flow. This contrasts with the usual role of flow directionality in vascular development and suggests that the full spatial and temporal complexity of the wall shear stress should be taken into account when studying endothelial cell responses to flow in vivo.


Assuntos
Coração/embriologia , Modelos Cardiovasculares , Peixe-Zebra/embriologia , Animais , Anisotropia , Fenômenos Biomecânicos , Coxins Endocárdicos/citologia , Coxins Endocárdicos/embriologia , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Eritrócitos/fisiologia , Hemodinâmica , Hidrodinâmica , Imageamento Tridimensional , Organogênese/fisiologia , Resistência ao Cisalhamento , Estresse Mecânico
6.
Dev Biol ; 430(1): 113-128, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28790014

RESUMO

Distal outgrowth, maturation and remodeling of the endocardial cushion mesenchyme in the atrioventricular (AV) canal are the essential morphogenetic events during four-chambered heart formation. Mesenchymalized AV endocardial cushions give rise to the AV valves and the membranous ventricular septum (VS). Failure of these processes results in several human congenital heart defects. Despite this clinical relevance, the mechanisms governing how mesenchymalized AV endocardial cushions mature and remodel into the membranous VS and AV valves have only begun to be elucidated. The role of BMP signaling in the myocardial and secondary heart forming lineage has been well studied; however, little is known about the role of BMP2 expression in the endocardial lineage. To fill this knowledge gap, we generated Bmp2 endocardial lineage-specific conditional knockouts (referred to as Bmp2 cKOEndo) by crossing conditionally-targeted Bmp2flox/flox mice with a Cre-driver line, Nfatc1Cre, wherein Cre-mediated recombination was restricted to the endocardial cells and their mesenchymal progeny. Bmp2 cKOEndo mouse embryos did not exhibit failure or delay in the initial AV endocardial cushion formation at embryonic day (ED) 9.5-11.5; however, significant reductions in AV cushion size were detected in Bmp2 cKOEndo mouse embryos when compared to control embryos at ED13.5 and ED16.5. Moreover, deletion of Bmp2 from the endocardial lineage consistently resulted in membranous ventricular septal defects (VSDs), and mitral valve deficiencies, as evidenced by the absence of stratification of mitral valves at birth. Muscular VSDs were not found in Bmp2 cKOEndo mouse hearts. To understand the underlying morphogenetic mechanisms leading to a decrease in cushion size, cell proliferation and cell death were examined for AV endocardial cushions. Phospho-histone H3 analyses for cell proliferation and TUNEL assays for apoptotic cell death did not reveal significant differences between control and Bmp2 cKOEndo in AV endocardial cushions. However, mRNA expression of the extracellular matrix components, versican, Has2, collagen 9a1, and periostin was significantly reduced in Bmp2 cKOEndo AV cushions. Expression of transcription factors implicated in the cardiac valvulogenesis, Snail2, Twist1 and Sox9, was also significantly reduced in Bmp2 cKOEndo AV cushions. These data provide evidence that BMP2 expression in the endocardial lineage is essential for the distal outgrowth, maturation and remodeling of AV endocardial cushions into the normal membranous VS and the stratified AV valves.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Linhagem da Célula , Coxins Endocárdicos/citologia , Coxins Endocárdicos/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Proteína Morfogenética Óssea 2/genética , Moléculas de Adesão Celular/metabolismo , Morte Celular , Proliferação de Células , Colágeno/metabolismo , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Coxins Endocárdicos/metabolismo , Deleção de Genes , Comunicação Interventricular/metabolismo , Comunicação Interventricular/patologia , Imageamento Tridimensional , Imuno-Histoquímica , Mesoderma/citologia , Camundongos Knockout , Valva Mitral/patologia , Fatores de Transcrição NFATC/metabolismo , Proteoglicanas/metabolismo , Fatores de Transcrição/metabolismo , Transformação Genética
7.
Development ; 143(6): 1041-54, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26893350

RESUMO

Heart valve development proceeds through coordinated steps by which endocardial cushions (ECs) form thin, elongated and stratified valves. Wnt signaling and its canonical effector ß-catenin are proposed to contribute to endocardial-to-mesenchymal transformation (EMT) through postnatal steps of valvulogenesis. However, genetic redundancy and lethality have made it challenging to define specific roles of the canonical Wnt pathway at different stages of valve formation. We developed a transgenic mouse system that provides spatiotemporal inhibition of Wnt/ß-catenin signaling by chemically inducible overexpression of Dkk1. Unexpectedly, this approach indicates canonical Wnt signaling is required for EMT in the proximal outflow tract (pOFT) but not atrioventricular canal (AVC) cushions. Furthermore, Wnt indirectly promotes pOFT EMT through its earlier activity in neighboring myocardial cells or their progenitors. Subsequently, Wnt/ß-catenin signaling is activated in cushion mesenchymal cells where it supports FGF-driven expansion of ECs and then AVC valve extracellular matrix patterning. Mice lacking Axin2, a negative Wnt regulator, have larger valves, suggesting that accumulating Axin2 in maturing valves represents negative feedback that restrains tissue overgrowth rather than simply reporting Wnt activity. Disruption of these Wnt/ß-catenin signaling roles that enable developmental transitions during valvulogenesis could account for common congenital valve defects.


Assuntos
Valvas Cardíacas/embriologia , Valvas Cardíacas/metabolismo , Organogênese , Via de Sinalização Wnt , Animais , Proteína Axina/metabolismo , Padronização Corporal/efeitos dos fármacos , Padronização Corporal/genética , Proliferação de Células/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Coxins Endocárdicos/citologia , Coxins Endocárdicos/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Valvas Cardíacas/efeitos dos fármacos , Camundongos Transgênicos , Valva Mitral/efeitos dos fármacos , Valva Mitral/embriologia , Valva Mitral/metabolismo , Miocárdio/metabolismo , Organogênese/efeitos dos fármacos , Organogênese/genética , Via de Sinalização Wnt/efeitos dos fármacos
8.
Mech Dev ; 136: 123-32, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25575930

RESUMO

Endothelial to mesenchymal transition (EMT) that occurs during cardiac outflow tract (OFT) development is critical for formation of the semilunar valves. Fibulin-1 (Fbln1) is an extracellular matrix protein that is present at several sites of EMT, including the OFT (i.e., E9.5-10.5). The aim of this study was to determine the role of Fbln1 in EMT during the earliest events of OFT development. Examination of proximal OFT cushions in Fbln1 null embryos detected hypercellularity at both E9.5 (93% increase; p = 0.002) and E10.5 (43% increase; p = 0.01) as compared to wild type, suggesting that Fbln1 normally suppresses OFT endocardial cushion EMT. This was supported by studies of proximal OFT cushion explants, which showed that explants from Fbln1 null embryos displayed a 58% increase in cells migrating from the explants as compared to wild type (p = 0.005). We next evaluated the effects of Fbln1 deficiency on the expression of factors that regulate proximal OFT EMT. At E9.5, Fbln1 null proximal OFT endocardium and EMT-derived mesenchyme showed increased TGFß2 (58% increase; p = 0.01) and increased Snail1-positive nuclei (27% increase; p = 0.0003). Histological examination of OFT cushions in Fbln1 null embryos (E9.5) also detected cells present in the cushion that were determined to be erythrocytes based on round morphology, autofluorescence, and positive staining for hemoglobin. Erythrocytes were also detected in Fbln1 null OFT cushions at E10.5. Together, the findings indicate that Fbln1 normally suppresses proximal OFT EMT preventing proximal cushion hypercellularity and blood cell accumulation.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Coxins Endocárdicos/metabolismo , Endocárdio/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Miocárdio/metabolismo , Animais , Apoptose , Proteínas de Ligação ao Cálcio/genética , Proliferação de Células , Coxins Endocárdicos/citologia , Endocárdio/citologia , Proteínas da Matriz Extracelular/genética , Camundongos , Camundongos Knockout , Miocárdio/citologia
9.
BMC Genomics ; 15: 821, 2014 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-25262113

RESUMO

BACKGROUND: The basic helix-loop-helix transcription factor Twist1 has well-documented roles in progenitor populations of the developing embryo, including endocardial cushions (ECC) and limb buds, and also in cancer. Whether Twist1 regulates the same transcriptional targets in different tissue types is largely unknown. RESULTS: The tissue-specificity of Twist1 genomic occupancy was examined in mouse ECCs, limb buds, and peripheral nerve sheath tumor (PNST) cells using chromatin immunoprecipitation followed by sequencing (Chip-seq) analysis. Consistent with known Twist1 functions during development and in cancer cells, Twist1-DNA binding regions associated with genes related to cell migration and adhesion were detected in all three tissues. However, the vast majority of Twist1 binding regions were specific to individual tissue types. Thus, while Twist1 has similar functions in ECCs, limb buds, and PNST cells, the specific genomic sequences occupied by Twist1 were different depending on cellular context. Subgroups of shared genes, also predominantly related to cell adhesion and migration, were identified in pairwise comparisons of ECC, limb buds and PNST cells. Twist1 genomic occupancy was detected for six binding regions in all tissue types, and Twist1-binding sequences associated with Chst11, Litaf, Ror2, and Spata5 also bound the potential Twist1 cofactor RREB1. Pathway analysis of the genes associated with Twist1 binding suggests that Twist1 may regulate genes associated with the Wnt signaling pathway in ECCs and limb buds. CONCLUSIONS: Together, these data indicate that Twist1 interacts with genes that regulate adhesion and migration in different tissues, potentially through distinct sets of target genes. In addition, there is a small subset of genes occupied by Twist1 in all three tissues that may represent a core group of Twist1 target genes in multiple cell types.


Assuntos
Coxins Endocárdicos/metabolismo , Genoma , Botões de Extremidades/metabolismo , Neoplasias de Bainha Neural/genética , Proteínas Nucleares/genética , Proteína 1 Relacionada a Twist/genética , Animais , Sítios de Ligação , Células Cultivadas , Imunoprecipitação da Cromatina , Desenvolvimento Embrionário/genética , Coxins Endocárdicos/citologia , Expressão Gênica , Botões de Extremidades/citologia , Camundongos , Neoplasias de Bainha Neural/patologia , Proteínas Nucleares/metabolismo , Ligação Proteica/genética , Análise de Sequência de DNA , Proteína 1 Relacionada a Twist/metabolismo
10.
J Biol Chem ; 289(27): 18681-92, 2014 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-24831012

RESUMO

Cardiac malformations due to aberrant development of the atrioventricular (AV) valves are among the most common forms of congenital heart diseases. Normally, heart valve mesenchyme is formed from an endothelial to mesenchymal transition (EMT) of endothelial cells of the endocardial cushions. Yes-associated protein 1 (YAP1) has been reported to regulate EMT in vitro, in addition to its known role as a major regulator of organ size and cell proliferation in vertebrates, leading us to hypothesize that YAP1 is required for heart valve development. We tested this hypothesis by conditional inactivation of YAP1 in endothelial cells and their derivatives. This resulted in markedly hypocellular endocardial cushions due to impaired formation of heart valve mesenchyme by EMT and to reduced endocardial cell proliferation. In endothelial cells, TGFß induces nuclear localization of Smad2/3/4 complex, which activates expression of Snail, Twist1, and Slug, key transcription factors required for EMT. YAP1 interacts with this complex, and loss of YAP1 disrupts TGFß-induced up-regulation of Snail, Twist1, and Slug. Together, our results identify a role of YAP1 in regulating EMT through modulation of TGFß-Smad signaling and through proliferative activity during cardiac cushion development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transdiferenciação Celular , Coxins Endocárdicos/citologia , Coxins Endocárdicos/embriologia , Células Endoteliais/citologia , Mesoderma/citologia , Fosfoproteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular , Linhagem da Célula , Endocárdio/citologia , Endocárdio/embriologia , Endocárdio/metabolismo , Feminino , Deleção de Genes , Masculino , Camundongos , Mutação , Fosfoproteínas/deficiência , Fosfoproteínas/genética , Transdução de Sinais , Proteínas Smad/metabolismo , Fatores de Transcrição da Família Snail , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Proteínas de Sinalização YAP
11.
Cardiovasc Res ; 99(3): 452-60, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23723064

RESUMO

AIMS: Anomalies of the arterial valves, principally bicuspid aortic valve (BAV), are the most common congenital anomalies. The cellular mechanisms that underlie arterial valve development are poorly understood. While it is known that the valve leaflets derive from the outflow cushions, which are populated by cells derived from the endothelium and neural crest cells (NCCs), the mechanism by which these cushions are sculpted to form the leaflets of the arterial valves remains unresolved. We set out to investigate how NCCs participate in arterial valve formation, reasoning that disrupting NCC within the developing outflow cushions would result in arterial valve anomalies, in the process elucidating the normal mechanism of arterial valve leaflet formation. METHODS AND RESULTS: By disrupting Rho kinase signalling specifically in NCC using transgenic mice and primary cultures, we show that NCC condensation within the cardiac jelly is required for correct positioning of the outflow cushions. Moreover, we show that this process is essential for normal patterning of the arterial valve leaflets with disruption leading to a spectrum of valve leaflet patterning anomalies, abnormal positioning of the orifices of the coronary arteries, and abnormalities of the arterial wall. CONCLUSION: NCCs are required at earlier stages of arterial valve development than previously recognized, playing essential roles in positioning the cushions, and patterning the valve leaflets. Abnormalities in the process of NCC condensation at early stages of outflow cushion formation may provide a common mechanism underlying BAV, and also explain the link with arterial wall anomalies and outflow malalignment defects.


Assuntos
Valva Aórtica/embriologia , Coxins Endocárdicos/citologia , Crista Neural/citologia , Animais , Valva Aórtica/anormalidades , Valva Aórtica/citologia , Valva Aórtica/metabolismo , Doença da Válvula Aórtica Bicúspide , Padronização Corporal , Adesão Celular , Comunicação Celular , Células Cultivadas , Anomalias dos Vasos Coronários/embriologia , Anomalias dos Vasos Coronários/metabolismo , Vasos Coronários/embriologia , Vasos Coronários/metabolismo , Modelos Animais de Doenças , Comunicação Atrioventricular/embriologia , Comunicação Atrioventricular/metabolismo , Coxins Endocárdicos/embriologia , Coxins Endocárdicos/metabolismo , Doenças das Valvas Cardíacas/embriologia , Doenças das Valvas Cardíacas/etiologia , Doenças das Valvas Cardíacas/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Modelos Cardiovasculares , Crista Neural/anormalidades , Crista Neural/metabolismo , Transdução de Sinais , Quinases Associadas a rho/deficiência , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
12.
BMC Dev Biol ; 12: 22, 2012 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-22866814

RESUMO

BACKGROUND: Valvulogenesis and septation in the developing heart depend on the formation and remodeling of endocardial cushions in the atrioventricular canal (AVC) and outflow tract (OFT). These cushions are invaded by a subpopulation of endocardial cells that undergo an epithelial-mesenchymal transition in response to paracrine and autocrine transforming growth factor ß (TGFß) signals. We previously demonstrated that the RNA binding protein muscleblind-like 1 (MBNL1) is expressed specifically in the cushion endocardium, and knockdown of MBNL1 in stage 14 embryonic chicken AVC explants enhances TGFß-dependent endocardial cell invasion. RESULTS: In this study, we demonstrate that the effect of MBNL1 knockdown on invasion remains dependent on TGFß3 after it is no longer required to induce basal levels of invasion. TGFß3, but not TGFß2, levels are elevated in medium conditioned by MBNL1-depleted AVC explants. TGFß3 is elevated even when the myocardium is removed, indicating that MBNL1 modulates autocrine TGFß3 production in the endocardium. More TGFß3-positive cells are observed in the endocardial monolayer following MBNL1 knockdown. Addition of exogenous TGFß3 to AVC explants recapitulates the effects of MBNL1 knockdown. Time course experiments demonstrate that knockdown of MBNL1 induces precocious TGFß3 secretion, and early exposure to excess TGFß3 induces precocious invasion. MBNL1 expression precedes TGFß3 in the AVC endocardium, consistent with a role in preventing precocious autocrine TGFß3 signaling. The stimulatory effects of MBNL1 knockdown on invasion are lost in stage 16 AVC explants. Knockdown of MBNL1 in OFT explants similarly enhances cell invasion, but not activation. TGFß is necessary and sufficient to mediate this effect. CONCLUSIONS: Taken together, these data support a model in which MBNL1 negatively regulates cell invasion in the endocardial cushions by restricting the magnitude and timing of endocardial-derived TGFß3 production.


Assuntos
Proteínas Aviárias/genética , Coxins Endocárdicos/embriologia , Coração/embriologia , Proteínas de Ligação a RNA/genética , Fator de Crescimento Transformador beta3/metabolismo , Animais , Comunicação Autócrina , Proteínas Aviárias/metabolismo , Movimento Celular , Embrião de Galinha , Coxins Endocárdicos/citologia , Coxins Endocárdicos/metabolismo , Transição Epitelial-Mesenquimal , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Mesoderma/citologia , Mesoderma/metabolismo , Proteínas de Ligação a RNA/metabolismo , Técnicas de Cultura de Tecidos , Fator de Crescimento Transformador beta2/metabolismo , Fator de Crescimento Transformador beta3/fisiologia
13.
Differentiation ; 84(1): 103-16, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22579502

RESUMO

Atrioventricular valve development commences with an EMT event whereby endocardial cells transform into mesenchyme. The molecular events that induce this phenotypic change are well understood and include many growth factors, signaling components, and transcription factors. Besides their clear importance in valve development, the role of these transformed mesenchyme and the function they serve in the developing prevalve leaflets is less understood. Indeed, we know that these cells migrate, but how and why do they migrate? We also know that they undergo a transition to a mature, committed cell, largely defined as an interstitial fibroblast due to their ability to secrete various matrix components including collagen type I. However, we have yet to uncover mechanisms by which the matrix is synthesized, how it is secreted, and how it is organized. As valve disease is largely characterized by altered cell number, cell activation, and matrix disorganization, answering questions of how the valves are built will likely provide us with information of real clinical relevance. Although expression profiling and descriptive or correlative analyses are insightful, to advance the field, we must now move past the simplicity of these assays and ask fundamental, mechanistic based questions aimed at understanding how valves are "built". Herein we review current understandings of atrioventricular valve development and present what is known and what isn't known. In most cases, basic, biological questions and hypotheses that were presented decades ago on valve development still are yet to be answered but likely hold keys to uncovering new discoveries with relevance to both embryonic development and the developmental basis of adult heart valve diseases. Thus, the goal of this review is to remind us of these questions and provide new perspectives on an old theme of valve development.


Assuntos
Valvas Cardíacas/embriologia , Animais , Diferenciação Celular , Linhagem da Célula , Movimento Celular , Embrião de Galinha , Colágeno Tipo I/metabolismo , Coxins Endocárdicos/citologia , Endocárdio/citologia , Células Endoteliais/citologia , Matriz Extracelular/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Cardiopatias Congênitas/embriologia , Doenças das Valvas Cardíacas/embriologia , Doenças das Valvas Cardíacas/etiologia , Humanos , Mesoderma/citologia , Camundongos , Valva Mitral/embriologia , Valva Mitral/patologia , Valva Tricúspide/embriologia , Valva Tricúspide/patologia
14.
PLoS One ; 7(2): e31005, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22312437

RESUMO

Ezh2 is a histone trimethyltransferase that silences genes mainly via catalyzing trimethylation of histone 3 lysine 27 (H3K27Me3). The role of Ezh2 as a regulator of gene silencing and cell proliferation in cancer development has been extensively investigated; however, its function in heart development during embryonic cardiogenesis has not been well studied. In the present study, we used a genetically modified mouse system in which Ezh2 was specifically ablated in the mouse heart. We identified a wide spectrum of cardiovascular malformations in the Ezh2 mutant mice, which collectively led to perinatal death. In the Ezh2 mutant heart, the endocardial cushions (ECs) were hypoplastic and the endothelial-to-mesenchymal transition (EMT) process was impaired. The hearts of Ezh2 mutant mice also exhibited decreased cardiomyocyte proliferation and increased apoptosis. We further identified that the Hey2 gene, which is important for cardiomyocyte proliferation and cardiac morphogenesis, is a downstream target of Ezh2. The regulation of Hey2 expression by Ezh2 may be independent of Notch signaling activity. Our work defines an indispensible role of the chromatin remodeling factor Ezh2 in normal cardiovascular development.


Assuntos
Coxins Endocárdicos/metabolismo , Deleção de Genes , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Animais , Apoptose/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proliferação de Células , Sobrevivência Celular/genética , Transdiferenciação Celular/genética , Regulação para Baixo/genética , Coxins Endocárdicos/citologia , Coxins Endocárdicos/patologia , Proteína Potenciadora do Homólogo 2 de Zeste , Epigênese Genética/genética , Células HeLa , Átrios do Coração/citologia , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Cardiopatias Congênitas/patologia , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Humanos , Camundongos , Miócitos Cardíacos/patologia , Complexo Repressor Polycomb 2 , Proteínas Repressoras/genética , Proteínas com Domínio T/genética
15.
J Mol Cell Cardiol ; 52(5): 1096-102, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22300732

RESUMO

Semilunar valve malformations are common human congenital heart defects. Bicuspid aortic valves occur in 2-3% of the population, and pulmonic valve stenosis constitutes 10% of all congenital heart disease in adults (Brickner et al., 2000) [1]. Semilunar valve defects cause valve regurgitation, stenosis, or calcification, leading to endocarditis or congestive heart failure. These complications often require prolonged medical treatment or surgical intervention. Despite the medical importance of valve disease, the regulatory pathways governing semilunar valve development are not entirely clear. In this report we investigated the spatiotemporal role of calcineurin/Nfatc1 signaling in semilunar valve development. We generated conditional knockout mice with calcineurin gene disrupted in various tissues during semilunar valve development. Our studies showed that calcineurin/Nfatc1 pathway signals in the secondary heart field (SHF) but not in the outflow tract myocardium or neural crest cells to regulate semilunar valve morphogenesis. Without SHF calcineurin/Nfatc1 signaling, the conal endocardial cushions-the site of prospective semilunar valve formation--first develop and then regress due to apoptosis, resulting in a striking phenotype with complete absence of the aortic and pulmonic valves, severe valve regurgitation, and perinatal lethality. This role of calcineurin/Nfatc1 signaling in the SHF is different from the requirement of calcineurin/Nfatc1 in the endocardium for semilunar valve formation (Chang et al., 2004) [2], indicating that calcineurin/Nfatc1 signals in multiple tissues to organize semilunar valve development. Also, our studies suggest distinct mechanisms of calcineurin/Nfat signaling for semilunar and atrioventricular valve morphogenesis. Therefore, we demonstrate a novel developmental mechanism in which calcineurin signals through Nfatc1 in the secondary heart field to promote semilunar valve morphogenesis, revealing a new supportive role of the secondary heart field for semilunar valve formation.


Assuntos
Calcineurina/metabolismo , Valva Pulmonar/embriologia , Transdução de Sinais , Animais , Animais não Endogâmicos , Calcineurina/genética , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/metabolismo , Coxins Endocárdicos/citologia , Coxins Endocárdicos/embriologia , Coxins Endocárdicos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Coração/fisiopatologia , Camundongos , Camundongos Knockout , Fatores de Transcrição NFATC , Especificidade de Órgãos , Valva Pulmonar/diagnóstico por imagem , Ultrassonografia
16.
Cell Signal ; 24(1): 247-56, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21945156

RESUMO

An early event in heart valve formation is the epithelial-mesenchymal transformation (EMT) of a subpopulation of endothelial cells in specific regions of the heart tube, the endocardial cushions. The Type III TGFß receptor (TGFßR3) is required for TGFß2- or BMP-2-stimulated EMT in atrioventricular endocardial cushion (AVC) explants in vitro but the mediators downstream of TGFßR3 are not well described. Using AVC and ventricular explants as an in vitro assay, we found an absolute requirement for specific TGFßR3 cytoplasmic residues, GAIP-interacting protein, C terminus (GIPC), and specific Activin Receptor-Like Kinases (ALK)s for TGFßR3-mediated EMT when stimulated by TGFß2 or BMP-2. The introduction of TGFßR3 into nontransforming ventricular endocardial cells, followed by the addition of either TGFß2 or BMP-2, results in EMT. TGFßR3 lacking the entire cytoplasmic domain, or only the 3C-terminal amino acids that are required to bind GIPC, fails to support EMT in response to TGFß2 or BMP-2. Overexpression of GIPC in AVC endocardial cells enhanced EMT while siRNA-mediated silencing of GIPC in ventricular cells overexpressing TGFßR3 significantly inhibited EMT. Targeting of specific ALKs by siRNA revealed that TGFßR3-mediated EMT requires ALK2 and ALK3, in addition to ALK5, but not ALK4 or ALK6. Taken together, these data identify GIPC, ALK2, ALK3, and ALK5 as signaling components required for TGFßR3-mediated endothelial cell EMT.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Coxins Endocárdicos/fisiologia , Transição Epitelial-Mesenquimal , Proteoglicanas/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Receptores de Ativinas/metabolismo , Sequência de Aminoácidos , Animais , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 2/fisiologia , Embrião de Galinha , Coxins Endocárdicos/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Proteínas de Fluorescência Verde/biossíntese , Dados de Sequência Molecular , Domínios e Motivos de Interação entre Proteínas , Proteoglicanas/química , Receptores de Fatores de Crescimento Transformadores beta/química , Proteínas Recombinantes/biossíntese , Técnicas de Cultura de Tecidos , Fator de Crescimento Transformador beta2/farmacologia , Fator de Crescimento Transformador beta2/fisiologia
17.
Dev Biol ; 359(2): 209-21, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21920357

RESUMO

Cardiac valves originate from endocardial cushions (EC) formed by endothelial-to-mesenchymal transformation (EMT) during embryogenesis. The zinc-finger transcription factor Snai1 has previously been reported to be important for EMT during organogenesis, yet its role in early valve development has not been directly examined. In this study we show that Snai1 is highly expressed in endothelial, and newly transformed mesenchyme cells during EC development. Mice with targeted snai1 knockdown display hypocellular ECs at E10.5 associated with decreased expression of mesenchyme cell markers and downregulation of the matrix metalloproteinase (mmp) family member, mmp15. Snai1 overexpression studies in atrioventricular canal collagen I gel explants indicate that Snai1 is sufficient to promote mmp15 expression, cell transformation, and mesenchymal cell migration and invasion. However, treatment with the catalytically active form of MMP15 promotes cell motility, and not transformation. Further, we show that Snai1-mediated cell migration requires MMP activity, and caMMP15 treatment rescues attenuated migration defects observed in murine ECs following snai1 knockdown. Together, findings from this study reveal previously unappreciated mechanisms of Snai1 for the direct regulation of MMPs during EC development.


Assuntos
Coxins Endocárdicos/metabolismo , Endotélio/metabolismo , Metaloproteinase 15 da Matriz/metabolismo , Mesoderma/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação/genética , Células COS , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Embrião de Galinha , Chlorocebus aethiops , Dipeptídeos/farmacologia , Coxins Endocárdicos/citologia , Coxins Endocárdicos/embriologia , Endotélio/citologia , Endotélio/embriologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Valvas Cardíacas/embriologia , Valvas Cardíacas/metabolismo , Imuno-Histoquímica , Masculino , Metaloproteinase 15 da Matriz/genética , Inibidores de Metaloproteinases de Matriz , Mesoderma/citologia , Mesoderma/embriologia , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas/genética , Inibidores de Proteases/farmacologia , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição da Família Snail , Fatores de Tempo , Fatores de Transcrição/genética
18.
Dev Cell ; 21(2): 288-300, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21839921

RESUMO

The heart is the most common site of congenital defects, and valvuloseptal defects are the most common of the cardiac anomalies seen in the newborn. The process of endothelial-to-mesenchymal transition (EndMT) in the cardiac cushions is a required step during early valve development, and Notch signaling is required for this process. Here we show that Notch activation induces the transcription of both subunits of the soluble guanylyl cyclase (sGC) heterodimer, GUCY1A3 and GUCY1B3, which form the nitric oxide receptor. In parallel, Notch also promotes nitric oxide (NO) production by inducing Activin A, thereby activating a PI3-kinase/Akt pathway to phosphorylate eNOS. We thus show that the activation of sGC by NO through a Notch-dependent autocrine loop is necessary to drive early EndMT in the developing atrioventricular canal (AVC).


Assuntos
Coxins Endocárdicos/citologia , Endotélio/fisiologia , Guanilato Ciclase/metabolismo , Mesoderma/fisiologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Notch/metabolismo , Animais , Células Cultivadas , Imunoprecipitação da Cromatina/métodos , Feminino , Perfilação da Expressão Gênica/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo III/deficiência , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Interferência de RNA/fisiologia , Transdução de Sinais , Guanilil Ciclase Solúvel
19.
Circ Res ; 109(6): 649-57, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21778427

RESUMO

RATIONALE: Since their discovery almost 20 years ago, microRNAs have been shown to perform essential roles during tissue development and disease. Although roles for microRNAs in the myocardium during embryo development and cardiac disease have been demonstrated, very little is know about their role in the endocardium or during cardiac valve formation. OBJECTIVE: To study the role of microRNAs in cardiac valve formation. METHODS AND RESULTS: We show that zebrafish dicer mutant embryos, lacking mature miRNAs, form excessive endocardial cushions. By screening miRNAs expressed in the heart, we found that miR-23 is both necessary and sufficient for restricting the number of endocardial cells that differentiate into endocardial cushion cells. In addition, in mouse endothelial cells, miR-23 inhibited a transforming growth factor-ß-induced endothelial-to-mesenchymal transition. By in silico screening of expression data with predicted miR-23 target sites combined with in vivo testing, we identified hyaluronic acid synthase 2 (Has2), Icat, and Tmem2 as novel direct targets of miR-23. Finally, we demonstrate that the upregulation of Has2, an extracellular remodeling enzyme required for endocardial cushion and valve formation, is responsible for the excessive endocardial cushion cell differentiation in dicer mutants. CONCLUSIONS: MiR-23 in the embryonic heart is required to restrict endocardial cushion formation by inhibiting Has2 expression and extracellular hyaluronic acid production.


Assuntos
Líquido Extracelular/metabolismo , Glucuronosiltransferase/biossíntese , Valvas Cardíacas/embriologia , Valvas Cardíacas/metabolismo , Ácido Hialurônico/biossíntese , MicroRNAs/fisiologia , Proteínas de Peixe-Zebra/biossíntese , Animais , Animais Geneticamente Modificados , Contagem de Células , Diferenciação Celular , Células Cultivadas , Coxins Endocárdicos/citologia , Coxins Endocárdicos/metabolismo , Glucuronosiltransferase/antagonistas & inibidores , Hialuronan Sintases , Ácido Hialurônico/antagonistas & inibidores , Camundongos , Peixe-Zebra , Proteínas de Peixe-Zebra/antagonistas & inibidores
20.
Dev Dyn ; 240(1): 211-20, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21089072

RESUMO

Atrioventricular (AV) cushions are the precursors of AV septum and valves. In this study, we examined roles of Smad4 during AV cushion development using a conditional gene inactivation approach. We found that endothelial/endocardial inactivation of Smad4 led to the hypocellular AV cushion defect and that both reduced cell proliferation and increased apoptosis contributed to the defect. Expression of multiple genes critical for cushion development was down-regulated in mutant embryos. In collagen gel assays, the number of mesenchymal cells formed is significantly reduced in mutant AV explants compared to that in control explants, suggesting that the reduction of cushion mesenchyme formation in mutants is unlikely secondary to their gross vasculature abnormalities. Using a previously developed immortal endocardial cell line, we showed that Smad4 is required for BMP signaling- stimulated upregulation of Tbx20 and Gata4. Therefore, our data collectively support the cell-autonomous requirement of endocardial Smad4 in regulating AV cushion development.


Assuntos
Coxins Endocárdicos/embriologia , Endocárdio/embriologia , Endocárdio/metabolismo , Camundongos/embriologia , Proteína Smad4/fisiologia , Animais , Comunicação Celular/genética , Comunicação Celular/fisiologia , Proliferação de Células , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Coxins Endocárdicos/citologia , Coxins Endocárdicos/metabolismo , Feminino , Idade Gestacional , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Masculino , Camundongos/genética , Camundongos Transgênicos , Proteína Smad4/genética , Proteína Smad4/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA