RESUMO
White yam (Dioscorea rotundata) plants collected from farmers' fields and planted at the Areka Agricultural Research Center, Southern Ethiopia, displayed mosaic, mottling, and chlorosis symptoms. To determine the presence of viral pathogens, an investigation for virome characterization was conducted by Illumina high-throughput sequencing. The bioinformatics analysis allowed the assembly of five viral genomes, which according to the ICTV criteria were assigned to a novel potyvirus (3 genome sequences) and a novel crinivirus (2 genome sequences). The potyvirus showed ~ 66% nucleotide (nt) identity in the polyprotein sequence to yam mosaic virus (NC004752), clearly below the demarcation criteria of 76% identity. For the crinivirus, the RNA 1 and RNA 2 shared the highest sequence identity to lettuce chlorosis virus, and alignment of the aa sequence of the RdRp, CP and HSP70h (~ 49%, 45% and 76% identity), considered for the demarcation criteria, revealed the finding of a novel virus species. The names Ethiopian yam virus (EYV) and Yam virus 1 (YV-1) are proposed for the two tentative new virus species.
Assuntos
Crinivirus , Dioscorea , Genoma Viral , Filogenia , Doenças das Plantas , Potyvirus , Dioscorea/virologia , Potyvirus/genética , Potyvirus/isolamento & purificação , Potyvirus/classificação , Etiópia , Doenças das Plantas/virologia , Crinivirus/genética , Crinivirus/isolamento & purificação , Crinivirus/classificação , Genoma Viral/genética , RNA Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Coinfecção/virologiaRESUMO
Plant viral diseases compromise the growth and yield of the crop globally, and they tend to be more serious under extreme temperatures and drought climate changes. Currently, regulatory dynamics during plant development and in response to virus infection at the plant cell level remain largely unknown. In this study, single-cell RNA sequencing on 23 226 individual cells from healthy and tomato chlorosis virus-infected leaves was established. The specific expression and epigenetic landscape of each cell type during the viral infection stage were depicted. Notably, the mesophyll cells showed a rapid function transition in virus-infected leaves, which is consistent with the pathological changes such as thinner leaves and decreased chloroplast lamella in virus-infected samples. Interestingly, the F-box protein SKIP2 was identified to play a pivotal role in chlorophyll maintenance during virus infection in tomato plants. Knockout of the SlSKIP2 showed a greener leaf state before and after virus infection. Moreover, we further demonstrated that SlSKIP2 was located in the cytomembrane and nucleus and directly regulated by ERF4. In conclusion, with detailed insights into the plant responses to viral infections at the cellular level, our study provides a genetic framework and gene reference in plant-virus interaction and breeding in the future research.
Assuntos
Folhas de Planta , Solanum lycopersicum , Transcriptoma , Solanum lycopersicum/virologia , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Folhas de Planta/virologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise de Célula Única , Doenças das Plantas/virologia , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas , Crinivirus/genética , Crinivirus/fisiologiaRESUMO
Tomato chlorosis virus (ToCV) is an emerging pathogen that cause severe yellow leaf disorder syndrome in tomato plants. In this study, we aimed to generate a recombinant ToCV tagged with green fluorescent protein (GFP) to enable real-time monitoring of viral infection in living plants. Transformation of the full-length cDNA construct of ToCV RNA1 into Escherichia coli resulted in instability issues, which were successfully overcome by inserting a plant intron into RNA1. Subsequently, a GFP tag was engineered into a cDNA construct of ToCV RNA2. The resulting recombinant ToCV-GFP could systemically infect Nicotiana benthamiana plants, and GFP expression was observed along the major veins. Utilizing ToCV-GFP, we also showed that ToCV engages in antagonistic relationships with two different tomato-infecting viruses in mixed infections in N. benthamiana. This study demonstrates the potential of ToCV-GFP as a valuable tool for the visual tracking of infection and movement of criniviruses in living plants.
Assuntos
Crinivirus , Solanum lycopersicum , Animais , Crinivirus/genética , DNA Complementar/genética , Doenças das Plantas , Insetos Vetores , Plantas , Solanum lycopersicum/genéticaRESUMO
The emerging whitefly-transmitted crinivirus tomato chlorosis virus (ToCV) causes substantial economic losses by inducing yellow leaf disorder in tomato crops. This study explores potential resistance mechanisms by examining early-stage molecular responses to ToCV. A time-course transcriptome analysis compared naïve, mock, and ToCV-infected plants at 2, 7, and 14 days post-infection (dpi). Gene expression changes were most notable at 2 and 14 dpi, likely corresponding to whitefly feeding and viral infection. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed key genes and pathways associated with ToCV infection, including those related to plant immunity, flavonoid and steroid biosynthesis, photosynthesis, and hormone signaling. Additionally, virus-derived small interfering RNAs (vsRNAs) originating from ToCV predominantly came from RNA2 and were 22 nucleotides in length. Furthermore, two genes involved in plant immunity, Hsp90 (heat shock protein 90) and its co-chaperone Sgt1 (suppressor of the G2 allele of Skp1) were targeted through viral-induced gene silencing (VIGS), showing a potential contribution to basal resistance against viral infections since their reduction correlated with increased ToCV accumulation. This study provides insights into tomato plant responses to ToCV, with potential implications for developing effective disease control strategies.
Assuntos
Crinivirus , Hemípteros , Solanum lycopersicum , Animais , Crinivirus/genética , Expressão Gênica , Doenças das Plantas/genética , Solanum lycopersicum/genética , Solanum lycopersicum/virologiaRESUMO
Totally 102 symptomatic samples of cucurbitaceous vegetables showing yellowing were collected from fields of Uttar Pradesh and screened by RT-PCR assay for the presence of Crinivirus and Polerovirus. Among them, Crinivirus (16%) and Polerovirus (23%) were tested positive with the universal primer pairs. Based on the sequence analysis of amplified product, two Crinivirus (Cucurbit chlorotic yellows virus - CCYV and Cucurbit yellow stunting disorder virus - CYSDV) and two Polerovirus (Cucurbit aphid-borne yellows virus - CABYV and Luffa aphid-borne yellows virus - LABYV) species were characterized. Phylogenetic analysis revealed less genetic distance among the Indian isolates of CCYV, CYSDV and LABYV whereas CABYV closely related to Chinese isolates. To the best of our knowledge, this study documents infection of CCYV on cucumber, round melon and muskmelon; CYSDV on satputia and sponge gourd; CABYV on ivy gourd; and LABYV on ridge gourd, satputia and muskmelon for the first time in India.
Assuntos
Afídeos , Crinivirus , Luteoviridae , Animais , Verduras , Crinivirus/genética , Filogenia , Luteoviridae/genéticaRESUMO
Tomato chlorosis virus (ToCV) severely threatens tomato production worldwide. P27 is known to be involved in virion assembly, but its other roles in ToCV infection are unclear. In this study, we found that removal of p27 reduced systemic infection, while ectopic expression of p27 promoted systemic infection of potato virus X in Nicotiana benthamiana. We determined that Solanum lycopersicum catalases (SlCAT) can interact with p27 in vitro and in vivo and that amino acids 73 to 77 of the N-terminus of SlCAT represent the critical region for their interaction. p27 is distributed in the cytoplasm and nucleus, and its coexpression with SlCAT1 or SlCAT2 changes its distribution in the nucleus. Furthermore, we found that silencing of SlCAT1 and SlCAT2 can promote ToCV infection. In conclusion, p27 can promote viral infection by binding directly to inhibit anti-ToCV processes mediated by SlCAT1 or SlCAT2.
Assuntos
Crinivirus , Solanum lycopersicum , Catalase , Crinivirus/genética , Doenças das Plantas , Proteínas Virais/genética , Proteínas Virais/metabolismoRESUMO
RNA silencing is a crucial mechanism of the antiviral immunity system in plants. Small RNAs guide Argonaut proteins to target viral RNA or DNA, preventing virus accumulation. Small RNA profiles in Cucurbita pepo line PI 420328 with tolerance to cucurbit yellow stunting disorder virus (CYSDV) were compared with those in Gold Star, a susceptible cultivar. The lower CYSDV symptom severity in PI 420328 correlated with lower virus titers and fewer sRNAs derived from CYSDV (vsRNA) compared to Gold Star. Elevated levels of 21- and 22-nucleotide (nt) size class vsRNAs were observed in PI 420328, indicating more robust and efficient RNA silencing in PI 420328. The distribution of vsRNA hotspots along the CYSDV genome was similar in both PI 420328 and Gold Star. However, the 3' UTRs, CPm, and p26 were targeted at a higher frequency in PI 420328.
Assuntos
Crinivirus , Cucurbita , Cucurbita/genética , RNA Viral/genética , Crinivirus/genética , Interferência de RNARESUMO
Tomato yellow leaf curl disease (TYLCD) causes severe damage to tomato crops in warm regions of the world, and is associated with infections of several whitefly (Bemisia tabaci)-transmitted single-stranded (ss)DNA begomoviruses (genus Begomovirus, family Geminiviridae). The most widespread begomovirus isolates associated with TYLCD are those of the type strain of the Tomato yellow leaf curl virus species, known as Israel (TYLCV-IL). The Ty-1 gene is widely used in commercial tomato cultivars to control TYLCV-IL damage, providing resistance to the virus by restricting viral accumulation and tolerance to TYLCD by inhibiting disease symptoms. However, several reports suggest that TYLCV-IL-like isolates are adapting to the Ty-1 gene and are causes of concern for possibly overcoming the provided control. This is the case with TYLCV-IL IS76-like recombinants that have a small genome fragment acquired by genetic exchange from an isolate of Tomato yellow leaf curl Sardinia virus, another begomovirus species associated with TYLCD. Here we show that TYLCV-IL IS76-like isolates partially break down the TYLCD-tolerance provided by the Ty-1 gene and that virulence differences might exist between isolates. Interestingly, we demonstrate that mixed infections with an isolate of the crinivirus (genus Crinivirus, family Closteroviridae) species Tomato chlorosis virus (ToCV), an ssRNA virus also transmitted by B. tabaci and emerging worldwide in tomato crops, boosts the breakdown of the TYLCD-tolerance provided by the Ty-1 gene either with TYLCV-IL IS76-like or canonical TYLCV-IL isolates. Moreover, we demonstrate the incorporation of the Ty-2 gene in Ty-1-commercial tomatoes to restrict (no virus or virus traces, no symptoms) systemic infections of recombinant TYLCV-IL IS76-like and canonical TYLCV-IL isolates, even in the presence of ToCV infections, which provides more robust and durable control of TYLCD.
Assuntos
Begomovirus , Crinivirus , Solanum lycopersicum , Begomovirus/genética , Crinivirus/genética , Doenças das PlantasRESUMO
The whole genome sequence of mulberry crinivirus (MuCV), a novel member of the genus Crinivirus (family Closteroviridae) identified in mulberry (Morus alba L), was determined. The virus possesses a bipartite genome. RNA1 contains 8571 nucleotides (nt) with four open reading frames (ORFs). ORF1a encodes a putative polyprotein with papain-like protease, methyltransferase, and RNA helicase domains. ORF1b putatively encodes an RNA-dependent RNA polymerase (RdRp), which is probably expressed via a + 1 ribosomal frameshift. RNA2 consists of 8082 nt, containing eight ORFs that are similar in size and position to orthologous genes of other criniviruses. Phylogenetic analysis based on RdRp amino acid sequences of criniviruses placed MuCV in group 1.
Assuntos
Crinivirus , Morus , Crinivirus/genética , Sequência de Bases , Filogenia , Genoma Viral , Nucleotídeos , Fases de Leitura Aberta , RNA Polimerase Dependente de RNA/genética , RNA Viral/genéticaRESUMO
BACKGROUND: Tomato chlorosis virus (ToCV) is a semi-persistent plant virus that is primarily transmitted by the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae). It causes a serious disease that lowers tomato yield. Insulin-like peptide (ILP), an insulin homolog, regulates trehalose metabolism in a variety of insects. In a previous study, we discovered that trehalose metabolism is required for whiteflies to transmit ToCV effectively. Furthermore, transcriptome sequencing revealed that the BtILP7 gene was highly expressed in B. tabaci infected with ToCV. Therefore, the whitefly ILP7 gene may facilitate the transmission of ToCV and be an attractive target for the control of whiteflies and subsequently ToCV. RESULTS: The ToCV content in B. tabaci MED was found to be correlated with BtILP7 gene expression. Subsequent RNA interference (RNAi) of the BtILP7 gene had a significant impact on B. tabaci MED's trehalose metabolism and reproductive capacity, as well as ability to transmit ToCV. CONCLUSIONS: These results indicate that the BtILP7 gene was closely related to ToCV transmission by regulating trehalose metabolism and reproduction behavior, thus providing a secure and environmentally friendly management strategy for the control of whiteflies and ToCV-caused disease. © 2022 Society of Chemical Industry.
Assuntos
Crinivirus , Hemípteros , Animais , Insulina , Trealose , Crinivirus/genética , Hemípteros/fisiologiaRESUMO
Specificity and efficiency of plant virus transmission depend largely on protein-protein interactions of vectors and viruses. Cucurbit chlorotic yellows virus (CCYV), transmitted specifically by tobacco whitefly, Bemisia tabaci, in a semi-persistent manner, has caused serious damage on cucurbit and vegetable crops around the world. However, the molecular mechanism of interaction during CCYV retention and transmission are still lacking. CCYV was proven to bind particularly to the whitefly foregut, and here, we confirmed that the minor coat protein (CPm) of CCYV is participated in the interaction with the vector. In order to identify proteins of B. tabaci that interact directly with CPm of CCYV, the immunoprecipitation (IP) assay and DUALmembrane cDNA library screening technology were applied. The cytochrome c oxidase subunit 5A (COX), tubulin beta chain (TUB) and keratin, type I cytoskeletal 9-like (KRT) of B. tabaci shown strong interactions with CPm and are closely associated with the retention within the vector and transmission of CCYV. These findings on whitefly protein-CCYV CPm interactions are crucial for a much better understanding the mechanism of semi-persistent plant virus transmission by insect vectors, as well as for implement new strategies for effective management of plant viruses and their vector insects.
Assuntos
Crinivirus , Hemípteros , Animais , Capsídeo/metabolismo , Hemípteros/metabolismo , Vírion , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Crinivirus/genética , Crinivirus/metabolismo , Doenças das PlantasRESUMO
Yellowing symptoms caused by tomato chlorosis virus (ToCV) and tomato infectious chlorosis virus (TICV), both assigned to the genus Crinivirus, resemble nutrient deficiencies. Therefore, early diagnosis of infections will prevent crop damage and the spread of the viruses. In this study, we established a rapid detection method for ToCV and TICV by reverse transcription-loop-mediated isothermal amplification (RT-LAMP). We first designed primer sets for RT-LAMP specific for ToCV and TICV. Next, by selecting the optimum primer set and determining the optimum conditions for the RT-LAMP reaction, each virus was detected within 50 min by piercing the diseased area of a tomato leaf with a toothpick, immersing the toothpick in the reaction solution, and conducting the RT-LAMP reaction. To verify the accuracy of the procedure, 61 tomato leaf samples showing disease symptoms were collected from five regions of Indonesia, and the RT-LAMP results for the samples were identical to those obtained with the commonly used reverse transcription-polymerase chain reaction.
Assuntos
Crinivirus , Solanum lycopersicum , Crinivirus/genética , Doenças das PlantasRESUMO
Cucurbit chlorotic yellows virus (CCYV) belongs to the genus Crinivirus and is part of a complex of whitefly-transmitted viruses that cause yellowing disease in cucurbits. In the southeastern USA, heavy incidences of CCYV have been observed on all cucurbits grown in the fall. CCYV was detected from wild radish (Raphanus raphanistrum L.), a common weed that grows in the southeastern USA by high-throughput sequencing as well as RT-PCR. CCYV sequence from wild radish was 99.90% and 99.95%, identical to RNA 1 and RNA 2 of cucurbit isolates of CCYV from the region. Transmission assays using whiteflies demonstrated that wild radish is a good host for CCYV. Whiteflies were also able to acquire CCYV from wild radish and transmit the virus to cucurbit hosts, which developed typical symptoms associated with CCYV. Using quantitative PCR, the titer of CCYV in wild radish was also estimated to be on par with that of cucurbit hosts of the virus. Whitefly bioassays revealed that wild radish is an acceptable feeding and reproductive host plant. These results indicate that wild radish could serve as a reservoir host for CCYV in the USA and other parts of the world where similar conditions exist.
Assuntos
Crinivirus , Hemípteros , Raphanus , Animais , Crinivirus/genética , Doenças das Plantas , RNA , Raphanus/genéticaRESUMO
The cucurbit chlorotic yellows virus (CCYV) causes severe economic losses in cucurbit plants. Although it has been widely known in various countries for several years, CCYV is rarely recognized due to the lack of rapid and effective detection methods in the early stage of the disease. Recombinase polymerase amplification (RPA) is a new, efficient, and simple technology for nucleic acid detection. In the present study, reverse transcription (RT)-RPA and quantitative RT-RPA were developed and utilized for fast detection of CCYV in field-collected melon samples. The analysis was performed under constant temperature conditions without the necessity for a thermal cycler in just 20 min. Moreover, the detection limit of RT-RPA for CCYV was determined at 10 pg. In the study, 58 field-collected samples were employed to evaluate the performance of the two assays. The positive rates were established at 72.4 % (42/58) and 75.9 % (44/58) by RT-RPA and qRT-RPA, respectively, and were consistent with the RT-PCR results. The successful application of RPA for the detection of CCYV in field-collected melon samples indicated its potential applicability. Thus, the developed RPA assays provide an alternative for fast, efficient, sensitive, and reliable detection of CCYV in diagnostic laboratories, which lack the precise instrumentation, and fields without appropriate equipment.
Assuntos
Crinivirus , Crinivirus/genética , Primers do DNA , Técnicas de Amplificação de Ácido Nucleico/métodos , Recombinases/genética , Transcrição Reversa , Sensibilidade e EspecificidadeRESUMO
Susceptible plants infected by single or multiple viruses can differ in symptoms and other alterations influencing virus dissemination. Furthermore, behavior of viruliferous vectors may be altered in certain cases to favor acquisition and inoculation processes conductive to virus transmission. We explored single and mixed infections frequently occurring in tomato crops, caused by two viruses transmitted by the whitefly Bemisia tabaci: Tomato yellow leaf curl virus (TYLCV, Begomovirus, Geminiviridae) and Tomato chlorosis virus (ToCV, Crinivirus, Closteroviridae). Coinfection of both viruses in tomato plants showed more severe symptoms at late stages compared with single infections, although at earlier stages the interaction began with attenuation. This asymmetric synergism correlated with the dynamics of ToCV accumulation and expression of the salicylic acid responsive gene PR-P6. Visual and olfactory cues in whitefly preference were evaluated under controlled conditions in choice assays, testing viruliferous and nonviruliferous adult whiteflies. In experiments allowing both visual and olfactory cues, whiteflies preferred symptomatic leaflets from plants infected either with TYLCV alone or with TYLCV and ToCV, over those infected with ToCV alone or noninfected leaflets, suggesting that TYLCV drove host selection. Odor cues tested in Y-tube olfactometer assays showed neutral effects on whiteflies' preference, and bioassays comparing the attractiveness of colored sticky cards confirmed preference for sectors colored to mimic TYLCV symptomatic leaves compared with asymptomatic leaves. Our results show that the presence of coinfecting viruses affect the host and could alter the behavior of insect vectors.
Assuntos
Begomovirus , Coinfecção , Crinivirus , Hemípteros , Solanum lycopersicum , Animais , Begomovirus/genética , Crinivirus/genética , Doenças das PlantasRESUMO
Tomato chlorosis virus (ToCV), a species of single-stranded RNA virus belonging to the Crinivirus genus, and Tomato yellow leaf curl virus (TYLCV), a species of single-stranded circular DNA virus belonging to the Begomovirus genus, are two major emerging viruses transmitted by whiteflies and are causing huge losses to tomato production worldwide. To facilitate the simultaneous detection of both viruses in co-infected plants for disease control, a duplex reverse-transcription PCR assay was developed. The assay used three primers, a degenerate reverse primer targeting a conserved region of TYLCV and the RNA2 of ToCV, and two virus-specific forward primers targeting the minor coat protein gene of ToCV and the C3 gene of TYLCV, respectively, to amplify a 762-bp and a 338-bp fragment from ToCV and TYLCV, respectively, in a single reaction. The concentration of the primers, annealing temperature and amplification cycles used in the assay were optimized, and the sensitivity of the assay was assessed. Using this assay, 150 tomato leaf samples collected from the field during 2018 were tested. The results showed that both viruses could be detected simultaneously in co-infected field samples. The assay should benefit the rapid detection of these two viruses in tomato crops and would facilitate early warning of infections for the control of the two virus diseases.
Assuntos
Begomovirus , Crinivirus , Solanum lycopersicum , Begomovirus/genética , Crinivirus/genética , Doenças das Plantas , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
Transmission of the crinivirus, lettuce infectious yellows virus (LIYV), is determined by a minor coat protein (CPm)-mediated virion retention mechanism located in the foregut of its whitefly vector. To better understand the functions of LIYV CPm, chimeric CPm mutants engineered with different lengths of the LIYV CPm amino acid sequence and that of the crinivirus, lettuce chlorosis virus (LCV), were constructed based on bioinformatics and sequence alignment data. The 485 amino acid-long chimeric CPm of LIYV mutant, CPmP-1, contains 60â% (from position 3 to 294) of LCV CPm amino acids. The chimeric CPm of mutants CPmP-2, CPmP-3 and CPmP-4 contains 46 (position 3 to 208), 51 (position 3 to 238) and 41â% (position 261 to 442) of LCV CPm amino acids, respectively. All four mutants moved systemically, expressed the chimeric CPm and formed virus particles. However, following acquisition feeding of the virus preparations, only CPmP-1 was retained in the foreguts of a significant number of vectors and transmitted. In immuno-gold labelling transmission electron microscopy (IGL-TEM) analysis, CPmP-1 particles were distinctly labelled by antibodies directed against the LCV but not LIYV CPm. In contrast, CPmP-4 particles were not labelled by antibodies directed against the LCV or LIYV CPm, while CPmP-2 and -3 particles were weakly labelled by anti-LIYV CPm but not anti-LCV CPm antibodies. The unique antibody recognition and binding pattern of CPmP-1 was also displayed in the foreguts of whitefly vectors that fed on CPmP-1 virions. These results are consistent with the hypothesis that the chimeric CPm of CPmP-1 is incorporated into functional virions, with the LCV CPm region being potentially exposed on the surface and accessible to anti-LCV CPm antibodies.
Assuntos
Proteínas do Capsídeo/metabolismo , Crinivirus/fisiologia , Hemípteros/virologia , Insetos Vetores/virologia , Nicotiana/virologia , Doenças das Plantas/virologia , Animais , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Crinivirus/genética , Sistema Digestório/virologia , Engenharia Genética , Proteínas Mutantes Quiméricas/química , Proteínas Mutantes Quiméricas/metabolismo , Mutação , Plantas Geneticamente Modificadas/virologia , Vírion/fisiologiaRESUMO
Potato yellow vein virus (PYVV) was detected in potatoes grown in the Central highlands, north of Bogotá (~3000 m altitude), Colombia. At this altitude viral whitefly vectors are largely absent, but infection persists because of the use of uncertified tubers. Plants with typical PYVV-induced yellowing symptoms, as well as with atypical yellowing or non-symptomatic symptoms were sampled at three separate geographical locations. PYVV presence was assessed by RT-PCR, and several plants were subjected to high-throughput sequencing (HTS) of their small RNA (sRNA) populations. Complete or almost complete sequences of four PYVV isolates were thus reconstructed, all from symptomatic plants. Three viral isolates infected plants singly, while the fourth co-infected the plant together with a potyvirus. Relative proportions of sRNAs to each of the three crinivirus genomic RNAs were found to remain comparable among the four infections. Genomic regions were identified as hotspots of sRNA formation, or as regions that poorly induced sRNAs. Furthermore, PYVV titres in the mixed versus single infections remained comparable, indicating an absence of synergistic/antagonistic effects of the potyvirus on the accumulation of PYVV. Daughter plants raised in the greenhouse from tubers of the infected, field-sampled plants displayed mild PYVV infection symptoms that disappeared with time, demonstrating the occurrence of recovery and asymptomatic infection phenotypes in this pathosystem.
Assuntos
Crinivirus/genética , Crinivirus/isolamento & purificação , Genoma Viral , Doenças das Plantas/virologia , Solanum tuberosum/virologia , Colômbia , Folhas de Planta/virologia , Tubérculos/virologia , Potyvirus , RNA Viral/análise , RNA Viral/genéticaRESUMO
Viruses transmitted by the sweet potato whitefly (Bemisia tabaci) have been detrimental to the sustainable production of cucurbits in the southeastern USA. Surveys were conducted in the fall of 2019 and 2020 in Georgia, a major cucurbit-producing state of the USA, to identify the viruses infecting cucurbits and their distribution. Symptomatic samples were collected and small RNA libraries were prepared and sequenced from three cantaloupes, four cucumbers, and two yellow squash samples. An analysis of the sequences revealed the presence of the criniviruses cucurbit chlorotic yellows virus (CCYV), cucurbit yellow stunting disorder virus (CYSDV), and the begomovirus cucurbit leaf crumple virus (CuLCrV). CuLCrV was detected in 76%, CCYV in 60%, and CYSDV in 43% of the total samples (n = 820) tested. The level of mixed infections was high in all the cucurbits, with most plants tested being infected with at least two of these viruses. Near-complete genome sequences of two criniviruses, CCYV and CYSDV, were assembled from the small RNA sequences. An analysis of the coding regions showed low genetic variability among isolates from different hosts. In phylogenetic analysis, the CCYV isolates from Georgia clustered with Asian isolates, while CYSDV isolates clustered with European and USA isolates. This work enhances our understanding of the distribution of viruses on cucurbits in South Georgia and will be useful to develop strategies for managing the complex of whitefly-transmitted viruses in the region.