Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Comp Neurol ; 529(11): 2865-2882, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33660861

RESUMO

Box jellyfish have an elaborate visual system and perform advanced visually guided behaviors. However, the rhopalial nervous system (RNS), believed to be the main visual processing center, only has 1000 neurons in each of the four eye carrying rhopalia. We have examined the detailed structure of the RNS of the box jellyfish Tripedalia cystophora, using immunolabeling with antibodies raised against four putative neuropeptides (T. cystophora RFamide, VWamide, RAamide, and FRamide). In the RNS, T. cystophora RF-, VW-, and RAamide antibodies stain sensory neurons, the pit eyes, the neuropil, and peptide-specific subpopulations of stalk-associated neurons and giant neurons. Furthermore, RFamide ir+ neurites are seen in the epidermal stalk nerve, whereas VWamide antibodies stain the gastrodermal stalk nerve. RFamide has the most widespread expression including in the ring and radial nerves, the pedalium nerve plexus, and the tentacular nerve net. RAamide is the putative neurotransmitter in the motor neurons of the subumbrellar nerve net, and VWamide is a potential marker for neuronal differentiation as it is found in subpopulations of undifferentiated cells both in the rhopalia and in the bell. The results from the FRamide antibodies were not included as only few cells were stained, and in an unreproducible way. Our studies show hitherto-unseen details of the nervous system of T. cystophora and allowed us to identify specific functional groups of neurons. This identification is important for understanding visual processing in the RNS and enables experimental work, directly addressing the role of the different neuropeptides in vision.


Assuntos
Cubomedusas/metabolismo , Rede Nervosa/metabolismo , Neuropeptídeos/biossíntese , Neurópilo/metabolismo , Vias Visuais/metabolismo , Fatores Etários , Animais , Cubomedusas/química , Cubomedusas/genética , Expressão Gênica , Rede Nervosa/química , Sistema Nervoso/química , Sistema Nervoso/metabolismo , Neuritos/química , Neuritos/metabolismo , Neuropeptídeos/análise , Neuropeptídeos/genética , Neurópilo/química , Células Receptoras Sensoriais/química , Células Receptoras Sensoriais/metabolismo , Vias Visuais/química
2.
Artigo em Inglês | MEDLINE | ID: mdl-33396697

RESUMO

Box jellyfish are extremely potent venom-producing marine organisms. While they have been found worldwide, the highest health burden has been anticipated to be the tropical Indo-Pacific of Southeast Asia (SEA). At least 12 Cubozoan species have now been documented in Thai waters, and many of them inflict acutely lethal strings, especially those under the order Chirodropida. Our previous study has successfully differentiated species of box jellyfish using DNA sequencing to support the morphological study. In this study, we specifically designed polymerase chain reaction (PCR) primers for the 16S ribosomal RNA (rRNA) gene and the mitochondrial DNA cytochrome oxidase subunit I (COI) gene of lethal Thai Chironex species. The SYBR green-based real-time PCR panel was performed for rapid species identification. The sensitivity and specificity of the panel were determined by testing samples of different species. Moreover, we applied the panel to the tentacle sample from a real patient, which helped confirm the animal-of-cause of envenomation. Our results show a success for species identification of box jellyfish using 16S rRNA and COI PCR panel, which revealed congruence between molecular and morphological identification. Furthermore, the panel worked very well with the unknown samples and jellyfish tissue from the real envenomation case. The results demonstrated that molecular panels were able to identify three species of Chironex box jellyfish both rapidly and accurately, and can be performed without having a complete specimen or morphological study.


Assuntos
Cubomedusas , Animais , Cubomedusas/classificação , Cubomedusas/genética , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Humanos , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Especificidade da Espécie , Tailândia
3.
BMC Genomics ; 20(1): 175, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30836949

RESUMO

BACKGROUND: The phyla Cnidaria, Placozoa, Ctenophora, and Porifera emerged before the split of proto- and deuterostome animals, about 600 million years ago. These early metazoans are interesting, because they can give us important information on the evolution of various tissues and organs, such as eyes and the nervous system. Generally, cnidarians have simple nervous systems, which use neuropeptides for their neurotransmission, but some cnidarian medusae belonging to the class Cubozoa (box jellyfishes) have advanced image-forming eyes, probably associated with a complex innervation. Here, we describe a new transcriptome database from the cubomedusa Tripedalia cystophora. RESULTS: Based on the combined use of the Illumina and PacBio sequencing technologies, we produced a highly contiguous transcriptome database from T. cystophora. We then developed a software program to discover neuropeptide preprohormones in this database. This script enabled us to annotate seven novel T. cystophora neuropeptide preprohormone cDNAs: One coding for 19 copies of a peptide with the structure pQWLRGRFamide; one coding for six copies of a different RFamide peptide; one coding for six copies of pQPPGVWamide; one coding for eight different neuropeptide copies with the C-terminal LWamide sequence; one coding for thirteen copies of a peptide with the RPRAamide C-terminus; one coding for four copies of a peptide with the C-terminal GRYamide sequence; and one coding for seven copies of a cyclic peptide, of which the most frequent one has the sequence CTGQMCWFRamide. We could also identify orthologs of these seven preprohormones in the cubozoans Alatina alata, Carybdea xaymacana, Chironex fleckeri, and Chiropsalmus quadrumanus. Furthermore, using TBLASTN screening, we could annotate four bursicon-like glycoprotein hormone subunits, five opsins, and 52 other family-A G protein-coupled receptors (GPCRs), which also included two leucine-rich repeats containing G protein-coupled receptors (LGRs) in T. cystophora. The two LGRs are potential receptors for the glycoprotein hormones, while the other GPCRs are candidate receptors for the above-mentioned neuropeptides. CONCLUSIONS: By combining Illumina and PacBio sequencing technologies, we have produced a new high-quality de novo transcriptome assembly from T. cystophora that should be a valuable resource for identifying the neuronal components that are involved in vision and other behaviors in cubomedusae.


Assuntos
Cubomedusas/genética , Peptídeos/genética , Transmissão Sináptica/genética , Transcriptoma/genética , Animais , Cubomedusas/fisiologia , Humanos , Neurônios/metabolismo , Neuropeptídeos , Opsinas/genética , Receptores Acoplados a Proteínas G/genética , Visão Ocular/genética , Visão Ocular/fisiologia
4.
Proc Natl Acad Sci U S A ; 115(24): 6201-6206, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29793939

RESUMO

Box jellyfish and vertebrates are separated by >500 million years of evolution yet have structurally analogous lens eyes that employ rhodopsin photopigments for vision. All opsins possess a negatively charged residue-the counterion-to maintain visible-light sensitivity and facilitate photoisomerization of their retinaldehyde chromophore. In vertebrate rhodopsins, the molecular evolution of the counterion position-from a highly conserved distal location in the second extracellular loop (E181) to a proximal location in the third transmembrane helix (E113)-is established as a key driver of higher fidelity photoreception. Here, we use computational biology and heterologous action spectroscopy to determine whether the appearance of the advanced visual apparatus in box jellyfish was also accompanied by changes in the opsin tertiary structure. We found that the counterion in an opsin from the lens eye of the box jellyfish Carybdea rastonii (JellyOp) has also moved to a unique proximal location within the transmembrane bundle-E94 in TM2. Furthermore, we reveal that this Schiff base/counterion system includes an additional positive charge-R186-that has coevolved with E94 to functionally separate E94 and E181 in the chromophore-binding pocket of JellyOp. By engineering this pocket-neutralizing R186 and E94, or swapping E94 with the vertebrate counterion E113-we can recreate versions of the invertebrate and vertebrate counterion systems, respectively, supporting a relatively similar overall architecture in this region of animal opsins. In summary, our data establish the third only counterion site in animal opsins and reveal convergent evolution of tertiary structure in opsins from distantly related species with advanced visual systems.


Assuntos
Cubomedusas/genética , Evolução Molecular , Rodopsina , Visão Ocular/genética , Animais , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rodopsina/química , Rodopsina/genética , Rodopsina/metabolismo
5.
Integr Comp Biol ; 56(5): 973-988, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27880678

RESUMO

Cubozoans (box jellyfish) have a reputation as the most venomous animals on the planet. Herein, we provide a review of cubozoan prey capture and digestion informed by the scientific literature. Like all cnidarians, box jellyfish envenomation originates from structures secreted within nematocyte post-Golgi vesicles called nematocysts. When tentacles come in contact with prey or would-be predators, a cocktail of toxins is rapidly deployed from nematocysts via a long spiny tubule that serves to immobilize the target organism. The implication has long been that toxin peptides and proteins making up the venom within the nematocyst capsule are secreted directly by nematocytes during nematogenesis. However, our combined molecular and morphological analysis of the venomous box jellyfish Alatina alata suggests that gland cells with possible dual roles in secreting toxins and toxic-like enzymes are found in the gastric cirri. These putative gland cell assemblages might be functionally important internally (digestion of prey) as well as externally (envenomation) in cubozoans. Despite the absence of nematocysts in the gastric cirri of mature A. alata medusae, this area of the digestive system appears to be the region of the body where venom-implicated gene products are found in highest abundance, challenging the idea that in cnidarians venom is synthesized exclusively in, or nearby, nematocysts. In an effort to uncover evidence for a central area enriched in gland cells associated with the gastric cirri we provide a comparative description of the morphology of the digestive structures of A. alata and Carybdea box jellyfish species. Finally, we conduct a multi-faceted analysis of the gene ontology terms associated with venom-implicated genes expressed in the tentacle/pedalium and gastric cirri, with a particular emphasis on zinc metalloprotease homologs and genes encoding other bioactive proteins that are abundant in the A. alata transcriptome.


Assuntos
Venenos de Cnidários/metabolismo , Cubomedusas/genética , Cubomedusas/metabolismo , Animais , Venenos de Cnidários/genética , Trato Gastrointestinal/metabolismo , Nematocisto/metabolismo , Transcriptoma
6.
Biol Bull ; 231(2): 152-169, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27820907

RESUMO

Species of the box jellyfish (Cubozoa) genus Alatina are notorious for their sting along the beaches of several localities of the Atlantic and Pacific. These species include Alatina alata on the Caribbean Island of Bonaire (the Netherlands), A. moseri in Hawaii, and A. mordens in Australia. Most cubozoans inhabit coastal waters, but Alatina is unusual in that specimens have also been collected in the open ocean at great depths. Alatina is notable in that populations form monthly aggregations for spermcast mating in conjunction with the lunar cycle. Nominal species are difficult to differentiate morphologically, and it has been unclear whether they are distinct or a single species with worldwide distribution. Here we report the results of a population genetic study, using nuclear and mitochondrial sequence data from four geographical localities. Our analyses revealed a general lack of geographic structure among Alatina populations, and slight though significant isolation by distance. These data corroborate morphological and behavioral similarities observed in the geographically disparate localities, and indicate the presence of a single, pantropically distributed species, Alatina alata. While repeated, human-mediated introductions of A. alata could explain the patterns we have observed, it seems more likely that genetic metapopulation cohesion is maintained via dispersal through the swimming medusa stage, and perhaps via dispersal of encysted planulae, which are described here for the first time in Alatina.


Assuntos
Distribuição Animal , Cubomedusas/fisiologia , Animais , Cubomedusas/classificação , Cubomedusas/genética , DNA Mitocondrial/genética , Havaí , Humanos , Lua , Filogenia , Reprodução , Clima Tropical
7.
BMC Genomics ; 17: 650, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27535656

RESUMO

BACKGROUND: Cubozoans (box jellyfish) are cnidarians that have evolved a number of distinguishing features. Many cubozoans have a particularly potent sting, effected by stinging structures called nematocysts; cubozoans have well-developed light sensation, possessing both image-forming lens eyes and light-sensitive eye spots; and some cubozoans have complex mating behaviors, including aggregations, copulation and internal fertilization. The cubozoan Alatina alata is emerging as a cnidarian model because it forms predictable monthly nearshore breeding aggregations in tropical to subtropical waters worldwide, making both adult and larval material reliably accessible. To develop resources for A. alata, this study generated a functionally annotated transcriptome of adult and larval tissue, applying preliminary differential expression analyses to identify candidate genes involved in nematogenesis and venom production, vision and extraocular sensory perception, and sexual reproduction, which for brevity we refer to as "venom", "vision" and "sex". RESULTS: We assembled a transcriptome de novo from RNA-Seq data pooled from multiple body parts (gastric cirri, ovaries, tentacle (with pedalium base) and rhopalium) of an adult female A. alata medusa and larval planulae. Our transcriptome comprises ~32 K transcripts, after filtering, and provides a basis for analyzing patterns of gene expression in adult and larval box jellyfish tissues. Furthermore, we annotated a large set of candidate genes putatively involved in venom, vision and sex, providing an initial molecular characterization of these complex features in cubozoans. Expression profiles and gene tree reconstruction provided a number of preliminary insights into the putative sites of nematogenesis and venom production, regions of phototransduction activity and fertilization dynamics in A. alata. CONCLUSIONS: Our Alatina alata transcriptome significantly adds to the genomic resources for this emerging cubozoan model. This study provides the first annotated transcriptome from multiple tissues of a cubozoan focusing on both the adult and larvae. Our approach of using multiple body parts and life stages to generate this transcriptome effectively identified a broad range of candidate genes for the further study of coordinated processes associated with venom, vision and sex. This new genomic resource and the candidate gene dataset are valuable for further investigating the evolution of distinctive features of cubozoans, and of cnidarians more broadly.


Assuntos
Venenos de Cnidários/genética , Cubomedusas/genética , Cubomedusas/fisiologia , Perfilação da Expressão Gênica , Larva/genética , Caracteres Sexuais , Visão Ocular/genética , Animais , Venenos de Cnidários/metabolismo , Cubomedusas/crescimento & desenvolvimento , Desenvolvimento Embrionário/genética , Larva/crescimento & desenvolvimento , Larva/fisiologia , Anotação de Sequência Molecular , Oogênese/genética , Especificidade de Órgãos , Motilidade dos Espermatozoides/genética
8.
RNA Biol ; 13(9): 799-809, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27267414

RESUMO

BACKGROUND: In most animals, the mitochondrial genome is characterized by its small size, organization into a single circular molecule, and a relative conservation of the number of encoded genes. In box jellyfish (Cubozoa, Cnidaria), the mitochondrial genome is organized into 8 linear mito-chromosomes harboring between one and 4 genes each, including 2 extra protein-coding genes: mt-polB and orf314. Such an organization challenges the traditional view of mitochondrial DNA (mtDNA) expression in animals. In this study, we investigate the pattern of mitochondrial gene expression in the box jellyfish Alatina alata, as well as several key nuclear-encoded molecular pathways involved in the processing of mitochondrial gene transcription. RESULTS: Read coverage of DNA-seq data is relatively uniform for all 8 mito-chromosomes, suggesting that each mito-chromosome is present in equimolar proportion in the mitochondrion. Comparison of DNA and RNA-seq based assemblies indicates that mito-chromosomes are transcribed into individual transcripts in which the beginning and ending are highly conserved. Expression levels for mt-polB and orf314 are similar to those of other mitochondrial-encoded genes, which provides further evidence for them having functional roles in the mitochondrion. Survey of the transcriptome suggests recognition of the mitochondrial tRNA-Met by the cytoplasmic aminoacyl-tRNA synthetase counterpart and C-to-U editing of the cytoplasmic tRNA-Trp after import into the mitochondrion. Moreover, several mitochondrial ribosomal proteins appear to be lost. CONCLUSIONS: This study represents the first survey of mitochondrial gene expression of the linear multi-chromosomal mtDNA in box jellyfish (Cubozoa). Future exploration of small RNAs and the proteome of the mitochondrion will test the hypotheses presented herein.


Assuntos
Cubomedusas/genética , Genoma Mitocondrial , Biossíntese de Proteínas , Transcrição Gênica , Aminoacil-tRNA Sintetases/genética , Animais , Sequência de Bases , Cubomedusas/metabolismo , Regulação da Expressão Gênica , Genes Mitocondriais , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Conformação de Ácido Nucleico , RNA de Transferência/genética , Ribossomos/metabolismo
9.
PLoS One ; 10(10): e0139068, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26465609

RESUMO

Cnidaria, the sister group to Bilateria, is a highly diverse group of animals in terms of morphology, lifecycles, ecology, and development. How this diversity originated and evolved is not well understood because phylogenetic relationships among major cnidarian lineages are unclear, and recent studies present contrasting phylogenetic hypotheses. Here, we use transcriptome data from 15 newly-sequenced species in combination with 26 publicly available genomes and transcriptomes to assess phylogenetic relationships among major cnidarian lineages. Phylogenetic analyses using different partition schemes and models of molecular evolution, as well as topology tests for alternative phylogenetic relationships, support the monophyly of Medusozoa, Anthozoa, Octocorallia, Hydrozoa, and a clade consisting of Staurozoa, Cubozoa, and Scyphozoa. Support for the monophyly of Hexacorallia is weak due to the equivocal position of Ceriantharia. Taken together, these results further resolve deep cnidarian relationships, largely support traditional phylogenetic views on relationships, and provide a historical framework for studying the evolutionary processes involved in one of the most ancient animal radiations.


Assuntos
Antozoários/classificação , Cubomedusas/classificação , Hidrozoários/classificação , Myxozoa/classificação , Filogenia , Cifozoários/classificação , Animais , Antozoários/genética , Teorema de Bayes , Evolução Biológica , Cubomedusas/genética , Hidrozoários/genética , Myxozoa/genética , Cifozoários/genética , Transcriptoma
10.
Sci Rep ; 5: 11885, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26154478

RESUMO

Animals sense light primarily by an opsin-based photopigment present in a photoreceptor cell. Cnidaria are arguably the most basal phylum containing a well-developed visual system. The evolutionary history of opsins in the animal kingdom has not yet been resolved. Here, we study the evolution of animal opsins by genome-wide analysis of the cubozoan jellyfish Tripedalia cystophora, a cnidarian possessing complex lens-containing eyes and minor photoreceptors. A large number of opsin genes with distinct tissue- and stage-specific expression were identified. Our phylogenetic analysis unequivocally classifies cubozoan opsins as a sister group to c-opsins and documents lineage-specific expansion of the opsin gene repertoire in the cubozoan genome. Functional analyses provided evidence for the use of the Gs-cAMP signaling pathway in a small set of cubozoan opsins, indicating the possibility that the majority of other cubozoan opsins signal via distinct pathways. Additionally, these tests uncovered subtle differences among individual opsins, suggesting possible fine-tuning for specific photoreceptor tasks. Based on phylogenetic, expression and biochemical analysis we propose that rapid lineage- and species-specific duplications of the intron-less opsin genes and their subsequent functional diversification promoted evolution of a large repertoire of both visual and extraocular photoreceptors in cubozoans.


Assuntos
Evolução Biológica , Cubomedusas/genética , Genoma , Opsinas/genética , Células Fotorreceptoras/metabolismo , Animais , Mapeamento Cromossômico , Cubomedusas/metabolismo , AMP Cíclico/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Expressão Gênica , Genômica/métodos , Família Multigênica , Opsinas/metabolismo , Filogenia , RNA Mensageiro/genética , Transdução de Sinais
11.
BMC Genomics ; 16: 407, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-26014501

RESUMO

BACKGROUND: The box jellyfish, Chironex fleckeri, is the largest and most dangerous cubozoan jellyfish to humans. It produces potent and rapid-acting venom and its sting causes severe localized and systemic effects that are potentially life-threatening. In this study, a combined transcriptomic and proteomic approach was used to identify C. fleckeri proteins that elicit toxic effects in envenoming. RESULTS: More than 40,000,000 Illumina reads were used to de novo assemble ∼ 34,000 contiguous cDNA sequences and ∼ 20,000 proteins were predicted based on homology searches, protein motifs, gene ontology and biological pathway mapping. More than 170 potential toxin proteins were identified from the transcriptome on the basis of homology to known toxins in publicly available sequence databases. MS/MS analysis of C. fleckeri venom identified over 250 proteins, including a subset of the toxins predicted from analysis of the transcriptome. Potential toxins identified using MS/MS included metalloproteinases, an alpha-macroglobulin domain containing protein, two CRISP proteins and a turripeptide-like protease inhibitor. Nine novel examples of a taxonomically restricted family of potent cnidarian pore-forming toxins were also identified. Members of this toxin family are potently haemolytic and cause pain, inflammation, dermonecrosis, cardiovascular collapse and death in experimental animals, suggesting that these toxins are responsible for many of the symptoms of C. fleckeri envenomation. CONCLUSIONS: This study provides the first overview of a box jellyfish transcriptome which, coupled with venom proteomics data, enhances our current understanding of box jellyfish venom composition and the molecular structure and function of cnidarian toxins. The generated data represent a useful resource to guide future comparative studies, novel protein/peptide discovery and the development of more effective treatments for jellyfish stings in humans. (Length: 300).


Assuntos
Venenos de Cnidários/metabolismo , Cubomedusas/genética , Animais , Venenos de Cnidários/genética , Cubomedusas/química , Cubomedusas/metabolismo , Perfilação da Expressão Gênica , Nematocisto/química , Proteômica
12.
Adv Mar Biol ; 66: 1-85, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24182899

RESUMO

Irukandji stings are a leading occupational health and safety issue for marine industries in tropical Australia and an emerging problem elsewhere in the Indo-Pacific and Caribbean. Their mild initial sting frequently results in debilitating illness, involving signs of sympathetic excess including excruciating pain, sweating, nausea and vomiting, hypertension and a feeling of impending doom; some cases also experience acute heart failure and pulmonary oedema. These jellyfish are typically small and nearly invisible, and their infestations are generally mysterious, making them scary to the general public, irresistible to the media, and disastrous for tourism. Research into these fascinating species has been largely driven by the medical profession and focused on treatment. Biological and ecological information is surprisingly sparse, and is scattered through grey literature or buried in dispersed publications, hampering understanding. Given that long-term climate forecasts tend toward conditions favourable to jellyfish ecology, that long-term legal forecasts tend toward increasing duty-of-care obligations, and that bioprospecting opportunities exist in the powerful Irukandji toxins, there is a clear need for information to help inform global research and robust management solutions. We synthesise and contextualise available information on Irukandji taxonomy, phylogeny, reproduction, vision, behaviour, feeding, distribution, seasonality, toxins, and safety. Despite Australia dominating the research in this area, there are probably well over 25 species worldwide that cause the syndrome and it is an understudied problem in the developing world. Major gaps in knowledge are identified for future research: our lack of clarity on the socio-economic impacts, and our need for time series and spatial surveys of the species, make this field particularly enticing.


Assuntos
Cubomedusas/anatomia & histologia , Cubomedusas/fisiologia , Animais , Praias , Comportamento Animal , Mordeduras e Picadas/patologia , Mordeduras e Picadas/prevenção & controle , Venenos de Cnidários/toxicidade , Cubomedusas/genética , Demografia , Ecossistema , Humanos , Filogenia , Toxinas Biológicas
13.
Genome Biol Evol ; 4(1): 1-12, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22113796

RESUMO

In nearly all animals, mitochondrial DNA (mtDNA) consists of a single circular molecule that encodes several subunits of the protein complexes involved in oxidative phosphorylation as well as part of the machinery for their expression. By contrast, mtDNA in species belonging to Medusozoa (one of the two major lineages in the phylum Cnidaria) comprises one to several linear molecules. Many questions remain on the ubiquity of linear mtDNA in medusozoans and the mechanisms responsible for its evolution, replication, and transcription. To address some of these questions, we determined the sequences of nearly complete linear mtDNA from 24 species representing all four medusozoan classes: Cubozoa, Hydrozoa, Scyphozoa, and Staurozoa. All newly determined medusozoan mitochondrial genomes harbor the 17 genes typical for cnidarians and map as linear molecules with a high degree of gene order conservation relative to the anthozoans. In addition, two open reading frames (ORFs), polB and ORF314, are identified in cubozoan, schyphozoan, staurozoan, and trachyline hydrozoan mtDNA. polB belongs to the B-type DNA polymerase gene family, while the product of ORF314 may act as a terminal protein that binds telomeres. We posit that these two ORFs are remnants of a linear plasmid that invaded the mitochondrial genomes of the last common ancestor of Medusozoa and are responsible for its linearity. Hydroidolinan hydrozoans have lost the two ORFs and instead have duplicated cox1 at each end of their mitochondrial chromosome(s). Fragmentation of mtDNA occurred independently in Cubozoa and Hydridae (Hydrozoa, Hydroidolina). Our broad sampling allows us to reconstruct the evolutionary history of linear mtDNA in medusozoans.


Assuntos
Cnidários/genética , DNA Mitocondrial/genética , Evolução Molecular , Genoma Mitocondrial/genética , Animais , Sequência de Bases , Linhagem da Célula/genética , Cubomedusas/genética , Fragmentação do DNA , Replicação do DNA/genética , DNA Polimerase Dirigida por DNA/genética , Ordem dos Genes/genética , Hidrozoários/genética , Mitocôndrias/genética , Anotação de Sequência Molecular/métodos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Fases de Leitura Aberta/genética , Filogenia , Recombinação Genética/genética , Cifozoários/genética , Transcrição Gênica/genética
14.
Genome Biol Evol ; 4(1): 52-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22117085

RESUMO

Animal mitochondrial DNAs (mtDNAs) are typically single circular chromosomes, with the exception of those from medusozoan cnidarians (jellyfish and hydroids), which are linear and sometimes fragmented. Most medusozoans have linear monomeric or linear bipartite mitochondrial genomes, but preliminary data have suggested that box jellyfish (cubozoans) have mtDNAs that consist of many linear chromosomes. Here, we present the complete mtDNA sequence from the winged box jellyfish Alatina moseri (the first from a cubozoan). This genome contains unprecedented levels of fragmentation: 18 unique genes distributed over eight 2.9- to 4.6-kb linear chromosomes. The telomeres are identical within and between chromosomes, and recombination between subtelomeric sequences has led to many genes initiating or terminating with sequences from other genes (the most extreme case being 150 nt of a ribosomal RNA containing the 5' end of nad2), providing evidence for a gene conversion-based model of telomere evolution. The silent-site nucleotide variation within the A. moseri mtDNA is among the highest observed from a eukaryotic genome and may be associated with elevated rates of recombination.


Assuntos
Cubomedusas/genética , DNA Mitocondrial/genética , Evolução Molecular , Genoma Mitocondrial , Telômero/genética , Animais , Sequência de Bases , Fragmentação do DNA , Conversão Gênica , Mitocôndrias/genética , Dados de Sequência Molecular , Recombinação Genética
15.
Proc Biol Sci ; 277(1680): 493-501, 2010 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-19923131

RESUMO

Cubozoa (Cnidaria: Medusozoa) represents a small clade of approximately 50 described species, some of which cause serious human envenomations. Our understanding of the evolutionary history of Cubozoa has been limited by the lack of a sound phylogenetic hypothesis for the group. Here, we present a comprehensive cubozoan phylogeny based on ribosomal genes coding for near-complete nuclear 18S (small subunit) and 28S (large subunit) and partial mitochondrial 16S. We discuss the implications of this phylogeny for our understanding of cubozoan venom evolution, biogeography and life-history evolution. Our phylogenetic hypothesis suggests that: (i) the last common ancestor of Carybdeida probably possessed the mechanism(s) underlying Irukandji syndrome, (ii) deep divergences between Atlantic and Indo-Pacific clades may be explained by ancient vicariant events, and (iii) sexual dimorphism evolved a single time in concert with complex sexual behaviour. Furthermore, several cubozoan taxa are either para- or polyphyletic, and we address some of these taxonomic issues by designating a new family, Carukiidae, a new genus, Copula, and by redefining the families Tamoyidae and Tripedaliidae. Lastly, cubozoan species identities have long been misunderstood and the data presented here support many of the recent scientific descriptions of cubozoan species. However, the results of a phylogeographic analysis of Alatina moseri from Hawai'i and Alatina mordens from Australia indicate that these two nominal species represent a single species that has maintained metapopulation cohesion by natural or anthropogenic dispersal.


Assuntos
Venenos de Cnidários/genética , Cubomedusas/classificação , Cubomedusas/genética , Evolução Molecular , Filogenia , Animais , Cubomedusas/crescimento & desenvolvimento , Cubomedusas/patogenicidade , DNA Mitocondrial/genética , DNA Ribossômico/análise , Geografia , Humanos , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/genética , Análise de Sequência de DNA
16.
Evol Dev ; 10(1): 52-61, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18184357

RESUMO

Cnidaria is the earliest-branching metazoan phylum containing a well-developed, lens-containing visual system located on specialized sensory structures called rhopalia. Each rhopalium in a cubozoan jellyfish Tripedalia cystophora has a large and a small complex, camera-type eye with a cellular lens containing distinct families of crystallins. Here, we have characterized J2-crystallin and its gene in T. cystophora. The J2-crystallin gene is composed of a single exon and encodes a 157-amino acid cytoplasmic protein with no apparent homology to known proteins from other species. The non-lens expression of J2-crystallin suggests nonoptical as well as crystallin functions consistent with the gene-sharing strategy that has been used during evolution of lens crystallins in other invertebrates and vertebrates. Although nonfunctional in transfected mammalian lens cells, the J2-crystallin promoter is activated by the jellyfish paired domain transcription factor PaxB in co-transfection tests via binding to three paired domain sites. PaxB paired domain-binding sites were also identified in the PaxB-regulated promoters of the J1A- and J1B-crystallin genes, which are not homologous to the J2-crystallin gene. Taken together with previous studies on the regulation of the diverse crystallin genes, the present report strongly supports the idea that crystallin recruitment of multifunctional proteins was driven by convergent changes involving Pax (as well as other transcription factors) in the promoters of nonhomologous genes within and between species as well as within gene families.


Assuntos
Cristalinas/metabolismo , Cubomedusas/metabolismo , Evolução Molecular , Fatores de Transcrição Box Pareados/metabolismo , Regiões Promotoras Genéticas , Animais , Sequência de Bases , Sítios de Ligação , Células COS , Linhagem Celular , Chlorocebus aethiops , Clonagem Molecular , Cristalinas/química , Cristalinas/genética , Cubomedusas/genética , Citoplasma/metabolismo , Éxons , Regulação da Expressão Gênica , Humanos , Cristalino/metabolismo , Dados de Sequência Molecular , Fatores de Transcrição Box Pareados/genética
17.
Syst Biol ; 55(1): 97-115, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16507527

RESUMO

A newly compiled data set of nearly complete sequences of the large subunit of the nuclear ribosome (LSU or 28S) sampled from 31 diverse medusozoans greatly clarifies the phylogenetic history of Cnidaria. These data have substantial power to discern among many of the competing hypotheses of relationship derived from prior work. Moreover, LSU data provide strong support at key nodes that were equivocal based on other molecular markers. Combining LSU sequences with those of the small subunit of the nuclear ribosome (SSU or 18S), we present a detailed working hypothesis of medusozoan relationships and discuss character evolution within this diverse clade. Stauromedusae, comprising the benthic, so-called stalked jellyfish, appears to be the sister group of all other medusozoans, implying that the free-swimming medusa stage, the motor nerve net, and statocysts of ecto-endodermal origin are features derived within Medusozoa. Cubozoans, which have had uncertain phylogenetic affinities since the elucidation of their life cycles, form a clade-named Acraspeda-with the scyphozoan groups Coronatae, Rhizostomeae, and Semaeostomeae. The polyps of both cubozoans and hydrozoans appear to be secondarily simplified. Hydrozoa is comprised by two well-supported clades, Trachylina and Hydroidolina. The position of Limnomedusae within Trachylina indicates that the ancestral hydrozoan had a biphasic life cycle and that the medusa was formed via an entocodon. Recently hypothesized homologies between the entocodon and bilaterian mesoderm are therefore suspect. Laingiomedusae, which has often been viewed as a close ally of the trachyline group Narcomedusae, is instead shown to be unambiguously a member of Hydroidolina. The important model organisms of the Hydra species complex are part of a clade, Aplanulata, with other hydrozoans possessing direct development not involving a ciliated planula stage. Finally, applying phylogenetic mixture models to our data proved to be of little additional value over a more traditional phylogenetic approach involving explicit hypothesis testing and bootstrap analyses under multiple optimality criteria. [18S; 28S; Cubozoa; Hydrozoa; medusa; molecular systematics; polyp; Scyphozoa; Staurozoa.].


Assuntos
Evolução Biológica , Cnidários/classificação , Filogenia , Animais , Cnidários/anatomia & histologia , Cnidários/genética , Cubomedusas/anatomia & histologia , Cubomedusas/classificação , Cubomedusas/genética , DNA Ribossômico/química , Hidrozoários/anatomia & histologia , Hidrozoários/classificação , Hidrozoários/genética , Modelos Biológicos , Cifozoários/anatomia & histologia , Cifozoários/classificação , Cifozoários/genética , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA