Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 268
Filtrar
1.
Appl Environ Microbiol ; 89(3): e0173722, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36790186

RESUMO

Cryptosporidium causes severe gastrointestinal disease resulting from the ingestion of oocysts, followed by oocyst excystation in the small intestine and the release of infective sporozoites. An understudied strategy for Cryptosporidium inactivation is purposeful oocyst excystation, as sporozoites do not survive long in the environment. This study showed that C. parvum oocyst excystation was induced by direct contact with various glycosaminoglycans (GAGs), including heparin (Hep), chondroitin sulfate A (CSA), and hyaluronan (HA), assembled on polydopamine (PD)-functionalized surfaces. PD surfaces elicited 97.9 ± 3.6% oocyst attachment, with some of the attached oocysts partially (7.3 ± 1.3%) or fully (4.0 ± 0.6%) excysted after 4 days. The PD-GAG surfaces (GAG concentration = 2 mg/mL) elicited similarly high attachment (>97%) and higher oocyst excystation efficiencies after 4 days. The PD-Hep surfaces elicited the highest number of attached excysted oocysts (11.8 ± 0.63% partially excysted; 11.9 ± 0.49% fully excysted), and the PD-HA surfaces elicited the lowest (8.8 ± 2.1% partially excysted; 7.8 ± 1.2% fully excysted). Surface characterization revealed that the addition of GAGs to the PD surface changed both the surface roughness as well as the surface wettability. Treatment of oocysts with an enzyme that degraded the surface glycocalyx markedly reduced excystation (to <2%) of the oocysts attached to the PD and PD-GAG surfaces. These findings suggest that GAGs provide an important local signal for the excystation of C. parvum oocysts and that certain surface-expressed oocyst receptors are necessary for efficient excystation. These oocyst-receptor relationships may be useful in the design of functionalized surfaces for the purposeful inactivation of oocysts in the environment or in water treatment systems. IMPORTANCE Polydopamine surfaces functionalized with glycosaminoglycans were shown to facilitate the attachment and excystation of Cryptosporidium parvum oocysts. Our findings suggest that a surface-expressed receptor on the oocyst wall plays a key role in excystation, with glycosaminoglycans serving as ligands that trigger the initiation of the process. Future technologies and treatment strategies designed to promote premature excystation of oocysts will minimize the ingestion of sporozoites that initiate infection. Therefore, the results from this study have important implications for the protection of public health from waterborne cryptosporidiosis and may serve as a foundation for engineered surfaces designed to remove oocysts from surface waters or inactivate oocysts in water treatment systems.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Animais , Cryptosporidium/fisiologia , Glicosaminoglicanos/farmacologia , Oocistos/fisiologia , Cryptosporidium parvum/fisiologia
2.
Sci Rep ; 13(1): 1096, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658270

RESUMO

Cryptosporidium parvum is an apicomplexan parasite that causes severe zoonotic diarrhea in humans and calves. Since there are no effective treatments or vaccines for infants or immunocompromised patients, it is important to understand the molecular mechanisms of the parasite-host interaction for novel drug discovery. Mitogen-activated protein kinase (MAP kinase) is a key host factor in interactions between host and various pathogens, including parasites. Although the function of conventional MAP kinases against parasite infection has been investigated, that of atypical MAP kinases remains largely unknown. Therefore, we focused on one of the atypical MAP kinases, MAPK4, and its effect on C. parvum infection in human intestinal cells. Here, we report that MAPK4-deficient intestinal cells showed a significant reduction in C. parvum infection. We also show that host MAPK4 has a role in host cell survival from C. parvum infection. In addition, we show that C. parvum requires host MAPK4 for its successful invasion and asexual reproduction. Taken together, our data suggest that MAPK4 is an important host factor contributing to C. parvum infection in human intestinal cells.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Proteínas Quinases Ativadas por Mitógeno , Animais , Bovinos , Humanos , Criptosporidiose/parasitologia , Cryptosporidium parvum/fisiologia , Intestinos , Proteínas Quinases Ativadas por Mitógeno/metabolismo
3.
Infect Immun ; 90(11): e0039722, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36286526

RESUMO

Cryptosporidium is a leading cause of diarrhea and death in young children and untreated AIDS patients and causes waterborne outbreaks. Pathogenic mechanisms underlying diarrhea and intestinal dysfunction are poorly understood. We previously developed stem-cell derived human intestinal enteroid (HIE) models for Cryptosporidium parvum which we used in this study to investigate the course of infection and its effect on intestinal epithelial integrity. By immunofluorescence and confocal microscopy, there was robust infection of undifferentiated and differentiated HIEs in two and three-dimensional (2D, 3D) models. Infection of differentiated HIEs in the 2D model was greater than that of undifferentiated HIEs but lasted only for 3 days, whereas infection persisted for 21 days and resulted in completion of the life cycle in undifferentiated HIEs. Infection of undifferentiated HIE monolayers suggest that C. parvum infects LGR5+ stem cells. Transepithelial electrical resistance measurement of HIEs in the 2D model revealed that infection resulted in decreased epithelial integrity which persisted in differentiated HIEs but recovered in undifferentiated HIEs. Compromised epithelial integrity was reflected in disorganization of the tight and adherens junctions as visualized using the markers ZO-1 and E-cadherin, respectively. Quantitation using the image analysis tools Tight Junction Organizational Rate and Intercellular Junction Organization Quantification, measurement of monolayer height, and RNA transcripts of both proteins by quantitative reverse transcription PCR confirmed that disruption persisted in differentiated HIEs but recovered in undifferentiated HIEs. These models, which more accurately recapitulate human infection, will be useful tools to dissect pathogenic mechanisms underlying diarrhea and intestinal dysfunction in cryptosporidiosis.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Criança , Humanos , Pré-Escolar , Criptosporidiose/genética , Cryptosporidium parvum/fisiologia , Intestinos , Diarreia/metabolismo , Mucosa Intestinal/metabolismo
4.
Parasitol Int ; 88: 102557, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35134539

RESUMO

Cryptosporidium spp. are protozoan parasites that are transmitted via fecal-oral routes and can exhibit chemical resistance. Chlorine resistance makes it very difficult to eliminate parasites present in contaminated drinking water. While the efficacy of ultraviolet light-emitting diodes (UV-LEDs) against microorganisms has been reported, the efficacy of UV-LEDs against Cryptosporidium spp. has not been fully evaluated. Here, we assessed the efficacy of UV-LEDs with peak wavelengths of 268, 275, 284, and 289 nm against Cryptosporidium parvum at various exposure times, with a fixed exposure distance, using two in vitro methods. Consequently, the time required for 2 log10 inactivation through the excystation method by UV-LEDs of 268, 275, 284, and 289 nm was estimated as 115.5, 104.1, 37.4, and 30.7 min, respectively. The propidium iodide (PI) and 4',6-diamidino-2-phenylindole (DAPI) staining assays estimated the inactivation time as 311.3, 275.2, 60.6, and 39.1 min, respectively. Our results showed that UV-LED irradiation at longer wavelengths produced higher inactivation activity against C. parvum, which corroborates our previously reported in vivo assay results, although further study is needed to clarify the mechanism.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Animais , Criptosporidiose/parasitologia , Cryptosporidium parvum/fisiologia , Oocistos/fisiologia , Coloração e Rotulagem , Raios Ultravioleta
5.
Infect Immun ; 90(3): e0067921, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35099276

RESUMO

Cryptosporidium infection is a leading cause of diarrhea-associated morbidity and mortality in young children globally. Single nucleotide polymorphisms (SNPs) in the human protein kinase C-α (PRKCA) gene region have been associated with susceptibility to cryptosporidiosis. Here, we examined the role of protein kinase C-α (PKCα) activity in human HCT-8 intestinal epithelial cells during infection with Cryptosporidium parvum sporozoites. To delineate the role of PKCα in infection, we developed a fluorescence-based imaging assay to differentiate adherent from intracellular parasites. We tested pharmacological agonists and antagonists of PKCα and measured the effect on C. parvum sporozoite adherence to and invasion of HCT-8 cells. We demonstrate that both PKCα agonists and antagonists significantly alter parasite adherence and invasion in vitro. We found that HCT-8 cell PKCα is activated by C. parvum infection. Our findings suggest intestinal epithelial cell PKCα as a potential host-directed therapeutic target for cryptosporidiosis and implicate PKCα activity as a mediator of parasite adherence and invasion.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Animais , Criança , Pré-Escolar , Criptosporidiose/parasitologia , Cryptosporidium parvum/fisiologia , Humanos , Proteína Quinase C-alfa/genética , Proteína Quinase C-alfa/metabolismo , Esporozoítos
6.
Microb Pathog ; 164: 105424, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35092833

RESUMO

Cryptosporidium parvum is a major cause of diarrheal disease in immature or weakened immune systems, mainly in infants and young children in resource-poor settings. Despite its high prevalence, fully effective and safe drugs for the treatment of C. parvum infections remain scarce, and there is no vaccine. Meanwhile, curcumin has shown protective effects against C. parvum infections. However, the mechanisms of action and relationship to the gut microbiota and innate immune responses are unclear. Immunosuppressed neonatal mice were infected with oocysts of C. parvum and either untreated or treated with a normal diet, curcumin or paromomycin. We found that curcumin stopped C. parvum oocysts shedding in the feces of infected immunosuppressed neonatal mice, prevented epithelial damage, and villi degeneration, as well as prevented recurrence of infection. Curcumin supplementation increased the relative abundance of Bacteroidetes and decreased the relative abundance of Firmicutes and Proteobacteria in mice infected with C. parvum as shown by 16S rRNA gene sequencing analysis. The relative abundance of Lactobacillus, Bacteroides, Akkermansia, Desulfovibrio, Prevotella, and Helicobacter was significantly associated with C. parvum infection inhibited by curcumin. Curcumin significantly (P < 0.01) suppressed IFN-γ and IL -18 gene expression levels in immunosuppressed neonatal C. parvum-infected mice. We demonstrate that the therapeutic effects curcumin are associated with alterations in the gut microbiota and innate immune-related genes, which may be linked to the anti-Cryptosporidium mechanisms of curcumin.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Curcumina , Microbioma Gastrointestinal , Animais , Animais Recém-Nascidos , Criptosporidiose/tratamento farmacológico , Criptosporidiose/prevenção & controle , Cryptosporidium parvum/fisiologia , Curcumina/farmacologia , Curcumina/uso terapêutico , Fezes , Imunidade Inata , Camundongos , RNA Ribossômico 16S/genética
7.
Elife ; 102021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34866573

RESUMO

The parasite Cryptosporidium is responsible for diarrheal disease in young children causing death, malnutrition, and growth delay. Cryptosporidium invades enterocytes where it develops in a unique intracellular niche. Infected cells exhibit profound changes in morphology, physiology, and transcriptional activity. How the parasite effects these changes is poorly understood. We explored the localization of highly polymorphic proteins and found members of the Cryptosporidium parvum MEDLE protein family to be translocated into the cytosol of infected cells. All intracellular life stages engage in this export, which occurs after completion of invasion. Mutational studies defined an N-terminal host-targeting motif and demonstrated proteolytic processing at a specific leucine residue. Direct expression of MEDLE2 in mammalian cells triggered an ER stress response, which was also observed during infection. Taken together, our studies reveal the presence of a Cryptosporidium secretion system capable of delivering parasite proteins into the infected enterocyte.


Assuntos
Criptosporidiose/parasitologia , Cryptosporidium parvum/fisiologia , Citosol/parasitologia , Interações Hospedeiro-Parasita , Proteínas de Protozoários/fisiologia , Animais , Camundongos
8.
PLoS Negl Trop Dis ; 15(11): e0009949, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34818332

RESUMO

Cryptosporidium is a life-threating protozoan parasite belonging to the phylum Apicomplexa, which mainly causes gastroenteritis in a variety of vertebrate hosts. Currently, there is a re-emergence of Cryptosporidium infection; however, no fully effective drug or vaccine is available to treat Cryptosporidiosis. In the present study, to better understand the detailed interaction between the host and Cryptosporidium parvum, a large-scale label-free proteomics study was conducted to characterize the changes to the proteome induced by C. parvum infection. Among 4406 proteins identified, 121 proteins were identified as differentially abundant (> 1.5-fold cutoff, P < 0.05) in C. parvum infected HCT-8 cells compared with uninfected cells. Among them, 67 proteins were upregulated, and 54 proteins were downregulated at 36 h post infection. Analysis of the differentially abundant proteins revealed an interferon-centered immune response of the host cells against C. parvum infection and extensive inhibition of metabolism-related enzymes in the host cells caused by infection. Several proteins were further verified using quantitative real-time reverse transcription polymerase chain reaction and western blotting. This systematic analysis of the proteomics of C. parvum-infected HCT-8 cells identified a wide range of functional proteins that participate in host anti-parasite immunity or act as potential targets during infection, providing new insights into the molecular mechanism of C. parvum infection.


Assuntos
Criptosporidiose/genética , Criptosporidiose/imunologia , Cryptosporidium parvum/fisiologia , Criptosporidiose/parasitologia , Cryptosporidium parvum/genética , Interações Hospedeiro-Parasita , Humanos , Proteínas/genética , Proteínas/imunologia , Proteômica
9.
mBio ; 12(5): e0212721, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34488445

RESUMO

Interferon (IFN) signaling is key to mucosal immunity in the gastrointestinal tract, but cellular regulatory elements that determine interferon gamma (IFN-γ)-mediated antimicrobial defense in intestinal epithelial cells are not fully understood. We report here that a long noncoding RNA (lncRNA), GenBank accession no. XR_001779380, was increased in abundance in murine intestinal epithelial cells following infection by Cryptosporidium, an important opportunistic pathogen in AIDS patients and a common cause of diarrhea in young children. Expression of XR_001779380 in infected intestinal epithelial cells was triggered by TLR4/NF-κB/Cdc42 signaling and epithelial-specific transcription factor Elf3. XR_001779380 primed epithelial cells for IFN-γ-mediated gene transcription through facilitating Stat1/Swi/Snf-associated chromatin remodeling. Interactions between XR_001779380 and Prdm1, which is expressed in neonatal but not adult intestinal epithelium, attenuated Stat1/Swi/Snf-associated chromatin remodeling induced by IFN-γ, contributing to suppression of IFN-γ-mediated epithelial defense in neonatal intestine. Our data demonstrate that XR_001779380 is an important regulator in IFN-γ-mediated gene transcription and age-associated intestinal epithelial antimicrobial defense. IMPORTANCE Epithelial cells along the mucosal surface provide the front line of defense against luminal pathogen infection in the gastrointestinal tract. These epithelial cells represent an integral component of a highly regulated communication network that can transmit essential signals to cells in the underlying intestinal mucosa that, in turn, serve as targets of mucosal immune mediators. LncRNAs are recently identified long noncoding transcripts that can regulate gene transcription through their interactions with other effect molecules. In this study, we demonstrated that lncRNA XR_001779380 was upregulated in murine intestinal epithelial cells following infection by a mucosal protozoan parasite Cryptosporidium. Expression of XR_001779380 in infected cells primed host epithelial cells for IFN-γ-mediated gene transcription, relevant to age-dependent intestinal antimicrobial defense. Our data provide new mechanistic insights into how intestinal epithelial cells orchestrate intestinal mucosal defense against microbial infection.


Assuntos
Criptosporidiose/imunologia , Cryptosporidium parvum/fisiologia , Interferon gama/imunologia , Mucosa Intestinal/imunologia , RNA Longo não Codificante/imunologia , Fatores Etários , Animais , Criptosporidiose/genética , Criptosporidiose/parasitologia , Cryptosporidium parvum/genética , Células Epiteliais/imunologia , Células Epiteliais/parasitologia , Humanos , Imunidade nas Mucosas , Interferon gama/genética , Mucosa Intestinal/parasitologia , Camundongos , NF-kappa B/genética , NF-kappa B/imunologia , RNA Longo não Codificante/genética , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia
10.
mBio ; 12(2)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33688009

RESUMO

The apicomplexan parasite Cryptosporidium parvum contains an expanded family of 22 insulinase-like proteases (INS), a feature that contrasts with their otherwise streamlined genome. Here, we examined the function of INS1, which is most similar to the human insulinase protease that cleaves a variety of small peptide substrates. INS1 is an M16A clan member and contains a signal peptide, an N-terminal domain with the HXXEH active site, followed by three inactive domains. Unlike previously studied C. parvum INS proteins that are expressed in sporozoites and during merogony, INS1 was expressed exclusively in macrogamonts, where it was localized in small cytoplasmic vesicles. Although INS1 did not colocalize with the oocyst wall protein recognized by the antibody OW50, immune-electron microscopy indicated that INS1 resides in small vesicles in the secretory system. Notably, these small INS1-positive vesicles were often in close proximity to large OW50-positive vacuoles resembling wall-forming bodies, which contain precursors for oocyst wall formation. Genetic deletion of INS1, or replacement with an active-site mutant, resulted in lower formation of macrogamonts in vitro and reduced oocyst shedding in vivo Our findings reveal that INS1 functions in the formation or maturation of macrogamonts and that its loss results in attenuated virulence in immunocompromised mice.IMPORTANCE Cryptosporidiosis is a debilitating diarrheal disease in young children in developing countries. The absence of effective treatments or vaccines makes this infection very difficult to manage in susceptible populations. Although the oral dose of oocysts needed to cause infection is low, infected individuals shed very high numbers of oocysts, readily contaminating the environment. Our studies demonstrate that the protease INS1 is important for formation of female sexual stages and that in its absence, parasites produce fewer oocysts and are attenuated in immunocompromised mice. These findings suggest that mutants lacking INS1, or related proteases, are useful for further characterizing the pathway that leads to macrogamont maturation and oocyst wall formation.


Assuntos
Cryptosporidium parvum/enzimologia , Cryptosporidium parvum/fisiologia , Insulisina/genética , Insulisina/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Animais , Criptosporidiose/parasitologia , Cryptosporidium parvum/crescimento & desenvolvimento , Cryptosporidium parvum/ultraestrutura , Fezes/parasitologia , Feminino , Deleção de Genes , Hospedeiro Imunocomprometido , Estágios do Ciclo de Vida/genética , Estágios do Ciclo de Vida/fisiologia , Camundongos , Camundongos SCID , Microscopia Eletrônica , Oocistos/fisiologia , Oocistos/ultraestrutura , Receptores de Interferon/genética , Vacúolos/parasitologia , Vacúolos/ultraestrutura , Receptor de Interferon gama
11.
J Appl Microbiol ; 130(2): 504-515, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32737913

RESUMO

AIMS: The study was aimed to understand the depuration process of Cryptosporidium parvum and Toxoplasma gondii oocysts by zebra mussel (Dreissena polymorpha), to consider the use of the zebra mussel as a bioremediation tool. MATERIALS AND METHODS: Two experiments were performed: (i) individual exposure of mussel to investigate oocyst transfers between bivalves and water and (ii) in vivo exposure to assess the ability of the zebra mussel to degrade oocysts. RESULTS: (i) Our results highlighted a transfer of oocysts from the mussels to the water after 3 and 7 days of depuration; however, some oocysts were still bioaccumulated in mussel tissue. (ii) Between 7 days of exposure at 1000 or 10 000 oocysts/mussel/day and 7 days of depuration, the number of bioaccumulated oocysts did not vary but the number of infectious oocysts decreased. CONCLUSION: Results show that D. polymorpha can release oocysts in water via (pseudo)faeces in depuration period. Oocysts remain bioaccumulated and infectious oocyst number decreases during the depuration period in zebra mussel tissues. Results suggest a degradation of bioaccumulated C. parvum and T. gondii oocysts. SIGNIFICANCE AND IMPACT OF THE STUDY: This study highlighted the potential use of D. polymorpha as a bioremediation tool to mitigate of protozoan contamination in water resources.


Assuntos
Cryptosporidium parvum/fisiologia , Dreissena/fisiologia , Toxoplasma/fisiologia , Animais , Biodegradação Ambiental , Dreissena/parasitologia , Oocistos/fisiologia , Água/parasitologia
12.
Parasitology ; 148(4): 408-419, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33261668

RESUMO

A prior systematic review on the efficacy of halofuginone (HFG) treatment to prevent or treat cryptosporidiosis in bovine calves was inconclusive. We undertook an updated synthesis and meta-analyses on key outcomes for the treatment of calves with HFG. Evaluated outcomes were oocyst shedding, diarrhoea, mortality and weight gain. Experiments had to describe results for same age animals in contemporary arms. Most doses were 100-150 mcg kg-1 day-1. Results were subgrouped by study design, experiments with the lowest risk of bias and lack of industry funding. Eighteen articles were found that described 25 experiments. Most evidence came from randomized controlled trials in Europe. Significantly lower incidence of oocyst shedding, diarrhoea burden and mortality was reported when treatment started before calves were 5 days old. Most studies reported on outcomes for animals up to at least 28 days old. Publication bias was possible in all outcomes and seemed especially likely for diarrhoea outcomes. Beneficial results when HFG treatment was initiated in calves older than 5 days were also found. Prophylactic treatment to prevent cryptosporidiosis is effective in preventing multiple negative outcomes and is beneficial to calf health and will result in a reduction of environmental contamination by Cryptosporidium oocysts.


Assuntos
Doenças dos Bovinos/tratamento farmacológico , Doenças dos Bovinos/prevenção & controle , Coccidiostáticos/uso terapêutico , Criptosporidiose/tratamento farmacológico , Criptosporidiose/prevenção & controle , Piperidinas/uso terapêutico , Quinazolinonas/uso terapêutico , Animais , Bovinos , Doenças dos Bovinos/mortalidade , Doenças dos Bovinos/parasitologia , Coccidiostáticos/normas , Criptosporidiose/mortalidade , Cryptosporidium parvum/efeitos dos fármacos , Cryptosporidium parvum/fisiologia , Diarreia/veterinária , Fezes/parasitologia , Oocistos , Piperidinas/normas , Quinazolinonas/normas , Aumento de Peso
13.
mBio ; 11(6)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33323514

RESUMO

The protozoan parasite Cryptosporidium sp. is a leading cause of diarrheal disease in those with compromised or underdeveloped immune systems, particularly infants and toddlers in resource-poor localities. As an enteric pathogen, Cryptosporidium sp. invades the apical surface of intestinal epithelial cells, where it resides in close proximity to metabolites in the intestinal lumen. However, the effect of gut metabolites on susceptibility to Cryptosporidium infection remains largely unstudied. Here, we first identified which gut metabolites are prevalent in neonatal mice when they are most susceptible to Cryptosporidium parvum infection and then tested the isolated effects of these metabolites on C. parvum invasion and growth in intestinal epithelial cells. Our findings demonstrate that medium or long-chain saturated fatty acids inhibit C. parvum growth, perhaps by negatively affecting the streamlined metabolism in C. parvum, which is unable to synthesize fatty acids. Conversely, long-chain unsaturated fatty acids enhanced C. parvum invasion, possibly by modulating membrane fluidity. Hence, gut metabolites, either from diet or produced by the microbiota, influence C. parvum growth in vitro and may also contribute to the early susceptibility to cryptosporidiosis seen in young animals.IMPORTANCECryptosporidium sp. occupies a unique intracellular niche that exposes the parasite to both host cell contents and the intestinal lumen, including metabolites from the diet and produced by the microbiota. Both dietary and microbial products change over the course of early development and could contribute to the changes seen in susceptibility to cryptosporidiosis in humans and mice. Consistent with this model, we show that the immature gut metabolome influenced the growth of Cryptosporidium parvumin vitro Interestingly, metabolites that significantly altered parasite growth were fatty acids, a class of molecules that Cryptosporidium sp. is unable to synthesize de novo The enhancing effects of polyunsaturated fatty acids and the inhibitory effects of saturated fatty acids presented in this study may provide a framework for future studies into this enteric parasite's interactions with exogenous fatty acids during the initial stages of infection.


Assuntos
Bactérias/metabolismo , Criptosporidiose/parasitologia , Cryptosporidium parvum/fisiologia , Microbioma Gastrointestinal , Mucosa Intestinal/microbiologia , Mucosa Intestinal/parasitologia , Animais , Animais Recém-Nascidos/metabolismo , Animais Recém-Nascidos/microbiologia , Animais Recém-Nascidos/parasitologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Criptosporidiose/metabolismo , Criptosporidiose/microbiologia , Cryptosporidium parvum/genética , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/parasitologia , Ácidos Graxos/metabolismo , Feminino , Humanos , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR
14.
Fish Shellfish Immunol ; 107(Pt B): 452-462, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33197585

RESUMO

This study aimed to combine cellular and molecular analyses for better detail the effects of various stresses on a sentinel species of freshwater invertebrate. For this purpose, the hemocytes of the zebra mussel, Dreissena polymorpha, were exposed to different stresses at two different intensities, high or low: chemical (cadmium and ionomycin), physical (ultraviolet B), or biological ones (Cryptosporidium parvum and Toxoplasma gondii). After exposure, flow cytometry and droplet digital PCR analyses were performed on the same pools of hemocytes. Several responses related to necrosis, apoptosis, phagocytosis, production of nitric oxide and expression level of several genes related to the antioxidant, detoxification and immune systems were evaluated. Results showed that hemocyte integrity was compromised by both chemical and physical stress, and cellular markers of phagocytosis reacted to ionomycin and protozoa. While cadmium induced oxidative stress and necrosis, ionomycin tends to modulate the immune response of hemocytes. Although both biological stresses led to a similar immune response, C. parvum oocysts induced more effects than T. gondii, notably through the expression of effector caspases gene and an increase in hemocyte necrosis. This suggests different management of the two protozoa by the cell. This work provides new knowledge of biomarkers in the zebra mussel, at both cellular and molecular levels, and contributes to elucidate the mechanisms of action of different kinds of stress in this species.


Assuntos
Cádmio/efeitos adversos , Cryptosporidium parvum/fisiologia , Dreissena/imunologia , Hemócitos , Ionomicina/efeitos adversos , Toxoplasma/fisiologia , Raios Ultravioleta/efeitos adversos , Animais , Biomarcadores/análise , Citometria de Fluxo , Hemócitos/efeitos dos fármacos , Hemócitos/parasitologia , Hemócitos/efeitos da radiação , Reação em Cadeia da Polimerase , Estresse Fisiológico/imunologia
15.
Appl Environ Microbiol ; 86(19)2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32709724

RESUMO

An outbreak of cryptosporidiosis among veterinary students performing fetotomy exercises on euthanized calves took place in September 2018 in Denmark. A prospective cohort investigation was performed to identify risk factors and provide guidance for preventing outbreaks of cryptosporidiosis in this setting. Ninety-seven students attended the fetotomy exercises and completed a questionnaire about symptoms and potential risk behavior. Real-time PCR was used to detect Cryptosporidium spp. in stool samples from students and to quantify the fecal parasite load in the calves used for the exercises. gp60 subtyping was carried out for the Cryptosporidium-positive samples. Our case definition was based on participation in a fetotomy exercise, reported symptoms, and laboratory results. Eleven laboratory-confirmed or probable cases (11%) were identified in two outbreaks during the prospective study period, with attack rates of 4/10 (40%) and 7/9 (78%), respectively. The risk factors for cryptosporidiosis we identified were performing the exercise on a diarrheic calf, reporting visible fecal contamination on the personal protective equipment (PPE), and reporting problems with PPE during the exercise. Cryptosporidium parvum IIaA15G2R1 was detected in both cases and calves. A significantly higher proportion of the calves aged 7 days old and above were positive compared with younger calves. Furthermore, a high fecal Cryptosporidium load in a calf was associated with a higher probability of an outbreak among the students. Based on our results, using noninfected calves for the exercises, appropriate use of PPE, and thorough hand hygiene are recommended to reduce the risk of contracting cryptosporidiosis in connection with fetotomy exercises.IMPORTANCECryptosporidium spp. can cause severe diarrhea in infected individuals. Cryptosporidium parvum is zoonotic, and cattle are the main reservoir. In several countries, outbreaks of cryptosporidiosis have occurred in veterinary students after handling calves. We carried out a 1-year-long prospective study to investigate the occurrence of these recurrent cryptosporidiosis outbreaks in Denmark. Our investigation used a One Health approach and combined comprehensive epidemiological approaches and laboratory methods applied to both students and calves in the setting of the fetotomy exercises. Two outbreaks took place during the study period; additionally, we retrospectively identified two more suspected outbreaks prior to the study period. The results illustrated a high risk of contracting cryptosporidiosis among veterinary students in the setting of the fetotomy exercises, especially when using calves with high fecal Cryptosporidium loads. Our data can be used to inform future efforts to prevent transmission of Cryptosporidium parvum to students during fetotomy exercises.


Assuntos
Bovinos/cirurgia , Criptosporidiose/epidemiologia , Surtos de Doenças , Feto/cirurgia , Estudantes/estatística & dados numéricos , Adulto , Animais , Criptosporidiose/microbiologia , Cryptosporidium parvum/fisiologia , Dinamarca/epidemiologia , Feminino , Humanos , Masculino , Estudos Prospectivos , Fatores de Risco , Medicina Veterinária , Adulto Jovem
16.
Parasitol Int ; 77: 102108, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32224132

RESUMO

As an alternative to using ultraviolet (UV) lamps, which are made with mercury that is toxic to the environment and human health, UV light-emitting diodes (UV-LEDs) are expected to be effective for inactivating microorganisms in water. Although UV-LEDs have been reported to be effective against bacteria and viruses, the effectiveness of UV-LEDs against Cryptosporidium parasites has not been fully evaluated. As we report here, we have developed an in vivo quantitative inactivation assay for C. parvum oocysts using immunodeficient mice. Using the assay, we evaluated the effectiveness of treatment by UV lamp (254 nm) at approximately 1000 µJ/cm2 (for 3 s at a distance of 95 mm) compared to inactivation by commercially available UV-LEDs (with peak wavelengths of 268, 275, 284, and 289 nm). The shed patterns of oocysts after treatment with 284- and 289-nm wavelength UV-LEDs were significantly delayed compared to that after treatment with a UV lamp. These findings provide the first suggestion that UV-LEDs are effective against these parasites, as assessed using commercially available 350-mA UV-LEDs under conditions of fixed exposure distance and time.


Assuntos
Cryptosporidium parvum/fisiologia , Cryptosporidium parvum/efeitos da radiação , Oocistos/fisiologia , Oocistos/efeitos da radiação , Raios Ultravioleta , Animais , Bioensaio , Criptosporidiose/imunologia , Criptosporidiose/parasitologia , Feminino , Camundongos , Camundongos SCID
17.
Prev Vet Med ; 176: 104904, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32066023

RESUMO

Cryptosporidiosis is one of the most common zoonosis worldwide, causing intestinal infection to both humans and livestock. The purpose of this study was to assess whether the level of anti-C. parvum IgG antibodies transferred through colostrum from dams to newborn calves impacts the susceptibility to cryptosporidiosis. A number of 50 dams and their healthy newborns were included in the study. Colostrum samples were collected within 12 h after birth and anti-C. parvum IgG antibody levels were determined by single radial immunodiffusion. The health condition of the newborns was daily monitored, and fecal samples were collected at first diarrheic episode of a calf. In all dams, the anti-C. parvum IgG antibody concentration in colostrum varied between 570 and 4070 mg/dl; in dams who gave birth to calves with diarrhea and were C. parvum-positive, the antibody concentration in colostrum varied between 680 and 3680 mg/dl (Table 1). The point-biserial correlation showed a negative correlation between the levels of anti-C. parvum antibodies and manifestation of clinical cryptosporidiosis (r=-0.425). Our findings highlight the importance of IgG levels in colostrum received by neonatal calves during their first day of life for prevention of C. parvum infection.


Assuntos
Anticorpos Antiprotozoários/fisiologia , Doenças dos Bovinos/imunologia , Colostro/imunologia , Criptosporidiose/imunologia , Cryptosporidium parvum/fisiologia , Diarreia/veterinária , Imunoglobulina G/fisiologia , Animais , Animais Recém-Nascidos/imunologia , Bovinos/imunologia , Doenças dos Bovinos/parasitologia , Doenças dos Bovinos/prevenção & controle , Criptosporidiose/parasitologia , Criptosporidiose/prevenção & controle , Diarreia/imunologia , Diarreia/parasitologia , Diarreia/prevenção & controle , Grécia
19.
J Vis Exp ; (151)2019 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-31566619

RESUMO

Cryptosporidium parvum is one of the major causes of human diarrheal disease. To understand the pathology of the parasite and develop efficient drugs, an in vitro culture system that recapitulates the conditions in the host is needed. Organoids, which closely resemble the tissues of their origin, are ideal for studying host-parasite interactions. Organoids are three-dimensional (3D) tissue-derived structures which are derived from adult stem cells and grow in culture for extended periods of time without undergoing any genetic aberration or transformation. They have well defined polarity with both apical and basolateral surfaces. Organoids have various applications in drug testing, bio banking, and disease modeling and host-microbe interaction studies. Here we present a step-by-step protocol of how to prepare the oocysts and sporozoites of Cryptosporidium for infecting human intestinal and airway organoids. We then demonstrate how microinjection can be used to inject the microbes into the organoid lumen. There are three major methods by which organoids can be used for host-microbe interaction studies-microinjection, mechanical shearing and plating, and by making monolayers. Microinjection enables maintenance of the 3D structure and allows for precise control of parasite volumes and direct apical side contact for the microbes. We provide details for optimal growth of organoids for either imaging or oocyst production. Finally, we also demonstrate how the newly generated oocysts can be isolated from the organoid for further downstream processing and analysis.


Assuntos
Cryptosporidium parvum/fisiologia , Microinjeções , Organoides/citologia , Técnicas de Cultura de Tecidos/métodos , Humanos , Intestinos/citologia , Intestinos/microbiologia
20.
Am J Physiol Cell Physiol ; 317(6): C1205-C1212, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31483700

RESUMO

The protozoan parasite Cryptosporidium parvum (CP) causes cryptosporidiosis, a diarrheal disease worldwide. Infection in immunocompetent hosts typically results in acute, self-limiting, or recurrent diarrhea. However, in immunocompromised individuals infection can cause fulminant diarrhea, extraintestinal manifestations, and death. To date, the mechanisms underlying CP-induced diarrheal pathogenesis are poorly understood. Diarrheal diseases most commonly involve increased secretion and/or decreased absorption of fluid and electrolytes. We and others have previously shown impaired chloride absorption in infectious diarrhea due to dysregulation of SLC26A3 [downregulated in adenoma (DRA)], the human intestinal apical membrane Cl-/HCO3- exchanger protein. However, there are no studies on the effects of CP infection on DRA activity. Therefore, we examined the expression and function of DRA in intestinal epithelial cells in response to CP infection in vitro and in vivo. CP infection (0.5 × 106 oocysts/well in 24-well plates, 24 h) of Caco-2 cell monolayers significantly decreased Cl-/HCO3- exchange activity (measured as DIDS-sensitive 125I uptake) as well as DRA mRNA and protein levels. Substantial downregulation of DRA mRNA and protein was also observed following CP infection ex vivo in mouse enteroid-derived monolayers and in vivo in the ileal and jejunal mucosa of C57BL/6 mice for 24 h. However, at 48 h after infection in vivo, the effects on DRA mRNA and protein were attenuated and at 5 days after infection DRA returned to normal levels. Our results suggest that impaired chloride absorption due to downregulation of DRA could be one of the contributing factors to CP-induced acute, self-limiting diarrhea in immunocompetent hosts.


Assuntos
Antiporters/genética , Antiportadores de Cloreto-Bicarbonato/genética , Criptosporidiose/genética , Cryptosporidium parvum/patogenicidade , Regulação da Expressão Gênica/genética , Mucosa Intestinal/metabolismo , Transportadores de Sulfato/genética , Animais , Anticorpos Neutralizantes/farmacologia , Antiporters/antagonistas & inibidores , Antiporters/metabolismo , Células CACO-2 , Antiportadores de Cloreto-Bicarbonato/antagonistas & inibidores , Antiportadores de Cloreto-Bicarbonato/metabolismo , Cloretos/metabolismo , Criptosporidiose/metabolismo , Criptosporidiose/parasitologia , Cryptosporidium parvum/fisiologia , Interações Hospedeiro-Parasita/genética , Humanos , Íleo/metabolismo , Íleo/parasitologia , Mucosa Intestinal/parasitologia , Transporte de Íons , Janus Quinases/genética , Janus Quinases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Organoides/metabolismo , Organoides/parasitologia , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Transportadores de Sulfato/antagonistas & inibidores , Transportadores de Sulfato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA