Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Luminescence ; 39(10): e4927, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39428725

RESUMO

The focus of current advances in nanotechnology has shifted significantly towards environmentally conscious methods that use harmless ingredients and moderated reaction circumstances to promote equitable development. Zinc oxide nanoparticles (NPs) currently grabbed attention of multiple medical fields owing to their unique ability to safeguard against cellular damage and alleviate serious human diseases via processes related to metabolism. This work focused on the generation of ZnO NPs using the peel of Cucumis melo fruit. The NPs were then analyzed and characterized using UV-Vis spectroscopy. The results indicated that at a wavelength of 352 nm, it was proven that the biosynthesis of ZnO NPs had occurred. The XRD pattern indicated the presence of dense crystal structures. The field emission scanning electron microscope (FE-SEM) picture confirmed the existence of polygonal-shaped ZnO NPs. The findings indicate that the produced ZnO NPs possess tough antibacterial properties against Gram-positive and Gram-negative microorganisms. When the ZnO NPs were exposed to direct sunshine for 80 min, they showed an 89% dye breakdown efficiency. This research specifically focused on the decomposition of reactivity dyes, with methylene blue dye being used as the target dye. The work demonstrates that the biosynthesis of ZnO NPs has a crucial and versatile role in the biological and environmental sectors.


Assuntos
Antibacterianos , Cucumis melo , Frutas , Extratos Vegetais , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Cucumis melo/química , Catálise , Frutas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Nanopartículas Metálicas/química , Luminescência , Processos Fotoquímicos , Azul de Metileno/química , Azul de Metileno/farmacologia , Tamanho da Partícula , Substâncias Luminescentes/química , Substâncias Luminescentes/farmacologia , Substâncias Luminescentes/síntese química , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Nanopartículas/química
2.
Pak J Pharm Sci ; 37(1): 71-78, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38741402

RESUMO

Diabetes mellitus, recognized by elevated glucose level in the body fluids is commonly caused by less insulin production or its action. To overcome the complications of diabetes, chemical drugs are never preferred over herbal medicines. Present study was designed to find out the anti-diabetic and health-promoting effects of ethanolic leaf extracts of Cucumis melo and Citrullus lanatus in induced-diabetic albino rats. Thirty male albino rats were bought from the animal house of the university and divided randomly into five feeding groups (n=6). Diabetes was induced in rats of groups A, B, C & D by a single dose of intra-peritoneal injection of streptozotocin (55 mg/Kg), whereas, the rats of group E were considered as control. The rats of groups A, B & C were fed basal diet supplemented with plant extracts (150mg/Kg body weight), whereas; only basal diet was offered to rats of groups D & E. After 28 days of the experiment, blood was collected for biochemical analysis. Results revealed that body weight, glucose, AST, ALB, GGT, HDL, cholesterol, triglyceride, urea and creatinine level differed significantly among treatment groups. It was therefore concluded that ethanolic leaf extracts of Cucumis melo and Citrullus lanatus can be used separately or in combination for the management of diabetes.


Assuntos
Glicemia , Citrullus , Cucumis melo , Diabetes Mellitus Experimental , Hipoglicemiantes , Lipídeos , Extratos Vegetais , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/sangue , Extratos Vegetais/farmacologia , Cucumis melo/química , Masculino , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Citrullus/química , Ratos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/isolamento & purificação , Lipídeos/sangue , Folhas de Planta/química , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Estreptozocina
3.
Food Chem ; 449: 139234, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608604

RESUMO

Cuticle wax chemicals are cultivar-dependent and contribute to storage quality. Few research reported on wax analysis between melting flesh-type (MF; 'Jinhuami 25') and nonmelting flesh-type (NMF; 'Xizhoumi 17' and 'Chougua') Hami melons. Chemicals and crystal structures of Hami melon cuticular wax, cell wall metabolism related to fruit melting, and fruit physiology were analyzed to observe wax functions. Results showed that Hami melon cuticle wax predominantly consists of esters, alkanes, alcohols, aldehydes, and terpenoids. MF-type has a lower alkane/terpenoid ratio, concomitant to its higher weight loss and cuticle permeability. Micromorphology of wax crystals appears as numerous platelets with irregular crystals, and the transformation of wax structure in NMF Hami melon is delayed. Waxy components affect cell wall metabolism and physiological quality, which results in the pulp texture difference between MF-type and NMF-type during storage. Results provide a reference for the regulation of wax synthesis in both types of melons.


Assuntos
Cucumis melo , Frutas , Ceras , Ceras/química , Frutas/química , Cucumis melo/química , Parede Celular/química
4.
Comput Biol Med ; 155: 106596, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36773554

RESUMO

BACKGROUND: In addition to the nutritional benefits of Cucumis melo L., herbalists in Pakistan and India employ seeds to treat various ailments. This study aimed to determine the regulatory role of C. melo seeds in calcium-mediated smooth muscle contraction. METHODS: We identified and quantified the phytochemicals of C. melo with LC ESI-MS/MS and HPLC, then conducted in vitro and in vivo tests to confirm the involvement in smooth muscle relaxation. Then, diarrhea-predominant irritable bowel syndrome gene datasets from NCBI GEO were acquired, DEGs and WGCNA followed by functional enrichment analysis. Next, molecular docking of key genes was performed. RESULTS: The quantification of C. melo seeds revealed concentrations of rutin, kaempferol, and quercetin were 702.38 µg/g, 686.29 µg/g, and 658.41 µg/g, respectively. In vitro experiments revealed that C. melo seeds had a dose-dependent relaxant effect for potassium chloride (80 mM)-induced spastic contraction and exhibited calcium antagonistic response in calcium dose-response curves. In in vivo studies, Cm.EtOH exhibited antidiarrheal, antiperistaltic, and antisecretory effects. The functional enrichment of WGCNA and DEGs IBS-associated pathogenic genes, including those involved in calcium-mediated signaling, MAPK cascade, and inflammatory responses. MAPK1 and PIK3CG were identified as key genes with greater binding affinity with rutin, quercitrin, and kaempferol in molecular docking. CONCLUSIONS: The bronchodilator and antidiarrheal effects of C. melo were produced by altering the regulatory genes of calcium-mediated smooth contraction.


Assuntos
Cucumis melo , Extratos Vegetais , Humanos , Extratos Vegetais/farmacologia , Cucumis melo/química , Quempferóis/análise , Antidiarreicos/análise , Espectrometria de Massas em Tandem , Cálcio , Sinalização do Cálcio , Simulação de Acoplamento Molecular , Sementes/química , Espasmo , Rutina/análise
5.
J Toxicol Sci ; 48(1): 25-35, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36599425

RESUMO

Methylthioacetic acid (MTA) is an acid-hydrolyzed derivative of a natural aroma compound, methylthioacetic acid ethyl ester isolated from Cucumis melo var. conomon (Katsura-uri, Japanese Picking Melon), and induces a villiform-like structure dome in RCM-1 human colorectal cancer cell culture. Thus far, the physiological and molecular properties of MTA-mediated dome formation remain unknown. Herein, MTA (not more than 2 mM) was demonstrated to differentiate the unorganized cell mass into the dome in RCM-1 cell culture by disclosing the correlation between dome formation and several intestinal differentiation markers such as alkaline phosphatase activity and the protein levels of dipeptidyl peptidase 4, villin, and Krüppel-like factor 4. Dome formation in RCM-1 cell culture was additively enhanced by the simultaneous administration of MTA and butyric acid (BA), suggesting that MTA directs the differentiation of RCM-1 cells, potentially through the same or similar pathway(s) shared with BA. Notably, a high dose of MTA (2 mM or more) elevated several apoptosis markers, such as DNA fragmentation, caspase-3/7 activity, and cleavage of poly(ADP-ribose) polymerase. Altogether, in addition to RCM-1 cell differentiation, MTA triggers apoptosis. These results indicate that MTA is a potential anticarcinogenic agent applicable in differentiation therapy and traditional chemotherapy against colorectal cancers.


Assuntos
Neoplasias Colorretais , Cucumis melo , Humanos , Cucumis melo/química , Cucumis melo/genética , Cucumis melo/metabolismo , Odorantes , Compostos Orgânicos , Diferenciação Celular , Apoptose
6.
J Sci Food Agric ; 103(4): 1644-1650, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36418190

RESUMO

BACKGROUND: Sweet melon (Cucumis melo) seed is generally considered as agro-waste, however, the current study aimed to use this waste as a valuable oil source. The seed oil extracted by two different extraction techniques (cold press and solvent extraction) was investigated for its anti-hyperlipidemic potential. Hyperlipidemic rabbits were fed on the diet supplemented with sweet melon seed oil for 6 weeks (42 days) and thoroughly examined for the change in their lipid profile. RESULTS: The blood lipid profile indicated a significant decrease in total cholesterol triglyceride and low-density lipoprotein (LDL) contents of blood in hyperlipidemic rabbits fed on the diet supplemented with sweet melon seed oils while high-density lipoprotein (HDL) contents showed a noteworthy increase during the study period. CONCLUSION: Cucumis melo seed oil can be used to control hyperlipidemia without restricting the intake of lipids in diet. Solvent extraction provided better results regarding extraction yield and product functionality than cold press method. © 2022 Society of Chemical Industry.


Assuntos
Cucumis melo , Animais , Coelhos , Cucumis melo/química , Sementes/química , Lipídeos , Óleos de Plantas/análise , Solventes
7.
Food Chem ; 402: 134229, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36182778

RESUMO

Multi-microscopy techniques and Fourier transform infrared (FT-IR) spectroscopy were used in this study to investigate the intrinsic causes leading to fruit texture difference between two cultivars of oriental melon 'HDB' (crisp) and 'HPM' (mealy). On the histological aspect, orderly arranged regular-shaped cells with tissue natural fracture pattern showed cell rupture in 'HDB' versus loosely arranged irregular-shaped cells with tissue natural fracture pattern showed cell-to-cell separation in 'HPM' of sarcocarp are histological causes for crisp and mealy fruit texture, respectively. On the biochemical aspect, FT-IR spectra (4000-850 cm-1) of sarcocarp tissue cell wall materials (CWM) happened a dramatic change at the mature stage in 'HPM', but not in 'HDB'. Insightly, the lower de-methyl-esterified homogalacturonan (HG) abundance with higher water-soluble pectin (WSP) ratio and lower hemicellulose (HC) content contribute a poor intercellular adhesion in 'HPM' middle lamella (ML) at the mature stage compared to 'HDB'.


Assuntos
Cucumis melo , Cucumis melo/química , Frutas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Microscopia , Pectinas/química , Água/análise
8.
Appl Biochem Biotechnol ; 194(1): 368-381, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34792748

RESUMO

Biosynthesized silver nanoparticles have a wide range of biological activities and using nanoparticles as one of the novel approaches in cancer therapy. In this present research work, the anti-cancer efficacy of Cucumis melo fruit extract and its silver nanoparticles was explored. Wistar rats were divided into six groups and hepatic cancer was induced with 0.01% DEN (diethylnitrosamine) through drinking water for 16 weeks. Cyclophosphamide was given as the standard drug at the dose of 50 mg/kg body weight. Hematological parameters showed a decrease in the levels of hemoglobin (Hb), packed cell volume (PCV), red blood cells (RBC), mean corpuscular volume (MCV), mean corpuscular Hb (MCH), mean corpuscular Hb concentration (MCHC), and platelets (PLTS) levels except white blood cell (WBC) in DEN-induced cancer animals. Significant alterations in the hematological parameters were observed after treatment which indicate the protective effect of Cucumis melo fruit on the hemopoietic system. The structural integrity of the cells has been damaged in cancer-induced animals, and this results in cytoplasmic leakage of enzyme into the blood stream, leads to the elevated levels of these enzymes in blood with subsequent fall in the tissues. Hence, the levels of liver function markers such as AST ALT, ALP, LDH, GGT, and 5'NT were significantly elevated in serum and the liver of cancer-induced rats. The levels of serum tumor markers, viz., alpha-fetoprotein (AFP) and carcinoembryonic antigen (CEA), elevated in rats induced with DEN, which then were reduced following Cucumis melo fruit treatment, indicating the anti-cancer activity of the drug. Histological evaluation of the liver and kidney was also performed to authenticate the present work. Treatment with crude extract and silver nanoparticles of Cucumis melo fruit indicates that Cucumis melo fruit could have exerted its protective effect.


Assuntos
Carcinoma Hepatocelular , Cucumis melo/química , Dietilnitrosamina/toxicidade , Frutas/química , Neoplasias Hepáticas Experimentais , Nanopartículas Metálicas , Extratos Vegetais/química , Prata , Animais , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/metabolismo , Masculino , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Ratos , Ratos Wistar , Prata/química , Prata/farmacologia
9.
Molecules ; 26(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34443466

RESUMO

Bees and their products are useful bioindicators of anthropogenic activities and could overcome the deficiencies of air quality networks. Among the environmental contaminants, mercury (Hg) is a toxic metal that can accumulate in living organisms. The first aim of this study was to develop a simple analytical method to determine Hg in small mass samples of bees and beehive products by cold vapor atomic fluorescence spectrometry. The proposed method was optimized for about 0.02 g bee, pollen, propolis, and royal jelly, 0.05 g beeswax and honey, or 0.1 g honeydew with 0.5 mL HCl, 0.2 mL HNO3, and 0.1 mL H2O2 in a water bath (95 °C, 30 min); samples were made up to a final volume of 5 mL deionized water. The method limits sample manipulation and the reagent mixture volume used. Detection limits were lower than 3 µg kg-1 for a sample mass of 0.02 g, and recoveries and precision were within 20% of the expected value and less than 10%, respectively, for many matrices. The second aim of the present study was to evaluate the proposed method's performances on real samples collected in six areas of the Lazio region in Italy.


Assuntos
Abelhas/química , Monitoramento Biológico/métodos , Mercúrio/análise , Espectrometria de Fluorescência/métodos , Animais , Temperatura Baixa , Cucumis melo/química , Confiabilidade dos Dados , Poluição Ambiental/análise , Ácidos Graxos/análise , Mel/análise , Itália , Pólen/química , Própole/análise , Espectrofotometria Atômica/métodos , Ceras/análise
10.
Food Chem ; 362: 130193, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34082290

RESUMO

Lignin is an important component of the healing tissue in fruits. In this study, we treated muskmelon (Cucumis melo L. cv. "Manao") fruit with exogenous nitric oxide (NO) donor sodium nitroprusside (SNP) to observe and analyze its effect on lignin synthesis and accumulation during healing. Results showed that SNP treatment enhanced the contents of endogenous NO and H2O2, increased the activities of phenylalanine ammonia lyase, cinnamate 4 hydroxylase, cinnamyl alcohol dehydrogenase, and peroxidase, and raised the contents of sinapyl alcohol, coniferyl alcohol, coumaryl alcohol, and lignin. SNP augmented the hardness of the healing tissue and decreased its resilience, springiness, and cohesiveness. In addition, SNP treatment effectively reduced the weight loss and disease index of wounded muskmelons. All these results suggest that lignin metabolism mediated by NO play a crucial role in wound healing of muskmelons.


Assuntos
Cucumis melo/química , Cucumis melo/metabolismo , Frutas/química , Lignina/biossíntese , Nitroprussiato/química , Oxirredutases do Álcool , Frutas/metabolismo , Peróxido de Hidrogênio/metabolismo , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/química , Peroxidase/metabolismo , Fenóis/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Fenilpropionatos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo
11.
J Sci Food Agric ; 101(15): 6552-6562, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34014565

RESUMO

BACKGROUND: The rind from cantaloupe is an agricultural waste of cantaloupe industrial processing. The current study tried to (i) evaluate the potential use of cantaloupe rind as a pectin source, (ii) optimize the factors of microwave-assisted extraction process using Box-Behnken design, and (iii) characterize the isolated pectin using various physicochemical, structural, functional and bioactivity properties. RESULTS: Four variables of the extraction process were successfully optimized at a microwave power of 700 W, irradiation time of 112 s, pH value of 1.50 and liquid to solid (LS) value of 30 mL g-1 , with a yield of 181.4 g kg-1 . The analysis indicated a high-methylated galacturonic acid-rich (703.4 g kg-1 ) sample with an average molecular weight of 390.475 kDa. Also, the isolated pectin showed considerable functionality and antioxidant ability. The main functional groups, structural characteristics and crystallinity of samples were comparatively studied using Fourier transform infrared, nuclear magnetic resonance and X-ray diffraction spectroscopies. CONCLUSION: In comparison to commercial citrus pectin, isolated pectin showed a significantly higher value for most of the functional analysis such as oil holding capacity, emulsifying capacity, emulsion stability, DPPH• and ABTS•+ scavenging activity, and reducing power assay. In other analyses the isolated sample was close to the commercial one, indicating that cantaloupe rinds should be considered as a suitable additional resource for pectin production. © 2021 Society of Chemical Industry.


Assuntos
Cucumis melo/química , Pectinas/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Resíduos/análise , Emulsões/química , Frutas/química , Micro-Ondas , Peso Molecular , Pectinas/química , Extratos Vegetais/química
12.
FEMS Microbiol Lett ; 368(4)2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33565598

RESUMO

The herpes simplex virus, also known as HSV, is an important human pathogen. Acyclovir (ACV) is the first-line antiviral for the treatment of HSV infections; nevertheless HSV resistance to ACV has been increasingly reported and, therefore, search for alternative drugs have been encouraged. Herein, the effect of Cucumis melo sulfated pectin (SPCm) was evaluated in the HSV-1 infection. Pectin cytotoxicity and its antiherpetic action were determined by assays of MTT and plaque reduction, respectively. The SPCm concentration that reduced the cell viability by 50% (CC50) was 1440 µg/mL, while the concentration that reduced PFU in 50% (IC50) was 6 µg/mL against ACV-sensitive (KOS) strain and 12 µg/mL for ACV-resistant (AR-29) strain. The pectin showed high selectivity index (SI) for both viral strains. Therefore, we suggest that SPCm has been effective for HSV-1, strenghten by viral protein and DNA syntheses inhibition. In conclusion, we have found that SPCm is a promising alternative compound to control HSV infection.


Assuntos
Antivirais/farmacologia , Cucumis melo/química , Herpesvirus Humano 1/efeitos dos fármacos , Pectinas/farmacologia , Aciclovir/farmacologia , Animais , Antivirais/isolamento & purificação , Chlorocebus aethiops , Farmacorresistência Viral/efeitos dos fármacos , Herpes Simples/virologia , Concentração Inibidora 50 , Pectinas/isolamento & purificação , Células Vero , Replicação Viral/efeitos dos fármacos
13.
Carbohydr Polym ; 256: 117522, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33483043

RESUMO

The effects of water to solids ratio (WSR, 10-30 mL/g), power (180-540 W), and irradiation time (IT, 5-15 min) in microwave-assisted extraction (MAE) were optimized to extract polysaccharides from melon peels (PMP). The maximum extraction yield (32.81 %) was obtained under 20.94 mL/g WSR, 414.4 W power, and 12.75 min IT. The main monosaccharide composition of purified PMP with an average molecular weight of 5.71 × 104 kDa were d-galacturonic acid, arabinose, glucose, and galactose. An ascending dose-dependent antiradical and antioxidant behavior for PMP (0-5.0 mg/mL) was found. The initial foaming capacity (38.6-110.3 %) and foaming stability (5.2-65.2 %) were significantly increased as a function of PMP concentration (1.0-5.0 %), while they reduced by increasing the mixing time (p < 0.05). The highest emulsifying activity index (44.1 m2/g) and emulsifying stability (69.3 %) at 5.0 % PMPs were determined. PMP gels with FTIR-identified functional groups can be formulated in new gluten-free functional products.


Assuntos
Antioxidantes/química , Cucumis melo/química , Extração Líquido-Líquido/métodos , Pectinas/química , Polissacarídeos/química , Antioxidantes/isolamento & purificação , Arabinose/química , Arabinose/isolamento & purificação , Compostos de Bifenilo/antagonistas & inibidores , Compostos de Bifenilo/química , Emulsões , Análise Fatorial , Frutas/química , Galactose/química , Galactose/isolamento & purificação , Géis , Glucose/química , Glucose/isolamento & purificação , Ácidos Hexurônicos/química , Ácidos Hexurônicos/isolamento & purificação , Humanos , Micro-Ondas , Peso Molecular , Picratos/antagonistas & inibidores , Picratos/química , Extratos Vegetais/química , Polissacarídeos/isolamento & purificação , Resíduos
14.
Food Chem ; 348: 129055, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33508595

RESUMO

The study evaluated the potential and antioxidant stability of nanoencapsulated carotenoid-rich extract (CE) from Cantaloupe melon (EPG). DPPH and ABTS radical scavenging assays were used to investigate the nanoencapsulation effect on antioxidant potential. CE and EPG stability were evaluated at 25 °C and 5 °C, with and without light (1600 lx) for 60 days, determining the ß-carotene concentration by UHPLC and antioxidant potential by ABTS. The antioxidant potential of carotenoids increased after nanoencapsulation (57-59%). After 60 days, there was low retention of ß-carotene (0-43.6%) in the CE, mainly at 25 °C light (0.00%) and dark (10.0%), and total loss of activity in the four conditions. EPG preserved the ß-carotene concentration in the dark at 25 °C (99.0%) and in the light (83.1%) and dark (99.0%) at 5 °C, maintaining the antioxidant potential (68.7-48.3%). Therefore, EPG enhanced and stabilized the antioxidant potential of carotenoids, beneficial to human health.


Assuntos
Antioxidantes/química , Antioxidantes/isolamento & purificação , Carotenoides/análise , Cucumis melo/química , Armazenamento de Alimentos , Gelatina/química , Nanoestruturas/química , Cápsulas , Frutas/química , Humanos
15.
J Sci Food Agric ; 101(4): 1428-1435, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32833253

RESUMO

BACKGROUND: Climate change has caused an increase in the frequency and intensity of heatwaves, worldwide, which subject plants to thermal stress for short periods; this can affect the quality of melon fruits, both negatively and positively. Since the application of putrescine has been shown to help increase tolerance of abiotic stresses, the objective of this work is to determine the effects of the foliar application of putrescine (1.5 and 5 mmol L-1 ) before a short heat stress (HS) on the quality of melon fruits. RESULTS: The results indicate that HS had a positive effect on the quality of melon fruits, since it increased the total sugars and polyamines contents and the antioxidant capacity, and reduced the presence of substances undesirable in foods such as nitrate. However, the fruit quality was further increased by the combination of HS and putrescine (5 mmol L-1 ). In this case, the melon fruits showed increases in their antioxidant capacity and contents of polyamines, amino acids and minerals beneficial to health. The nitrate concentration was even lower than in the control fruits. CONCLUSION: This novel study highlights the possibility of improving the nutritional quality of melon pulp by applying foliar putrescine in combination with a short period of high temperature. © 2020 Society of Chemical Industry.


Assuntos
Cucumis melo/efeitos dos fármacos , Putrescina/farmacologia , Aminoácidos/análise , Aminoácidos/metabolismo , Antioxidantes/análise , Antioxidantes/metabolismo , Cucumis melo/química , Cucumis melo/fisiologia , Frutas/química , Frutas/efeitos dos fármacos , Frutas/fisiologia , Resposta ao Choque Térmico , Minerais/análise , Minerais/metabolismo , Valor Nutritivo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia
16.
Pak J Pharm Sci ; 33(3): 1049-1055, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-33191228

RESUMO

Plants are vital in drug discovery, since many safe and bioactive molecules have been discovered from plants in past, hence this study was designed to evaluate analgesic, anti-inflammatory and toxic effects of Cucumis melo and Citrullus lanatus. Seeds of these plants were selected due to their traditional value for medicinal use. Analgesic activity was determined in mice by Eddy's Hot plate and tail flick method, while anti-inflammatory activity was evaluated by hind paw edema method. Both seed extracts produced highly significant analgesic effects comparable to standard drugs at all three doses by both methods. The extract of C. lanatus showed significant anti-inflammatory activity at 100 mg while showed highly significant activity at 200 mg between 3 to 24 hours as compared to standard drugs. Both extracts did not reveal any mortality up to 1000mg/kg, while there was also no change in normal the gross behavior pattern of the animals at the dose of 50 and 100mg/kg, however there was increase in passivity, sedation and startle response at 200mg/kg. Analgesic and anti-inflammatory effects of extracts may be due to presence of cucurbitacin A, B or E in both seeds which are thought to inhibit COX 2. Results indicate that seeds of C. melo and C. lanatus may be effectively used as adjuvant analgesic and anti-inflammatory agents in situation of chronic pain and inflammation.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Citrullus , Cucumis melo , Inflamação/prevenção & controle , Dor Nociceptiva/prevenção & controle , Extratos Vegetais/farmacologia , Analgésicos/isolamento & purificação , Analgésicos/toxicidade , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/toxicidade , Carragenina , Citrullus/química , Citrullus/toxicidade , Cucumis melo/química , Cucumis melo/toxicidade , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Etanol/química , Feminino , Inflamação/induzido quimicamente , Masculino , Camundongos , Dor Nociceptiva/etiologia , Dor Nociceptiva/fisiopatologia , Limiar da Dor/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/toxicidade , Ratos , Sementes , Solventes/química
17.
FEBS Open Bio ; 10(12): 2640-2655, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33048473

RESUMO

Colorectal cancer was the third most commonly diagnosed malignant tumor and the fourth leading cause of cancer deaths worldwide in 2012. A human colorectal cancer cell line, RCM-1, was established from a colon cancer tissue diagnosed as a well-differentiated rectum adenocarcinoma. RCM-1 cells spontaneously form 'domes' (formerly designated 'ducts') resembling villiform structures. Two sulphur-containing compounds from Cucumis melo var. conomon (Katsura-uri, or Japanese pickling melon), referred to as 3-methylthiopropionic acid ethyl ester (MTPE) and methylthioacetic acid ethyl ester (MTAE), can induce the differentiation of the unorganized cell mass of an RCM-1 human colorectal cancer cell culture into a dome. However, the underlying molecular mechanisms of such dome formation have not been previously reported. Here, we performed a structure-activity relationship analysis, which indicated that methylthioacetic acid (MTA) was the lowest molecular weight compound with the most potent dome-inducing activity among 37 MTPE and MTAE analogues, and the methylthio group was essential for this activity. According to our microarray analysis, MTA resulted in down-regulation of 537 genes and up-regulation of 117 genes. Furthermore, MTA caused down-regulation of many genes involved in cell-cycle control, with the cyclin E2 (CCNE2) and cell division cycle 25A (CDC25A) genes being the most significantly reduced. Pharmacological analysis showed that the administration of two cell-cycle inhibitors for inactivating CDC25A phosphatase (NSC95397) and the cyclin E2/cyclin-dependent kinase 2 complex (purvalanol A) increased the dome number independently of MTA. Altogether, our results indicate that MTA is the minimum unit required to induce dome formation, with the down-regulation of CDC25A and possibly CCNE2 being important steps in this process.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Cucumis melo/química , Compostos de Enxofre/farmacologia , Antineoplásicos/química , Diferenciação Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Ensaios de Seleção de Medicamentos Antitumorais , Ésteres/química , Ésteres/farmacologia , Humanos , Propionatos/química , Propionatos/farmacologia , Compostos de Enxofre/química , Células Tumorais Cultivadas
18.
J Nutr Sci Vitaminol (Tokyo) ; 66(3): 261-269, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612089

RESUMO

The fruit of Katsura-uri (Japan's heirloom pickling melon, Cucumis melo var. conomon) possesses a fruity aroma and moderate sweetness. The fruit juice has potential to minimize human postprandial blood glucose levels. This study provides information regarding the health benefits of Katsura-uri and its utility in treating diabetes. The study methodology involved measuring the color and firmness of Katsura-uri fruit at five ripening stages, and quantitation of the aroma substances, proximate composition, and sugars. Significant changes were detected in the color, firmness, and level of aroma substances with ripening of Katsura-uri fruit, albeit with no major changes in proximate composition, with the exception of dietary fiber, and sugars. To determine the effects of Katsura-uri juice, the blood glucose levels of ten diabetic volunteers aged 46-75 y were monitored after its consumption, and compared with after consumption of muskmelon juice equivalent to the total weight of Katsura-uri juice. The blood glucose area under the curve level was significantly lower after consumption of Katsura-uri juice (16±5 h • mg/dL) than after consumption of muskmelon juice (55±17 h • mg/dL; p<0.05). The level of the glucose spike was also significantly lower after consumption of Katsura-uri juice (22±5 mg/dL) than after consumption of muskmelon juice (64±6 mg/dL; p<0.05). The completely ripe Katsura-uri fruit provides the best results for diabetic subjects, which is the first case of fruits sweetened with the addition of zero-calorie sweeteners.


Assuntos
Glicemia/metabolismo , Cucumis melo/química , Diabetes Mellitus/tratamento farmacológico , Sucos de Frutas e Vegetais , Hipoglicemiantes/uso terapêutico , Preparações de Plantas/uso terapêutico , Paladar , Idoso , Área Sob a Curva , Diabetes Mellitus/sangue , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Fibras na Dieta/análise , Fibras na Dieta/farmacologia , Fibras na Dieta/uso terapêutico , Feminino , Frutas/química , Sucos de Frutas e Vegetais/análise , Humanos , Hiperglicemia/sangue , Hiperglicemia/prevenção & controle , Hipoglicemiantes/farmacologia , Masculino , Pessoa de Meia-Idade , Odorantes , Preparações de Plantas/farmacologia , Edulcorantes/farmacologia , Edulcorantes/uso terapêutico
19.
J Agric Food Chem ; 68(24): 6511-6519, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32437138

RESUMO

We investigated the effect on melon fruits of "fish water" alone or in combination with a supplement of synthetic fertilizers in a nutrient solution or foliar application of Ca(NO3)2. These treatments were compared with a traditional soilless system with synthetic fertilizers and no reuse of the nutrient solution. The results show that the treatments with recirculation of fish water and with the foliar supplement yielded fruits of greater weight and size but with reduced lightness and lower concentrations of proteins, NO3-, K+, and total amino acids. The supply of synthetic nutrients to the roots or leaves caused a reduction in the sugar concentrations and the antioxidant activity of these fruits. The use of fish water (alone or with an amendment) increased spermine and putrescine with respect to the traditional soilless crop management. The results for these bioactive compounds in melons should be considered for maintenance of health with age.


Assuntos
Produção Agrícola/métodos , Cucumis melo/crescimento & desenvolvimento , Frutas/química , Hidroponia/métodos , Antioxidantes/análise , Antioxidantes/metabolismo , Cucumis melo/química , Cucumis melo/metabolismo , Fertilizantes/análise , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Nutrientes/metabolismo , Açúcares/análise , Açúcares/metabolismo
20.
Biomed Res Int ; 2020: 5282949, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32185208

RESUMO

Honeydew melon (Cucumis melo L.) is an oval-shaped delicious fruit of one cultivar group of the muskmelon with immense nutritional importance and is extensively consumed by many tropical countries. The effect of various organic solvents on the recovery of phytochemicals from honeydew melon plant fruits and seeds was assessed. Further, High-Performance Liquid Chromatography (HPLC) was used to examine and assess the contents of phenolic acid (gallic acid) and flavonoid (rutin) compounds. The use of gas chromatography-mass spectrometry (GC-MS) analysis explained the presence of volatile phytocompounds in the extracts. The use of organic solvents had a substantial impact on the total dry weight and extract yield. In general, the solvent-extracted constituents remained in the order of methanol>chloroform>distilled water for both honeydew melon seeds and whole fruit. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) was used to assess the cytotoxicity effect against PC3, HCT116, HeLa, and Jurkat cell lines. The chloroform extract exhibited a good cytotoxic activity against all cell lines as compared to other solvent extracts. HPLC analysis revealed the occurrence of gallic acid content of 0.102 ± 0.23 mg/10 mg of dry whole fruit extract, while 10 mg of dry seed extract contained only 0.022 ± 0.12 mg of gallic acid content. Likewise, rutin content was observed to be 0.224 ± 0.31 mg and 0.1916 ± 0.82 mg/10 mg of dry whole fruit and seed extract, respectively. Further, GC-MS analysis revealed the presence of a total of 37 compounds in chloroform extract of whole fruit, while only 14 compounds were found in seed extract. Nevertheless, more examinations are needed to identify and characterize other metabolites from honeydew melon and evaluate their pharmacological importance.


Assuntos
Antineoplásicos Fitogênicos , Cucumis melo/química , Neoplasias/tratamento farmacológico , Extratos Vegetais , Sementes/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Células HCT116 , Células HeLa , Humanos , Células Jurkat , Neoplasias/metabolismo , Neoplasias/patologia , Células PC-3 , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA