Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
1.
Mol Biol Rep ; 51(1): 572, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722394

RESUMO

BACKGROUND: Alzheimer's disease is a leading neurological disorder that gradually impairs memory and cognitive abilities, ultimately leading to the inability to perform even basic daily tasks. Teriflunomide is known to preserve neuronal activity and protect mitochondria in the brain slices exposed to oxidative stress. The current research was undertaken to investigate the teriflunomide's cognitive rescuing abilities against scopolamine-induced comorbid cognitive impairment and its influence on phosphatidylinositol-3-kinase (PI3K) inhibition-mediated behavior alteration in mice. METHODS: Swiss albino mice were divided into 7 groups; vehicle control, scopolamine, donepezil + scopolamine, teriflunomide (10 mg/kg) + scopolamine; teriflunomide (20 mg/kg) + scopolamine, LY294002 and LY294002 + teriflunomide (20 mg/kg). Mice underwent a nine-day protocol, receiving scopolamine injections (2 mg/kg) for the final three days to induce cognitive impairment. Donepezil, teriflunomide, and LY294002 treatments were given continuously for 9 days. MWM, Y-maze, OFT and rota-rod tests were conducted on days 7 and 9. On the last day, blood samples were collected for serum TNF-α analysis, after which the mice were sacrificed, and brain samples were harvested for oxidative stress analysis. RESULTS: Scopolamine administration for three consecutive days increased the time required to reach the platform in the MWM test, whereas, reduced the percentage of spontaneous alternations in the Y-maze, number of square crossing in OFT and retention time in the rota-rod test. In biochemical analysis, scopolamine downregulated the brain GSH level, whereas it upregulated the brain TBARS and serum TNF-α levels. Teriflunomide treatment effectively mitigated all the behavioral and biochemical alterations induced by scopolamine. Furthermore, LY294002 administration reduced the memory function and GSH level, whereas, uplifted the serum TNF-α levels. Teriflunomide abrogated the memory-impairing, GSH-lowering, and TNF-α-increasing effects of LY294002. CONCLUSION: Our results delineate that the improvement in memory, locomotion, and motor coordination might be attributed to the oxidative and inflammatory stress inhibitory potential of teriflunomide. Moreover, PI3K inhibition-induced memory impairment might be attributed to reduced GSH levels and increased TNF-α levels.


Assuntos
Disfunção Cognitiva , Crotonatos , Hidroxibutiratos , Nitrilas , Estresse Oxidativo , Toluidinas , Animais , Nitrilas/farmacologia , Camundongos , Hidroxibutiratos/farmacologia , Crotonatos/farmacologia , Toluidinas/farmacologia , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Masculino , Modelos Animais de Doenças , Aprendizagem em Labirinto/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Escopolamina/farmacologia , Cromonas/farmacologia , Memória/efeitos dos fármacos , Cognição/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Morfolinas/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Donepezila/farmacologia
2.
J Neuroinflammation ; 20(1): 7, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36611185

RESUMO

BACKGROUND: Promotion of myelin repair in the context of demyelinating diseases such as multiple sclerosis (MS) still represents a clinical unmet need, given that this disease is not only characterized by autoimmune activities but also by impaired regeneration processes. Hence, this relates to replacement of lost oligodendrocytes and myelin sheaths-the primary targets of autoimmune attacks. Endogenous remyelination is mainly mediated via activation and differentiation of resident oligodendroglial precursor cells (OPCs), whereas its efficiency remains limited and declines with disease progression and aging. Teriflunomide has been approved as a first-line treatment for relapsing remitting MS. Beyond its role in acting via inhibition of de novo pyrimidine synthesis leading to a cytostatic effect on proliferating lymphocyte subsets, this study aims to uncover its potential to foster myelin repair. METHODS: Within the cuprizone mediated de-/remyelination model teriflunomide dependent effects on oligodendroglial homeostasis and maturation, related to cellular processes important for myelin repair were analyzed in vivo. Teriflunomide administration was performed either as pulse or continuously and markers specific for oligodendroglial maturation and mitochondrial integrity were examined by means of gene expression and immunohistochemical analyses. In addition, axon myelination was determined using electron microscopy. RESULTS: Both pulse and constant teriflunomide treatment efficiently boosted myelin repair activities in this model, leading to accelerated generation of oligodendrocytes and restoration of myelin sheaths. Moreover, teriflunomide restored mitochondrial integrity within oligodendroglial cells. CONCLUSIONS: The link between de novo pyrimidine synthesis inhibition, oligodendroglial rescue, and maintenance of mitochondrial homeostasis appears as a key for successful myelin repair and hence for protection of axons from degeneration.


Assuntos
Bainha de Mielina , Oligodendroglia , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Crotonatos/farmacologia , Crotonatos/uso terapêutico , Hidroxibutiratos/metabolismo , Hidroxibutiratos/farmacologia , Diferenciação Celular
3.
Cell Mol Neurobiol ; 43(5): 2071-2087, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36219379

RESUMO

Myasthenia gravis (MG) is an autoantibody-mediated autoimmune disease characterized by skeletal muscle weakness exacerbated with exercise. There is a need for novel drugs effective in refractory MG. We aimed to test the potential of teriflunomide, an immunomodulatory drug currently used in rheumatoid arthritis and multiple sclerosis treatment, in a murine experimental autoimmune myasthenia gravis (EAMG) model. EAMG was induced by immunizations with recombinant acetylcholine receptor (AChR). Teriflunomide treatment (10 mg/kg/day, intraperitoneal) was initiated to one group of mice (n = 21) following the third immunization and continued for 5 weeks. The disease control group (n = 19) did not receive medication. Naïve mice (n = 10) received only mock immunization. In addition to the clinical scorings, the numbers of B cells and T cells, and cytokine profiles of T cells were examined by flow cytometry. Anti-AChR-specific antibodies in the peripheral blood serum were quantified by ELISA. Teriflunomide significantly reduced clinical disease scores and the absolute numbers of CD4+ T cells and some of their cytokine-producing subgroups (IFN-γ, IL 2, IL22, IL-17A, GM-CSF) in the spleen and the lymph nodes. The thymic CD4+ T cells were also significantly reduced. Teriflunomide mostly spared CD8+ T cells' numbers and cytokine production, while reducing CD138+CD19+lambda+ plasma B cells' absolute numbers and CD138 mean fluorescent intensities, probably decreasing the number of IgG secreting more mature plasma cells. It also led to some selective changes in the measurements of anti-AChR-specific antibodies in the serum. Our results showed that teriflunomide may be beneficial in the treatment of MG in humans.


Assuntos
Miastenia Gravis , Humanos , Animais , Camundongos , Crotonatos/farmacologia , Crotonatos/uso terapêutico , Hidroxibutiratos , Nitrilas
4.
Mult Scler Relat Disord ; 68: 104377, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36544305

RESUMO

BACKGROUND: Given its potential antiviral activity, we investigated the effect of teriflunomide on EBV in patients with relapsing-remitting MS (RRMS). METHODS: Saliva samples were collected at home and analysed for EBV DNA presence in patients with RRMS treated with teriflunomide for ≥3 months. RESULTS: The proportion of patients with detectable EBV in the teriflunomide cohort was lower than in the reference cohorts. The proportion of samples with EBV DNA or shedding from teriflunomide-treated patients was reduced relative to each reference cohort (P<0.0001; >5.8 virus copies/µL cut-off). CONCLUSION: This pilot study demonstrated the feasibility of at-home saliva sample collection and revealed a possible effect of teriflunomide on EBV shedding.


Assuntos
Infecções por Vírus Epstein-Barr , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Herpesvirus Humano 4 , Projetos Piloto , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/tratamento farmacológico , Crotonatos/farmacologia , Crotonatos/uso terapêutico , Estudos de Coortes
5.
Mult Scler ; 28(11): 1719-1728, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35485424

RESUMO

BACKGROUND: In post hoc analyses of Teriflunomide Multiple Sclerosis Oral study (TEMSO; NCT00134563), teriflunomide 14 mg significantly reduced brain volume loss (BVL) versus placebo in patients with relapsing multiple sclerosis (MS). OBJECTIVE: In this post hoc analysis of TEMSO and its long-term extension (NCT00803049), we examined the relationship between teriflunomide's effects on BVL and cognition. METHODS: We analyzed data from 709 patients who received teriflunomide 14 mg in TEMSO or its extension. The change in cognitive performance, assessed using the Paced Auditory Serial Addition Test 3 (PASAT-3), was measured in subgroups stratified by BVL over 2 years (least BVL: ⩽ 0.52%; intermediate BVL: >0.52%-2.18%; most BVL: >2.18%). BVL, MRI lesions, and relapses over 2 years were evaluated as potential mediators of the effect of teriflunomide on cognition. RESULTS: Teriflunomide 14 mg significantly improved PASAT-3 Z-scores versus placebo through year 2. In the least- and intermediate-BVL groups, significant improvements in PASAT-3 Z-score were demonstrated versus the most-BVL group over 3 years in the extension. According to the mediation analysis, 44% of the teriflunomide effect on cognition was due to effects on BVL at year 2. CONCLUSION: Teriflunomide improves cognition largely through its effects on BVL. Accelerated BVL earlier in the disease course may predict cognitive outcomes. CLINICALTRIALS.GOV IDENTIFIER: NCT00134563, NCT00803049.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Cognição , Crotonatos/farmacologia , Crotonatos/uso terapêutico , Humanos , Hidroxibutiratos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/patologia , Nitrilas , Recidiva , Toluidinas/uso terapêutico
6.
Sci Rep ; 12(1): 3049, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197552

RESUMO

Astrocytes utilize both glycolytic and mitochondrial pathways to power cellular processes that are vital to maintaining normal CNS functions. These cells also mount inflammatory and acute phase reactive programs in response to diverse stimuli. While the metabolic functions of astrocytes under homeostatic conditions are well-studied, the role of cellular bioenergetics in astrocyte reactivity is poorly understood. Teriflunomide exerts immunomodulatory effects in diseases such as multiple sclerosis by metabolically reprogramming lymphocytes and myeloid cells. We hypothesized that teriflunomide would constrain astrocytic inflammatory responses. Purified murine astrocytes were grown under serum-free conditions to prevent acquisition of a spontaneous reactive state. Stimulation with TNFα activated NFκB and increased secretion of Lcn2. TNFα stimulation increased basal respiration, maximal respiration, and ATP production in astrocytes, as assessed by oxygen consumption rate. TNFα also increased glycolytic reserve and glycolytic capacity of astrocytes but did not change the basal glycolytic rate, as assessed by measuring the extracellular acidification rate. TNFα specifically increased mitochondrial ATP production and secretion of Lcn2 required ATP generated by oxidative phosphorylation. Inhibition of dihydroorotate dehydrogenase via teriflunomide transiently increased both oxidative phosphorylation and glycolysis in quiescent astrocytes, but only the increased glycolytic ATP production was sustained over time, resulting in a bias away from mitochondrial ATP production even at doses down to 1 µM. Preconditioning with teriflunomide prevented the TNFα-induced skew toward oxidative phosphorylation, reduced mitochondrial ATP production, and reduced astrocytic inflammatory responses, suggesting that this drug may limit neuroinflammation by acting as a metabolomodulator.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Astrócitos/metabolismo , Crotonatos/farmacologia , Hidroxibutiratos/farmacologia , Inflamação/metabolismo , Nitrilas/farmacologia , Toluidinas/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Células Cultivadas , Quimiocinas/metabolismo , Metabolismo Energético/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Lipocalina-2/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
7.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163469

RESUMO

Teriflunomide (TFN) limits relapses in relapsing-remitting multiple sclerosis (RRMS) by reducing lymphocytic proliferation through the inhibition of the mitochondrial enzyme dihydroorotate dehydrogenase (DHODH) and the subsequent modulation of de novo pyrimidine synthesis. Alterations of mitochondrial function as a consequence of oxidative stress have been reported during neuroinflammation. Previously, we showed that TFN prevents alterations of mitochondrial motility caused by oxidative stress in peripheral axons. Here, we aimed to validate TFN effects on mitochondria and neuronal activity in hippocampal brain slices, in which cellular distribution and synaptic circuits are largely preserved. TFN effects on metabolism and neuronal activity were investigated by assessing oxygen partial pressure and local field potential in acute slices. Additionally, we imaged mitochondria in brain slices from the transgenic Thy1-CFP/COX8A)S2Lich/J (mitoCFP) mice using two-photon microscopy. Although TFN could not prevent oxidative stress-related depletion of ATP, it preserved oxygen consumption and neuronal activity in CNS tissue during oxidative stress. Furthermore, TFN prevented mitochondrial shortening and fragmentation of puncta-shaped and network mitochondria during oxidative stress. Regarding motility, TFN accentuated the decrease in mitochondrial displacement and increase in speed observed during oxidative stress. Importantly, these effects were not associated with neuronal viability and did not lead to axonal damage. In conclusion, during conditions of oxidative stress, TFN preserves the functionality of neurons and prevents morphological and motility alterations of mitochondria.


Assuntos
Crotonatos/farmacologia , Hipocampo/fisiologia , Peróxido de Hidrogênio/efeitos adversos , Hidroxibutiratos/farmacologia , Mitocôndrias/metabolismo , Nitrilas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Toluidinas/farmacologia , Animais , Metabolismo Energético , Hipocampo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Consumo de Oxigênio
8.
Psychol Health Med ; 27(10): 2204-2211, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34044680

RESUMO

Teriflunomide is a drug with immunosuppressive and selective immunomodulatory action, characterized by anti-inflammatory and antiproliferative properties. Several clinical studies have demonstrated the efficacy and safety of this drug in Multiple Sclerosis, estimating a significant improvement in cognitive performance.The aim of our study is to evaluate the effects of teriflunomide by analysing the correlation between brain atrophy and the general cognitive profile and evaluating long-term changes. The effect of teriflunomide was studied in 30 patients with multiple sclerosis and 30 control subjects. Patients underwent a full cognitive profile assessment using the Brief Repeatable Battery of Neuropsychological Tests and a neuroimaging examination with a 3.0 T working scanner.Our results suggested that treatment with teriflunomide could potentially not only slow down the accumulation of microstructural tissue damage in Grey Matter and With Matter, but also better preserve the cognitive profile, particularly by highlighting the benefits in the memory domain. Thanks to drug therapy, brain volume in our patients has remained constant, leading to improvements in memory, indicating teriflunomide as a neuroprotective potential and further strengthening the evidence of a link between loss of brain volume and cognitive impairment.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/induzido quimicamente , Crotonatos/farmacologia , Crotonatos/uso terapêutico , Toluidinas/uso terapêutico , Toluidinas/efeitos adversos
9.
J Med Chem ; 64(24): 18175-18192, 2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-34905371

RESUMO

Human dihydroorotate dehydrogenase (hDHODH), as the fourth and rate-limiting enzyme of the de novo pyrimidine synthesis pathway, is regarded as an attractive target for malignancy therapy. In the present study, a novel series of teriflunomide derivatives were designed, synthesized, and evaluated as hDHODH inhibitors. 13t was the optimal compound with promising enzymatic activity (IC50 = 16.0 nM), potent antiproliferative activity against human lymphoma Raji cells (IC50 = 7.7 nM), and excellent aqueous solubility (20.1 mg/mL). Mechanistically, 13t directly inhibited hDHODH and induced cell cycle S-phase arrest in Raji cells. The acute toxicity assay indicated a favorable safety profile of 13t. Notably, 13t displayed significant tumor growth inhibition activity with a tumor growth inhibition (TGI) rate of 81.4% at 30 mg/kg in a Raji xenograft model. Together, 13t is a promising inhibitor of hDHODH and a preclinical candidate for antitumor therapy, especially for lymphoma.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Crotonatos/química , Crotonatos/farmacologia , Di-Hidro-Orotato Desidrogenase/antagonistas & inibidores , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Hidroxibutiratos/química , Hidroxibutiratos/farmacologia , Neoplasias/tratamento farmacológico , Nitrilas/química , Nitrilas/farmacologia , Toluidinas/química , Toluidinas/farmacologia , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Crotonatos/síntese química , Inibidores Enzimáticos/síntese química , Humanos , Hidroxibutiratos/síntese química , Neoplasias/patologia , Nitrilas/síntese química , Relação Estrutura-Atividade , Toluidinas/síntese química
10.
Artigo em Inglês | MEDLINE | ID: mdl-34642237

RESUMO

BACKGROUND AND OBJECTIVES: To test whether low concentrations of teriflunomide (TF) could promote remyelination, we investigate the effect of TF on oligodendrocyte in culture and on remyelination in vivo in 2 demyelinating models. METHODS: The effect of TF on oligodendrocyte precursor cell (OPC) proliferation and differentiation was assessed in vitro in glial cultures derived from neonatal mice and confirmed on fluorescence-activated cell sorting-sorted adult OPCs. The levels of the 8,9-unsaturated sterols lanosterol and zymosterol were quantified in TF- and sham-treated cultures. In vivo, TF was administered orally, and remyelination was assessed both in myelin basic protein-GFP-nitroreductase (Mbp:GFP-NTR) transgenic Xenopus laevis demyelinated by metronidazole and in adult mice demyelinated by lysolecithin. RESULTS: In cultures, low concentrations of TF down to 10 nM decreased OPC proliferation and increased their differentiation, an effect that was also detected on adult OPCs. Oligodendrocyte differentiation induced by TF was abrogated by the oxidosqualene cyclase inhibitor Ro 48-8071 and was mediated by the accumulation of zymosterol. In the demyelinated tadpole, TF enhanced the regeneration of mature oligodendrocytes up to 2.5-fold. In the mouse demyelinated spinal cord, TF promoted the differentiation of newly generated oligodendrocytes by a factor of 1.7-fold and significantly increased remyelination. DISCUSSION: TF enhances zymosterol accumulation in oligodendrocytes and CNS myelin repair, a beneficial off-target effect that should be investigated in patients with multiple sclerosis.


Assuntos
Doenças do Sistema Nervoso Central/tratamento farmacológico , Colesterol/metabolismo , Crotonatos/farmacologia , Doenças Desmielinizantes/tratamento farmacológico , Hidroxibutiratos/farmacologia , Imunossupressores/farmacologia , Nitrilas/farmacologia , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Remielinização/efeitos dos fármacos , Toluidinas/farmacologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Doenças do Sistema Nervoso Central/metabolismo , Crotonatos/administração & dosagem , Modelos Animais de Doenças , Hidroxibutiratos/administração & dosagem , Imunossupressores/administração & dosagem , Larva , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Nitrilas/administração & dosagem , Células Precursoras de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo , Toluidinas/administração & dosagem , Xenopus laevis
11.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34575975

RESUMO

Several classes of immunomodulators are used for treating relapsing-remitting multiple sclerosis (RRMS). Most of these disease-modifying therapies, except teriflunomide, carry the risk of progressive multifocal leukoencephalopathy (PML), a severely debilitating, often fatal virus-induced demyelinating disease. Because teriflunomide has been shown to have antiviral activity against DNA viruses, we investigated whether treatment of cells with teriflunomide inhibits infection and spread of JC polyomavirus (JCPyV), the causative agent of PML. Treatment of choroid plexus epithelial cells and astrocytes with teriflunomide reduced JCPyV infection and spread. We also used droplet digital PCR to quantify JCPyV DNA associated with extracellular vesicles isolated from RRMS patients. We detected JCPyV DNA in all patients with confirmed PML diagnosis (n = 2), and in six natalizumab-treated (n = 12), two teriflunomide-treated (n = 7), and two nonimmunomodulated (n = 2) patients. Of the 21 patients, 12 (57%) had detectable JCPyV in either plasma or serum. CSF was uniformly negative for JCPyV. Isolation of extracellular vesicles did not increase the level of detection of JCPyV DNA versus bulk unprocessed biofluid. Overall, our study demonstrated an effect of teriflunomide inhibiting JCPyV infection and spread in glial and choroid plexus epithelial cells. Larger studies using patient samples are needed to correlate these in vitro findings with patient data.


Assuntos
Crotonatos/farmacologia , Vírus de DNA/efeitos dos fármacos , Hidroxibutiratos/farmacologia , Leucoencefalopatia Multifocal Progressiva/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Neuroglia/efeitos dos fármacos , Nitrilas/farmacologia , Toluidinas/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/virologia , Linhagem Celular , Plexo Corióideo/efeitos dos fármacos , Plexo Corióideo/virologia , Vírus de DNA/patogenicidade , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/virologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/virologia , Humanos , Fatores Imunológicos/efeitos adversos , Fatores Imunológicos/uso terapêutico , Vírus JC/efeitos dos fármacos , Vírus JC/patogenicidade , Leucoencefalopatia Multifocal Progressiva/induzido quimicamente , Leucoencefalopatia Multifocal Progressiva/patologia , Leucoencefalopatia Multifocal Progressiva/virologia , Esclerose Múltipla Recidivante-Remitente/genética , Esclerose Múltipla Recidivante-Remitente/patologia , Esclerose Múltipla Recidivante-Remitente/virologia , Neuroglia/virologia , Viroses/tratamento farmacológico , Viroses/genética , Viroses/virologia
12.
STAR Protoc ; 2(3): 100659, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34286291

RESUMO

Training and experiences are usually required to successfully culture and differentiate human embryonic stem cells (hESCs). Here, we describe a simple but highly efficient protocol to induce endoderm differentiation of hESCs with crotonate, a precursor of crotonyl-CoA for histone crotonylation deposition on endodermal genes. In this protocol, adding crotonate in different endoderm differentiation media significantly increases the differentiation efficiency and substantially reduces the amount of required reagents. For complete details on the use and execution of this protocol, please refer to Fang et al. (2021).


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular/efeitos dos fármacos , Crotonatos/farmacologia , Endoderma/citologia , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Células Cultivadas , Humanos
13.
Eur J Pharmacol ; 906: 174233, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34111397

RESUMO

Dihydroorotate dehydrogenase (DHODH) is rate-limiting enzyme in biosynthesis of pyrimidone which catalyzes the oxidation of dihydro-orotate to orotate. Orotate is utilized in the biosynthesis of uridine-monophosphate. DHODH inhibitors have shown promise as antiviral agent against Cytomegalovirus, Ebola, Influenza, Epstein Barr and Picornavirus. Anti-SARS-CoV-2 action of DHODH inhibitors are also coming up. In this review, we have reviewed the safety and efficacy of approved DHODH inhibitors (leflunomide and teriflunomide) against COVID-19. In target-centered in silico studies, leflunomide showed favorable binding to active site of MPro and spike: ACE2 interface. In artificial-intelligence/machine-learning based studies, leflunomide was among the top 50 ligands targeting spike: ACE2 interaction. Leflunomide is also found to interact with differentially regulated pathways [identified by KEGG (Kyoto Encyclopedia of Genes and Genomes) and reactome pathway analysis of host transcriptome data] in cogena based drug-repurposing studies. Based on GSEA (gene set enrichment analysis), leflunomide was found to target pathways enriched in COVID-19. In vitro, both leflunomide (EC50 41.49 ± 8.8 µmol/L) and teriflunomide (EC50 26 µmol/L) showed SARS-CoV-2 inhibition. In clinical studies, leflunomide showed significant benefit in terms of decreasing the duration of viral shredding, duration of hospital stay and severity of infection. However, no advantage was seen while combining leflunomide and IFN alpha-2a among patients with prolonged post symptomatic viral shredding. Common adverse effects of leflunomide were hyperlipidemia, leucopenia, neutropenia and liver-function alteration. Leflunomide/teriflunomide may serve as an agent of importance to achieve faster virological clearance in COVID-19, however, findings needs to be validated in bigger sized placebo controlled studies.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Crotonatos/farmacologia , Inibidores Enzimáticos/farmacologia , Hidroxibutiratos/farmacologia , Leflunomida/farmacologia , Nitrilas/farmacologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Toluidinas/farmacologia , Animais , Antivirais/efeitos adversos , Antivirais/uso terapêutico , Crotonatos/efeitos adversos , Crotonatos/uso terapêutico , Di-Hidro-Orotato Desidrogenase , Reposicionamento de Medicamentos , Inibidores Enzimáticos/efeitos adversos , Inibidores Enzimáticos/uso terapêutico , Humanos , Hidroxibutiratos/efeitos adversos , Hidroxibutiratos/uso terapêutico , Leflunomida/efeitos adversos , Leflunomida/uso terapêutico , Nitrilas/efeitos adversos , Nitrilas/uso terapêutico , Toluidinas/efeitos adversos , Toluidinas/uso terapêutico
14.
Mol Immunol ; 135: 116-126, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33892379

RESUMO

Brevilin A (BA), is a natural biologically active ingredient derived from Centipeda minima with several reports of anti-cancer, while its anti-inflammatory activity is rarely reported. Current studies have found the dysregulated activation of NLRP3 inflammasome cause a variety of inflammatory diseases. Targeting the NLRP3 inflammasome contributes to the treatment of NLRP3-induced diseases. Here, we found that BA significantly attenuates the activation of caspase-1 and the subsequent secretion of the interleukin-1ß (IL-1ß) in mouse macrophages and human THP-1 cells, showing the inhibitory effect of BA on the NLRP3 inflammasome activation. Moreover, BA specifically inhibits NLRs inflammasomes activation triggered by multi-stimuli, but it has no effect on the AIM2 inflammasome activation, indicating that BA is a specific inhibitor of the NLRs inflammasomes. Research on the mechanism found BA inhibits NLRP3 inflammasome activation by blocking the upstream of ASC oligomerization. Importantly, in vivo experiments showed that BA markedly reduces the secretion of IL-1ß to suppress NLRP3 inflammasome in the LPS-induced inflammation and MSU-challenged peritonitis model. In conclusion, our experiments show that BA is an effective NLRP3 inflammasome inhibitor and can be regarded as a drug candidate for NLRP3 inflammasome-driven diseases.


Assuntos
Inibidores de Caspase/farmacologia , Crotonatos/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Sesquiterpenos/farmacologia , Animais , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Caspase 1/metabolismo , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Feminino , Humanos , Interleucina-1beta/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Células THP-1
15.
Bioorg Med Chem Lett ; 41: 127989, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33794317

RESUMO

Hepatic fibrosis is a chronic liver disease characterized by the accumulation of extracellular matrix (ECM). Activation of hepatic stellate cells (HSCs) after repetitive liver damage is a key event in hepatic fibrogenesis. As part of ongoing research projects to identify pharmacologically effective natural products, the phytochemical investigation of a MeOH extract of Centipeda minima led to the isolation of a sesquiterpene lactone, brevilin A, which was explored to elucidate potential anti-fibrotic effects by reversing HSC activation. First, we observed that transforming growth factor (TGF)-ß1 treatment significantly increased the expression levels of HSC activation marker, α-smooth muscle actin (α-SMA), and ECM protein such as collagen and fibronectin. Then, we demonstrated that brevilin A reversed the TGF-ß1-induced increase in protein and mRNA expression levels of α-SMA and collagen. To investigate the underlying molecular mechanism of brevilin A, we evaluated the effects of brevilin A on the STAT3 signaling pathway. STAT3 phosphorylation, increased by TGF-ß1 treatment, was strongly inhibited by brevilin A; the expression levels of fibronectin and connective tissue growth factor were also significantly decreased by brevilin A. The present study indicated that brevilin A has a preventive and therapeutic potential against hepatic fibrosis.


Assuntos
Crotonatos/farmacologia , Desenho de Fármacos , Cirrose Hepática/tratamento farmacológico , Fator de Transcrição STAT3/antagonistas & inibidores , Sesquiterpenos/farmacologia , Crotonatos/química , Relação Dose-Resposta a Droga , Células Estreladas do Fígado/efeitos dos fármacos , Humanos , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Estrutura Molecular , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Sesquiterpenos/química , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
16.
Artigo em Inglês | MEDLINE | ID: mdl-33837058

RESUMO

OBJECTIVE: To test the hypothesis that teriflunomide can reduce ex vivo spontaneous proliferation of peripheral blood mononuclear cells (PBMCs) from patients with human T-cell lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP). METHODS: PBMCs from patients with HAM/TSP were cultured in the presence and absence of teriflunomide and assessed for cell viability, lymphocyte proliferation, activation markers, HTLV-1 tax and HTLV-1 hbz messenger ribonucleic acid (mRNA) expression, and HTLV-1 Tax protein expression. RESULTS: In culture, teriflunomide did not affect cell viability. A concentration-dependent reduction in spontaneous proliferation of PBMCs was observed with 25 µM (38.3% inhibition), 50 µM (65.8% inhibition), and 100 µM (90.7% inhibition) teriflunomide. The inhibitory effects of teriflunomide were detected in both CD8+ and CD4+ T-cell subsets, which are involved in the immune response to HTLV-1 infection and the pathogenesis of HAM/TSP. There was no significant change in HTLV-1 proviral load (PVL) or tax mRNA/Tax protein expression in these short-term cultures, but there was a significant reduction of HTLV-1 PVL due to inhibition of proliferation of CD4+ T cells obtained from a subset of patients with HAM/TSP. CONCLUSIONS: These results suggest that teriflunomide inhibits abnormal T-cell proliferation associated with HTLV-1 infection and may have potential as a therapeutic option in patients with HAM/TSP.


Assuntos
Crotonatos/farmacologia , Hidroxibutiratos/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Nitrilas/farmacologia , Paraparesia Espástica Tropical/tratamento farmacológico , Toluidinas/farmacologia , Adulto , Idoso , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Produtos do Gene tax/metabolismo , Infecções por HTLV-I/complicações , Vírus Linfotrópico T Tipo 1 Humano/genética , Humanos , Masculino , Pessoa de Meia-Idade , Cultura Primária de Células , RNA Mensageiro/metabolismo , Subpopulações de Linfócitos T/efeitos dos fármacos
17.
JAMA Neurol ; 78(5): 558-567, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33779698

RESUMO

Importance: To our knowledge, the Oral Ponesimod Versus Teriflunomide In Relapsing Multiple Sclerosis (OPTIMUM) trial is the first phase 3 study comparing 2 oral disease-modifying therapies for relapsing multiple sclerosis (RMS). Objective: To compare the efficacy of ponesimod, a selective sphingosine-1-phosphate receptor 1 (S1P1) modulator with teriflunomide, a pyrimidine synthesis inhibitor, approved for the treatment of patients with RMS. Design, Setting, and Participants: This multicenter, double-blind, active-comparator, superiority randomized clinical trial enrolled patients from April 27, 2015, to May 16, 2019, who were aged 18 to 55 years and had been diagnosed with multiple sclerosis per 2010 McDonald criteria, with a relapsing course from the onset, Expanded Disability Status Scale (EDSS) scores of 0 to 5.5, and recent clinical or magnetic resonance imaging disease activity. Interventions: Patients were randomized (1:1) to 20 mg of ponesimod or 14 mg of teriflunomide once daily and the placebo for 108 weeks, with a 14-day gradual up-titration of ponesimod starting at 2 mg to mitigate first-dose cardiac effects of S1P1 modulators and a follow-up period of 30 days. Main Outcomes and Measures: The primary end point was the annualized relapse rate. The secondary end points were the changes in symptom domain of Fatigue Symptom and Impact Questionnaire-Relapsing Multiple Sclerosis (FSIQ-RMS) at week 108, the number of combined unique active lesions per year on magnetic resonance imaging, and time to 12-week and 24-week confirmed disability accumulation. Safety and tolerability were assessed. Exploratory end points included the percentage change in brain volume and no evidence of disease activity (NEDA-3 and NEDA-4) status. Results: For 1133 patients (567 receiving ponesimod and 566 receiving teriflunomide; median [range], 37.0 [18-55] years; 735 women [64.9%]), the relative rate reduction for ponesimod vs teriflunomide in the annualized relapse rate was 30.5% (0.202 vs 0.290; P < .001); the mean difference in FSIQ-RMS, -3.57 (-0.01 vs 3.56; P < .001); the relative risk reduction in combined unique active lesions per year, 56% (1.405 vs 3.164; P < .001); and the reduction in time to 12-week and 24-week confirmed disability accumulation risk estimates, 17% (10.1% vs 12.4%; P = .29) and 16% (8.1% vs 9.9; P = .37), respectively. Brain volume loss at week 108 was lower by 0.34% (-0.91% vs -1.25%; P < .001); the odds ratio for NEDA-3 achievement was 1.70 (25.0% vs 16.4%; P < .001). Incidence of treatment-emergent adverse events (502 of 565 [88.8%] vs 499 of 566 [88.2%]) and serious treatment-emergent adverse events (49 [8.7%] vs 46 [8.1%]) was similar for both groups. Treatment discontinuations because of adverse events was more common in the ponesimod group (49 of 565 [8.7%] vs 34 of 566 [6.0%]). Conclusions and Relevance: In this study, ponesimod was superior to teriflunomide on annualized relapse rate reduction, fatigue, magnetic resonance imaging activity, brain volume loss, and no evidence of disease activity status, but not confirmed disability accumulation. The safety profile was in line with the previous safety observations with ponesimod and the known profile of other S1P receptor modulators. Trial Registration: ClinicalTrials.gov Identifier: NCT02425644.


Assuntos
Crotonatos/farmacologia , Hidroxibutiratos/farmacologia , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Nitrilas/farmacologia , Tiazóis/farmacologia , Toluidinas/farmacologia , Adolescente , Adulto , Progressão da Doença , Feminino , Humanos , Fatores Imunológicos/uso terapêutico , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
18.
J Gen Virol ; 102(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33416466

RESUMO

Canine distemper virus (CDV) is the aetiological agent that causes canine distemper (CD). Currently, no antiviral drugs have been approved for CD treatment. A77 1726 is the active metabolite of the anti-rheumatoid arthritis (RA) drug leflunomide. It inhibits the activity of Janus kinases (JAKs) and dihydroorotate dehydrogenase (DHO-DHase), a rate-limiting enzyme in de novo pyrimidine nucleotide synthesis. A77 1726 also inhibits the activity of p70 S6 kinase (S6K1), a serine/threonine kinase that phosphorylates and activates carbamoyl-phosphate synthetase (CAD), a second rate-limiting enzyme in the de novo pathway of pyrimidine nucleotide synthesis. Our present study focuses on the ability of A77 1726 to inhibit CDV replication and its underlying mechanisms. Here we report that A77 1726 decreased the levels of the N and M proteins of CDV and lowered the virus titres in the conditioned media of CDV-infected Vero cells. CDV replication was not inhibited by Ruxolitinib (Rux), a JAK-specific inhibitor, but by brequinar sodium (BQR), a DHO-DHase-specific inhibitor, and PF-4708671, an S6K1-specific inhibitor. Addition of exogenous uridine, which restores intracellular pyrimidine nucleotide levels, blocked the antiviral activity of A77 1726, BQR and PF-4708671. A77 1726 and PF-4708671 inhibited the activity of S6K1 in CDV-infected Vero cells, as evidenced by the decreased levels of CAD and S6 phosphorylation. S6K1 knockdown suppressed CDV replication and enhanced the antiviral activity of A77 1726. These observations collectively suggest that the antiviral activity of A77 1726 against CDV is mediated by targeting pyrimidine nucleotide synthesis via inhibiting DHO-DHase activity and S6K1-mediated CAD activation.


Assuntos
Antivirais/farmacologia , Crotonatos/farmacologia , Vírus da Cinomose Canina/efeitos dos fármacos , Hidroxibutiratos/farmacologia , Nitrilas/farmacologia , Nucleotídeos de Pirimidina/biossíntese , Toluidinas/farmacologia , Animais , Compostos de Bifenilo/farmacologia , Chlorocebus aethiops , Crotonatos/antagonistas & inibidores , Meios de Cultivo Condicionados , Di-Hidro-Orotato Desidrogenase , Vírus da Cinomose Canina/fisiologia , Hidroxibutiratos/antagonistas & inibidores , Imidazóis/farmacologia , Janus Quinases/antagonistas & inibidores , Leflunomida/metabolismo , Nitrilas/antagonistas & inibidores , Proteínas do Nucleocapsídeo/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Fosforilação , Piperazinas/farmacologia , RNA Interferente Pequeno/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Toluidinas/antagonistas & inibidores , Uridina/farmacologia , Células Vero , Proteínas da Matriz Viral/metabolismo , Replicação Viral/efeitos dos fármacos
19.
Vet Microbiol ; 254: 108982, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33461007

RESUMO

Autophagy plays an important role in restricting the growth of invading intracellular microbes. Salmonella (S) Typhimurium, an intracellular pathogen that causes gastroenteritis and food poisoning in humans, evades autophagic detection by multiple mechanisms. There has been growing interest in developing autophagy inducers as novel antimicrobial agents for treating intracellular bacterial infections. We recently reported that A77 1726, the active metabolite of the anti-inflammatory drug leflunomide, induces autophagy by activating AMP-activated protein kinase (AMPK) and Unc-51 like autophagy activating kinase 1 (ULK1). Our present study aims to determine if A77 1726 was able to restrict intracellular Salmonella growth by inducing autophagy. We first confirmed the ability of A77 1726 to induce autophagy by activating the AMPK-ULK1 axis in uninfected RAW264.7 (a murine macrophage cell line) and HeLa cells (a human cervical carcinoma cell line). A77 1726 enhanced autophagy in S. Typhimurium-infected cells, as evidenced by increased levels of LC3 lipidation and increased numbers of autophagosomes and autolysosomes. Confocal microscopy revealed that A77 1726 induced xenophagy in macrophages, as evidenced by an increased number of LC3-coated bacteria in the cytoplasm. A77 1726 significantly decreased the number of intracellular S. Typhimurium in macrophages. Taken together, our study has demonstrated the ability of A77 1726 to restrict intracellular S. Typhimurium growth in vitro by enhancing xenophagy.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Autofagia/efeitos dos fármacos , Crotonatos/farmacologia , Hidroxibutiratos/farmacologia , Macrófagos/microbiologia , Nitrilas/farmacologia , Salmonella typhimurium/crescimento & desenvolvimento , Toluidinas/farmacologia , Proteínas Quinases Ativadas por AMP/genética , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Células HeLa , Humanos , Macrófagos/efeitos dos fármacos , Camundongos , Fosforilação , Células RAW 264.7 , Salmonella typhimurium/efeitos dos fármacos , Transdução de Sinais
20.
Curr Comput Aided Drug Des ; 17(3): 480-491, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32459610

RESUMO

BACKGROUND: Leflunomide (LFM) and its active metabolite, teriflunomide (TFM), have drawn a lot of attention for their anticancer activities, treatment of rheumatoid arthritis and malaria due to their capability to inhibit dihydroorotate dehydrogenase (DHODH) and Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) enzyme. In this investigation, the strength of intramolecular hydrogen bond (IHB) in five analogs of TFM (ATFM) was analyzed employing density functional theory (DFT) using B3LYP/6-311++G (d, p) level and molecular orbital analysis in the gas phase and water solution. A detailed electronic structure study was performed using the quantum theory of atoms in molecules (QTAIM) and the hydrogen bond energies (EHB) of stable conformer obtained in the range of 76-97 kJ/mol, as a medium hydrogen bond. The effect of substitution on the IHB nature was studied by natural bond orbital analysis (NBO). 1H NMR calculations showed an upward trend in the proton chemical shift of the enolic proton in the chelated ring (14.5 to 15.7ppm) by increasing the IHB strength. All the calculations confirmed the strongest IHB in 5-F-ATFM and the weakest IHB in 2-FATFM. Molecular orbital analysis, including the HOMO-LUMO gap and chemical hardness, was performed to compare the reactivity of inhibitors. Finally, molecular docking analysis was carried out to identify the potency of inhibition of these compounds against PfDHODH enzyme. TFM acts as an inhibitor of dihydroorotate dehydrogenase (DHODH) and Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) enzyme. Leflunomide and its active metabolite teriflunomide have been identified as drugs for treatment of some diseases, such as multiple sclerosis (MS), rheumatoid arthritis (RA), malaria, and cancer. Hydrogen bonds play a key role in the interaction between drugs and enzymes. OBJECTIVES: The aim of the present work is to investigate the effect of the strength of intramolecular hydrogen bonds (IHBs) in the active metabolite analogs of leflunomide or analogs of teriflunomide (ATFMs) and study the interaction of these inhibitors against the PfDHODH enzyme using quantum mechanical methods. METHODS: At first, intramolecular hydrogen bonds in five ATFMs were evaluated by the DFT method, quantum theory of atoms in molecules (QTAIM), nuclear magnetic resonance (NMR), natural bond orbital (NBO), and molecular orbital (MO) analyses. Then, the interaction of these inhibitors against the PfDHODH enzyme were compared using molecular docking study. RESULTS: All the computed results confirm the following trend in the intramolecular hydrogen bond strength in five mono-halo-substituted 2-cyano-3-hydroxy-N-phenylbut-2-enamide (ATFM): 5-FATFM> 4-Br-ATFM ≈ 3-Br-ATFM>3-Cl-ATFM>TFM-Z>2-F-ATFM which is in agreement with QTAIM, NMR, and NBO results. Docking results show that 5-F-ATFM (EHB=97kJ/mol) has the minimum MolDock score due to its considerable IHB strength. CONCLUSION: For strong IHBs (EHB>100kJ/mol), C=O and O-H group are involved in the intramolecular interactions and do not contribute to the external interactions. Also, the docking study revealed maximum binding energy between TFM-Z and PfDHODH enzyme.


Assuntos
Crotonatos/farmacologia , Di-Hidro-Orotato Desidrogenase/antagonistas & inibidores , Hidroxibutiratos/farmacologia , Leflunomida/farmacologia , Nitrilas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Toluidinas/farmacologia , Crotonatos/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Ligação de Hidrogênio , Hidroxibutiratos/química , Leflunomida/análogos & derivados , Leflunomida/química , Modelos Moleculares , Simulação de Acoplamento Molecular , Nitrilas/química , Plasmodium falciparum/enzimologia , Teoria Quântica , Toluidinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA