Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(9): 105109, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37517695

RESUMO

G-protein metallochaperones are essential for the proper maturation of numerous metalloenzymes. The G-protein chaperone MMAA in humans (MeaB in bacteria) uses GTP hydrolysis to facilitate the delivery of adenosylcobalamin (AdoCbl) to AdoCbl-dependent methylmalonyl-CoA mutase, an essential metabolic enzyme. This G-protein chaperone also facilitates the removal of damaged cobalamin (Cbl) for repair. Although most chaperones are standalone proteins, isobutyryl-CoA mutase fused (IcmF) has a G-protein domain covalently attached to its target mutase. We previously showed that dimeric MeaB undergoes a 180° rotation to reach a state capable of GTP hydrolysis (an active G-protein state), in which so-called switch III residues of one protomer contact the G-nucleotide of the other protomer. However, it was unclear whether other G-protein chaperones also adopted this conformation. Here, we show that the G-protein domain in a fused system forms a similar active conformation, requiring IcmF oligomerization. IcmF oligomerizes both upon Cbl damage and in the presence of the nonhydrolyzable GTP analog, guanosine-5'-[(ß,γ)-methyleno]triphosphate, forming supramolecular complexes observable by mass photometry and EM. Cryo-EM structural analysis reveals that the second protomer of the G-protein intermolecular dimer props open the mutase active site using residues of switch III as a wedge, allowing for AdoCbl insertion or damaged Cbl removal. With the series of structural snapshots now available, we now describe here the molecular basis of G-protein-assisted AdoCbl-dependent mutase maturation, explaining how GTP binding prepares a mutase for cofactor delivery and how GTP hydrolysis allows the mutase to capture the cofactor.


Assuntos
Cobamidas , Metilmalonil-CoA Mutase , Modelos Moleculares , Chaperonas Moleculares , Cobamidas/metabolismo , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Guanosina Trifosfato/metabolismo , Isomerases/química , Isomerases/metabolismo , Metilmalonil-CoA Mutase/química , Metilmalonil-CoA Mutase/metabolismo , Chaperonas Moleculares/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Cupriavidus/química , Cupriavidus/enzimologia , Estrutura Quaternária de Proteína , Domínio Catalítico , Coenzimas/metabolismo
2.
Biofouling ; 38(6): 643-655, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35924687

RESUMO

Bacteria biofilm formation and its complications are of special concern in isolated structures, such as offshore stations, manned submarines and space habitats, as maintenance and technical support are poorly accessible due to costs and/or logistical challenges. In addition, considering that future exploration missions are planned to adventure farther and longer in space, unlocking biofilm formation mechanisms and developing new antifouling solutions are key goals in order to ensure spacecraft's efficiency, crew's safety and mission success. In this work, we explored the interactions between Cupriavidus metallidurans, a prevalently identified contaminant onboard the International Space Station, and aerospace grade materials such as the titanium alloy TiAl6V4, the stainless steel AISI 316 (SS316) and Polytetrafluoroethylene (PTFE) or Teflon. Borosilicate glass was used as a control and all surfaces were investigated at two different pH values (5.0 and 7.0). Biofilms were almost absent on stainless steel and the titanium alloy contrary to Teflon and glass that were covered by an extensive biofilm formed via monolayers of scattered matrix-free cells and complex multilayered clusters or communities. Filamentous extracellular DNA structures were observed specifically in the complex multilayered clusters adherent to Teflon, indicating that the employed attachment machinery might depend on the physicochemical characteristics of the surface.


Assuntos
Cupriavidus , Voo Espacial , Ligas , Biofilmes , Cupriavidus/química , Politetrafluoretileno , Aço Inoxidável , Titânio
3.
Proc Natl Acad Sci U S A ; 117(33): 19720-19730, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32732435

RESUMO

The synthesis of quinolinic acid from tryptophan is a critical step in the de novo biosynthesis of nicotinamide adenine dinucleotide (NAD+) in mammals. Herein, the nonheme iron-based 3-hydroxyanthranilate-3,4-dioxygenase responsible for quinolinic acid production was studied by performing time-resolved in crystallo reactions monitored by UV-vis microspectroscopy, electron paramagnetic resonance (EPR) spectroscopy, and X-ray crystallography. Seven catalytic intermediates were kinetically and structurally resolved in the crystalline state, and each accompanies protein conformational changes at the active site. Among them, a monooxygenated, seven-membered lactone intermediate as a monodentate ligand of the iron center at 1.59-Å resolution was captured, which presumably corresponds to a substrate-based radical species observed by EPR using a slurry of small-sized single crystals. Other structural snapshots determined at around 2.0-Å resolution include monodentate and subsequently bidentate coordinated substrate, superoxo, alkylperoxo, and two metal-bound enol tautomers of the unstable dioxygenase product. These results reveal a detailed stepwise O-atom transfer dioxygenase mechanism along with potential isomerization activity that fine-tunes product profiling and affects the production of quinolinic acid at a junction of the metabolic pathway.


Assuntos
3-Hidroxiantranilato 3,4-Dioxigenase/química , Proteínas de Bactérias/química , Cupriavidus/enzimologia , 3-Hidroxiantranilato 3,4-Dioxigenase/genética , 3-Hidroxiantranilato 3,4-Dioxigenase/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Cupriavidus/química , Cupriavidus/genética , Cinética , Lactonas/química , Lactonas/metabolismo , Modelos Moleculares , Especificidade por Substrato
4.
Opt Express ; 28(13): 19740-19749, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32672244

RESUMO

Environmental monitoring and potable water control are key applications where optical fiber sensing solutions can outperform other technologies. In this work, we report a highly sensitive plasmonic fiber-optic probe that has been developed to determine the concentration of cadmium ions (Cd2+) in solution. This original sensor was fabricated by immobilizing the Acinetobacter sp. around gold-coated tilted fiber Bragg gratings (TFBGs). To this aim, the immobilization conditions of bacteria on the gold-coated optical fiber surface were first experimentally determined. Then, the coated sensors were tested in vitro. The relative intensity of the sensor response experienced a change of 1.1 dB for a Cd2+ concentration increase from 0.1 to 1000 ppb. According to our test procedure, we estimate the experimental limit of detection to be close to 1 ppb. Cadmium ions strongly bind to the sensing surface, so the sensor exhibits a much higher sensitivity to Cd2+ than to other heavy metal ions such as Pb2+, Zn2+ and CrO42- found in contaminated water, which ensures a good selectivity.


Assuntos
Acinetobacter/química , Cádmio/análise , Cupriavidus/química , Tecnologia de Fibra Óptica/instrumentação , Pseudomonas/química , Técnicas Biossensoriais/métodos , Desenho de Equipamento , Tecnologia de Fibra Óptica/métodos , Íons , Ressonância de Plasmônio de Superfície/métodos
5.
J Agric Food Chem ; 68(24): 6493-6501, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32459959

RESUMO

Organophosphorus insecticides account for approximately 28% of the global commercial insecticide market, while 40% of them are chiral enantiomers. Chiral enantiomers differ largely in their toxicities. Enantiomers that are less active or inactive do not offer the needed efficacy but pollute the environment and cause toxicities to non-target species. Cupriavidus nantongensis X1T, a recently isolated bacterial strain, could degrade S-profenofos 2.3-fold faster than R-profenofos, while the latter is the active enantiomer potently against pest insects and has greater mammalian safety. The degradation enzyme encoded by opdB was expressed via Escherichia coli and purified. The degradation kinetics of R- and S-profenofos showed that both the purified OpdB and crude enzyme extracts had no enantiomer degradation selectivity, which strongly indicated that the degradation selectivity occurred in the uptake process. Metabolite analyses suggested a novel dealkylation pathway. This is the first report of bacterial selective uptake of organophosphates. Selective degradation of S-profenofos over R-profenofos by the strain X1T suggests a concept of co-application of racemic pesticides and degradation-selective bacteria to minimize contamination and non-target toxicity problems.


Assuntos
Cupriavidus/metabolismo , Inseticidas/química , Inseticidas/metabolismo , Organotiofosfatos/química , Organotiofosfatos/metabolismo , Biodegradação Ambiental , Cupriavidus/química , Cinética , Estereoisomerismo
6.
Inorg Chem ; 59(1): 790-800, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31829577

RESUMO

Investigation of the diverse evolutionary developed mechanisms enabling bacteria to maintain homeostasis and to be resistant to lead is crucial for the discovery of novel strategies for isolation of this highly toxic metal and its subsequent elimination from contaminated environments. The metalloregulatory protein pbrR and its homologues that were identified in the Cupriavidus metallidurans CH34 chromosome are the only characterized natural metalloproteins that have a special affinity toward Pb(II) and that bind it with at least a 1000-fold selectivity over other heavy metals. The X-ray structures of apo and Pb(II)-bound pbrR have been recently reported. In the present study, the binding of Pb(II) at pbrR was investigated by means of multiscale computational modeling. Molecular dynamics simulations substantiated how conformations amenable for the Pb(II) complexation through the tris-cysteine motif are formed from the antiparallel coiled-coil packing interaction of two dimerization helices of two pbrR monomers, and the phase space of apo-pbrR has been extensively sampled. Hybrid quantum mechanics/molecular mechanics (QM/MM) calculations on metal-bound structures of pbrR also allowed us to determine the most probable protonation state for the lead binding motif and evaluate the structural features mostly affecting the Pb(II) coordination in this protein. In agreement with available experimental data, we found that pbrR may control its Pb(II) affinity, probably, by conformational changes that affect the distance between Cys78' and Cys122 and their protonation states, thus being able to switch on the Pb(II) sequestration/release-prone states in response to external stimuli. The protein structure enveloping the metal binding motif favors the thiol-thiolate-thiolate protonation state of Pb(II)-pbrR, thus probably enhancing the binding selectivity for Pb(II), compared to other metal ions.


Assuntos
Cupriavidus/química , Chumbo/análise , Metaloproteínas/química , Simulação de Dinâmica Molecular , Teoria Quântica
7.
J Agric Food Chem ; 67(49): 13558-13567, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31738544

RESUMO

Organophosphorus insecticides (OPs) have been widely used to control agricultural pests, which has raised concerns about OP residues in crops and the environment. In this study, we investigated the degradation kinetics and pathways of 8 OPs by Cupriavidus nantongensis X1T and identified the enzyme via gene cloning and in vitro assays. The degradation half-life of methyl parathion, triazophos, and phoxim was only 5, 9, and 43 min, respectively. It was 46 fold faster than that of triazophos by Bacillus sp. TAP-1, a well-studied triazophos-degrader. Strain X1T completely degraded not only chlorpyrifos, methyl parathion, parathion, fenitrothion, triazophos, and phoxim at 50 mg/L within 48 h but also the phenolic metabolites. This was the fastest degradation of OPs by bacterial whole cells reported thus far. The OPs were first hydrolyzed by an OP hydrolase encoded by the opdB gene in strain X1T, followed by further degradation of the metabolites. The crude enzyme maintained a full activity.


Assuntos
Clorpirifos/metabolismo , Cupriavidus/metabolismo , Inseticidas/metabolismo , Bacillus/metabolismo , Biodegradação Ambiental , Clorpirifos/química , Cupriavidus/química , Inseticidas/química , Cinética , Organotiofosfatos/metabolismo , Triazóis/metabolismo
8.
Inorg Chem ; 58(16): 11091-11099, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31353893

RESUMO

Several bacterial species have evolutionary developed protein systems specialized in the control of intracellular gold ion concentration. In order to prevent the detrimental consequences that may be induced even at very low concentrations, bacteria such as Salmonella enterica and Cupriavidus metallidurans utilize Au-specific merR-type transcriptional regulators that detect these toxic ions and control the expression of specific resistance factors. Among these highly specialized proteins, golB has been investigated in depth, and X-ray structures of both apo and Au(I)-bound golB have been recently reported. Here, the binding of Au(I) at golB was investigated by means of multilevel computational approaches. Molecular dynamics simulations evidenced how conformations amenable for the Au(I) chelation through the Cys-XX-Cys motif on helix 1 are extensively sampled in the phase space of apo-golB. Hybrid QM/MM calculations on metal-bound structures of golB also allowed to characterize the most probable protonation state for gold binding motif and to assess the structural features mostly influencing the Au(I) coordination in this protein. Consistently with experimental evidence, we found that golB may control its Au(I) affinity by conformational changes that affect the distance between Cys10 and Cys13, thus being able to switch between the Au(I) sequestration/release-prone states in response to external stimuli. The protein structure enveloping the metal binding motif favors the thiol-thiolate protonation state of Au(I)-golB, thus probably enhancing the binding selectivity for Au(I) compared to other cations.


Assuntos
Proteínas de Bactérias/química , Ouro/química , Metaloproteínas/química , Simulação de Dinâmica Molecular , Teoria Quântica , Cupriavidus/química , Salmonella enterica/química
9.
J Agric Food Chem ; 67(8): 2245-2254, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30721044

RESUMO

Chlorpyrifos is one of the most used organophosphorus insecticides. It is commonly degraded to 3,5,6-trichloro-2-pyridinol (TCP), which is water-soluble and toxic. Bacteria can degrade chlorpyrifos and TCP, but the biodegradation mechanism has not been well-characterized. Recently isolated Cupriavidus nantongensis X1T can completely degrade 100 mg/L chlorpyrifos and 20 mg/L TCP with half-lives of 6 and 8 h, respectively. We annotated a complete gene cluster responsible for TCP degradation in recently sequenced strain X1T. Two key genes, tcpA and fre, were cloned from X1T and transferred and expressed in Escherichia coli BL21(DE3). Degradation of TCP by X1T whole cell was compared with that by the enzymes 2,4,6-trichlorophenol monooxygenase and NAD(P)H:flavin reductase expressed and purified from E. coli BL21(DE3). Novel metabolites of TCP were isolated and characterized, indicating stepwise dechlorination of TCP, which was confirmed by TCP disappearance, mass balance, and detection and formation kinetics of chloride ion from TCP.


Assuntos
Proteínas de Bactérias/química , Clorpirifos/metabolismo , Cupriavidus/enzimologia , FMN Redutase/química , Inseticidas/metabolismo , Oxigenases de Função Mista/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Clorpirifos/química , Cupriavidus/química , Cupriavidus/genética , Cupriavidus/metabolismo , FMN Redutase/genética , FMN Redutase/metabolismo , Halogenação , Inseticidas/química , Cinética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo
10.
Protein Expr Purif ; 158: 27-35, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30776426

RESUMO

PbrD is a lead (II) binding protein encoded by the pbr lead resistance operon found exclusively in Cupriavidus metallidurans CH34. Its ability to sequester Pb(II) shows potential for it to be developed as a biosorbent for Pb in the bioremediation of contaminated wastewaters. In this study the pbrD gene from C. metallidurans CH34 was transformed and overexpressed in Escherichia coli BL21 (DE3) using the pET32 Xa/Lic vector. Optimal expression of recombinant (r)PbrD (∼50 kDa) was achieved post-induction with IPTG within inclusion bodies (IBs). Inclusion bodies were solubilised by denaturation and purified by Ni-NTA affinity chromatography. The purified denatured protein containing the N-terminal Trx•Tag™, His•Tag® and S®Tag™ was refolded in vitro via dialysis to a biologically functional form. Circular dichroism spectra of refolded rPbrD-fusion protein indicated a high degree of turns, ß-sheets and 310 helices content and tryptophan fluorescence showed a structural conformational change in the presence of Pb(II). Refolded rPbrD-fusion protein bound 99.7% of Pb(II) when mixed with lead nitrate in ten-fold increasing concentrations. Adsorption isotherms including Langmuir, Freundlich, Temkin and Dubinin-Radushkevich models were applied to determine the biosorption mechanism. A biologically functional rPbrD-fusion protein has potential application in the development of a biosorbent for remediation of Pb(II) from wastewater.


Assuntos
Cupriavidus/química , Chumbo/química , Metaloproteínas , Chaperonas Moleculares , Cupriavidus/genética , Metaloproteínas/biossíntese , Metaloproteínas/química , Metaloproteínas/genética , Metaloproteínas/isolamento & purificação , Chaperonas Moleculares/biossíntese , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
11.
Biotechnol Prog ; 35(2): e2753, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30468318

RESUMO

Butanol, a fuel with better characteristics than ethanol, can be produced via acetone-butanol-ethanol (ABE) fermentation using lignocellulosic biomass as a carbon source. However, many inhibitors present in the hydrolysate limit the yield of the fermentation process. In this work, a detoxification technology combining flocculation and biodetoxification within a bacterial co-culture composed of Ureibacillus thermosphaericus and Cupriavidus taiwanensis is presented for the first time. Co-culture-based strategies to detoxify filtered and unfiltered hydrolysates have been investigated. The best results of detoxification were obtained for a two-step approach combining flocculation to biodetoxification. This sequential process led to a final phenolic compounds concentration of 1.4 g/L, a value close to the minimum inhibitory level observed for flocculated hydrolysate (1.1 g/L). The generated hydrolysate was then fermented with Clostridium acetobutylicum ATCC 824 for 120 h. A final butanol production of 8 g/L was obtained, although the detoxified hydrolysate was diluted to reach 0.3 g/L of phenolics to ensure noninhibitory conditions. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2753, 2019.


Assuntos
Técnicas de Cocultura , Cupriavidus/metabolismo , Etanol/metabolismo , Planococáceas/metabolismo , Polissacarídeos/metabolismo , Acetona/química , Acetona/metabolismo , Butanóis/química , Butanóis/metabolismo , Cupriavidus/química , Etanol/química , Fermentação , Floculação , Hidrólise , Planococáceas/química
12.
Int J Biol Macromol ; 116: 217-223, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29723627

RESUMO

Long carbon chain alkanediols are used in the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)], however these substrates possess high toxicity towards bacterial cells. This study demonstrated the effective utilisation of a long carbon chain alkanediol, namely 1,8-octanediol, to enhance the yield and production of a copolymer with a high molecular weight of over 1000 kDa, which is desirable for novel applications in medical and biopharmaceuticals. The increased PHA content (47-61 wt%) and concentration (1.7-4.5 g/L) was achieved by additional feeding of a combination of C4 substrates at C/N 10, with 1,8-octanediol + γ-butyrolactone producing P(3HB-co-22 mol% 4HB) with a high molecular weight (1060 kDa) and elongation at break of 970%. The DO-stat feeding strategy of C/N 10 has shown an increment of PHA concentration for both carbon combination, 0.45-4.27 g/L and 0.32-3.36 g/L for 1,8-octanediol + sodium 4-hydroxybutyrate (4HB-Na) and 1,8-octanediol + γ-butyrolactone, but with a slight reduction on molecular weight and mechanical strength. Nonetheless, further study revealed that a nitrogen-absence feeding strategy could retain the high molecular weight and elongation at break of the copolymer, and simultaneously improving the overall P(3HB-co-4HB) production.


Assuntos
Carbono/química , Cupriavidus/química , Hidroxibutiratos/química , Poliésteres/química , Polímeros/química , Peso Molecular , Nitrogênio/química
13.
Int J Biol Macromol ; 111: 1019-1026, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29360547

RESUMO

The present study investigates physicochemical, mechanical, and biological properties of polyhydroxyalkanoate (PHA) copolymers containing 4-hydroxybutyrate (4HB) synthesized in Cupriavidus eutrophus B10646 culture. In poly(3-hydroxybutyrate/4-hydroxybutyrate) [P(3HB/4HB)] bipolymers, 4HB varied between 10.4 and 75.0 mol%; in poly(3-hydroxybutyrate/3-hydroxyvalerate/4-hydroxybutyrate) terpolymers, 4HB constituted 28.7-55.6 mol%; and in poly(3-hydroxybutyrate/3-hydroxyvalerate/4-hydroxybutyrate/3-hydroxyhexanoate) quaterpolymers, 4HB varied between 9.3 and 13.3 mol%. The degree of crystallinity of P(3HB/4HB) copolymers decreased consistently with an increase in 4HB content, reaching 38%. The incorporation of 3-hydroxyvalerate and 3-hydroxyhexanoate into copolymers enhanced that effect. The effect of 4HB monomer units on temperature properties of copolymers was exhibited as lowering of the melting temperature and crystallization temperature, which improved the processing-related properties of the copolymers. All copolymers containing 4HB showed enhanced elongation at break compared to poly(3-hydroxybutyrate). Polymer films prepared from PHAs with different chemical composition had similar microstructure and porosity and had no toxic effect on mouse fibroblast NIH 3 T3 cells, proving their high biocompatibility.


Assuntos
Fibroblastos/efeitos dos fármacos , Hidroxibutiratos/química , Poli-Hidroxialcanoatos/química , Polímeros/química , Animais , Caproatos/química , Cupriavidus/química , Hidroxibutiratos/administração & dosagem , Camundongos , Células NIH 3T3 , Ácidos Pentanoicos/química , Poliésteres/química , Poli-Hidroxialcanoatos/administração & dosagem , Polimerização , Polímeros/administração & dosagem , Temperatura
14.
Appl Environ Microbiol ; 83(23)2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28939597

RESUMO

Heterotrophic bacteria have recently been reported to oxidize sulfide to sulfite and thiosulfate by using sulfide:quinone oxidoreductase (SQR) and persulfide dioxygenase (PDO). In chemolithotrophic bacteria, both SQR and PDO have been reported to function in the periplasmic space, with SQR as a peripheral membrane protein whose C terminus inserts into the cytoplasmic membrane and PDO as a soluble protein. Cupriavidus pinatubonensis JMP134, best known for its ability to degrade 2,4-dichlorophenoxyacetic acid and other aromatic pollutants, has a gene cluster of sqr and pdo encoding C. pinatubonensis SQR (CpSQR) and CpPDO2. When cloned in Escherichia coli, the enzymes are functional. Here we investigated whether they function in the periplasmic space or in the cytoplasm in heterotrophic bacteria. By using sequence analysis, biochemical detection, and green fluorescent protein (GFP)/PhoA fusion proteins, we found that CpSQR was located on the cytoplasmic side of the membrane and CpPDO2 was a soluble protein in the cytoplasm with a tendency to be peripherally located near the membrane. The location proximity of these proteins near the membrane in the cytoplasm may facilitate sulfide oxidation in heterotrophic bacteria. The information may guide the use of heterotrophic bacteria in bioremediation of organic pollutants as well as H2S.IMPORTANCE Sulfide (H2S, HS-, and S2-), which is common in natural gas and wastewater, causes a serious malodor at low levels and is deadly at high levels. Microbial oxidation of sulfide is a valid bioremediation method, in which chemolithotrophic bacteria that use sulfide as the energy source are often used to remove sulfide. Heterotrophic bacteria with SQR and PDO have recently been reported to oxidize sulfide to sulfite and thiosulfate. Cupriavidus pinatubonensis JMP134 has been extensively characterized for its ability to degrade organic pollutants, and it also contains SQR and PDO. This paper shows the localization of SQR and PDO inside the cytoplasm in the vicinity of the membrane. The information may provide guidance for using heterotrophic bacteria in sulfide bioremediation.


Assuntos
Proteínas de Bactérias/metabolismo , Cupriavidus/enzimologia , Citoplasma/enzimologia , Dioxigenases/metabolismo , Quinona Redutases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Membrana Celular/enzimologia , Membrana Celular/genética , Cupriavidus/química , Cupriavidus/genética , Citoplasma/genética , Dioxigenases/química , Dioxigenases/genética , Domínios Proteicos , Transporte Proteico , Quinona Redutases/química , Quinona Redutases/genética , Sulfetos/metabolismo
15.
J Agric Food Chem ; 65(18): 3711-3720, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28434228

RESUMO

Phytotoxicity and environmental pollution of residual herbicides have caused much public concern during the past several decades. An indigenous bacterial strain capable of degrading 2,4-dichlorophenoxyacetic acid (2,4-D), designated T-1, was isolated from soybean field soil and identified as Cupriavidus gilardii. Strain T-1 degraded 2,4-D 3.39 times more rapidly than the model strain Cupriavidus necator JMP134. T-1 could also efficiently degrade 2-methyl-4-chlorophenoxyacetic acid (MCPA), MCPA isooctyl ester, and 2-(2,4-dichlorophenoxy)propionic acid (2,4-DP). Suitable conditions for 2,4-D degradation were pH 7.0-9.0, 37-42 °C, and 4.0 mL of inoculums. Degradation of 2,4-D was concentration-dependent. 2,4-D was degraded to 2,4-dichlorophenol (2,4-DCP) by cleavage of the ether bond and then to 3,5-dichlorocatechol (3,5-DCC) via hydroxylation, followed by ortho-cleavage to cis-2-dichlorodiene lactone (CDL). The metabolites 2,4-DCP or 3,5-DCC at 10 mg L-1 were completely degraded within 16 h. Fast degradation of 2,4-D and its analogues highlights the potential for use of C. gilardii T-1 in bioremediation of phenoxyalkanoic acid herbicides.


Assuntos
Ácido 2,4-Diclorofenoxiacético/metabolismo , Cupriavidus/metabolismo , Herbicidas/metabolismo , Ácido 2,4-Diclorofenoxiacético/química , Biodegradação Ambiental , Cupriavidus/química , Cupriavidus/genética , Cupriavidus/isolamento & purificação , Herbicidas/química , Estrutura Molecular , Microbiologia do Solo
16.
Angew Chem Int Ed Engl ; 56(9): 2508-2512, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28128538

RESUMO

The structure, dynamics, and function of membrane proteins are intimately linked to the properties of the membrane environment in which the proteins are embedded. For structural and biophysical characterization, membrane proteins generally need to be extracted from the membrane and reconstituted in a suitable membrane-mimicking environment. Ensuring functional and structural integrity in these environments is often a major concern. The styrene/maleic acid co-polymer has recently been shown to be able to extract lipid/membrane protein patches directly from native membranes to form nanosize discoidal proteolipid particles, also referred to as native nanodiscs. In this work, we show that high-resolution solid-state NMR spectra can be obtained from an integral membrane protein in native nanodiscs, as exemplified by the 2×34 kDa bacterial cation diffusion facilitator CzcD.


Assuntos
Proteínas de Bactérias/química , Cupriavidus/química , Maleatos/química , Proteínas de Membrana Transportadoras/química , Poliestirenos/química , Espectroscopia de Prótons por Ressonância Magnética/métodos , Difusão , Nanoestruturas/química , Proteolipídeos/química , Prótons , Zinco/química
17.
Biochemistry ; 55(20): 2883-97, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27145046

RESUMO

Silver ion resistance in bacteria mainly relies on efflux systems, and notably on tripartite efflux complexes involving a transporter from the resistance-nodulation-cell division (RND) superfamily, such as the SilCBA system from Cupriavidus metallidurans CH34. The periplasmic adaptor protein SilB hosts two specific metal coordination sites, located in the N-terminal and C-terminal domains, respectively, that are believed to play a different role in the efflux mechanism and the trafficking of metal ions from the periplasm to the RND transporter. On the basis of the known domain structure of periplasmic adaptor proteins, we designed different protein constructs derived from SilB domains with either one or two metal binding sites per protein chain. ITC data acquired on proteins with single metal sites suggest a slightly higher affinity of Ag(+) for the N-terminal metal site, compared to that for the C-terminal one. Remarkably, via the study of a protein construct featuring both metal sites, nuclear magnetic resonance (NMR) and fluorescence spectroscopies concordantly show that the C-terminal site is saturated prior to the N-terminal one. The C-terminal binding site is supposed to transfer the metal ions to the RND protein, while the transport driven by this latter is activated upon binding of the metal ion to the N-terminal site. Our results suggest that the filling of the C-terminal metal site is a key prerequisite for preventing futile activation of the transport system. Exhaustive NMR studies reveal for the first time the structure and dynamics of the functionally important N-terminal domain connected to the membrane proximal domain as well as of its Ag(+) binding site.


Assuntos
Proteínas de Transporte/química , Cupriavidus/química , Periplasma/química , Proteínas Periplásmicas/química , Prata/química , Proteínas de Transporte/metabolismo , Cupriavidus/metabolismo , Transporte de Íons , Ressonância Magnética Nuclear Biomolecular , Periplasma/metabolismo , Proteínas Periplásmicas/metabolismo , Domínios Proteicos , Prata/metabolismo , Espectrometria de Fluorescência
18.
Nat Chem Biol ; 11(9): 678-84, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26192600

RESUMO

The P1B-ATPases, which couple cation transport across membranes to ATP hydrolysis, are central to metal homeostasis in all organisms. An important feature of P1B-ATPases is the presence of soluble metal binding domains (MBDs) that regulate transport activity. Only one type of MBD has been characterized extensively, but bioinformatics analyses indicate that a diversity of MBDs may exist in nature. Here we report the biochemical, structural and functional characterization of a new MBD from the Cupriavidus metallidurans P1B-4-ATPase CzcP (CzcP MBD). The CzcP MBD binds two Cd(2+), Co(2+) or Zn(2+) ions in distinct and unique sites and adopts an unexpected fold consisting of two fused ferredoxin-like domains. Both in vitro and in vivo activity assays using full-length CzcP, truncated CzcP and several variants indicate a regulatory role for the MBD and distinct functions for the two metal binding sites. Taken together, these findings elucidate a previously unknown MBD and suggest new regulatory mechanisms for metal transport by P1B-ATPases.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Bactérias/química , Cádmio/química , Proteínas de Transporte de Cátions/química , Cobalto/química , Cupriavidus/enzimologia , Zinco/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cádmio/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Cobalto/metabolismo , Cupriavidus/química , Escherichia coli/genética , Escherichia coli/metabolismo , Ferredoxinas/química , Expressão Gênica , Cinética , Simulação de Dinâmica Molecular , Fases de Leitura Aberta , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Zinco/metabolismo
19.
J Basic Microbiol ; 55(3): 374-81, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23832807

RESUMO

Cupriavidus metallidurans CH34 and Pseudomonas putida mt2 were used as cadmium (Cd)-resistant and -sensitive bacteria, respectively, to study their biosorption ability and their antioxidative enzymes. The minimal inhibitory concentration of C. metallidurans CH34 for Cd was found to be 30 mM, and for P. putida mt2 it was 1.25 mM. The tube dilution method revealed the heavy-metal resistance pattern of C. metallidurans CH34 as Ni(2+) (10 mM)>Zn(2+) (4 mM)>Cu(2+) (2 mM)>Hg(2+) (1 mM)>Cr(2+) (1 mM)>Pb(2+) (0 mM), whereas P. putida mt2 was only resistant to Zn(2+) (1 mM). Under Cd stress, the induction of GSH was higher in C. metallidurans CH34 (0.359 ± 0.010 mM g(-1) FW) than in P. putida mt2 (0.286 ± 0.005 mM g(-1) FW). Glutathione reductase was more highly expressed in the mt2 strain, in contrast to non-protein thiols and peroxidase. Unlike dead bacterial cells, live cells of both bacteria showed significant Cd biosorption, i.e. more than 80% at 48 h. C. metallidurans CH34 used only catalase, whereas P. putida mt2 used superoxide dismutase and ascorbate peroxidase to combat Cd stress. This study investigated the Cd biosorption ability and enzymes involved in the Cd detoxification mechanisms of C. metallidurans CH34 and P. putida mt2.


Assuntos
Cádmio/metabolismo , Cádmio/farmacologia , Cupriavidus/metabolismo , Glutationa Redutase/metabolismo , Peroxidase/metabolismo , Pseudomonas putida/metabolismo , Superóxido Dismutase/metabolismo , Ascorbato Peroxidases/metabolismo , Biodegradação Ambiental , Catalase/metabolismo , Cupriavidus/química , Cupriavidus/efeitos dos fármacos , Cupriavidus/enzimologia , Farmacorresistência Bacteriana , Glutationa Redutase/genética , Metais Pesados/metabolismo , Metais Pesados/farmacologia , Testes de Sensibilidade Microbiana , Pseudomonas putida/química , Pseudomonas putida/efeitos dos fármacos , Pseudomonas putida/enzimologia , Estresse Fisiológico , Compostos de Sulfidrila/metabolismo
20.
Metallomics ; 6(11): 2157-65, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25315396

RESUMO

Zinc is a central player in the metalloproteomes of prokaryotes and eukaryotes. We used a bottom-up quantitative proteomic approach to reveal the repository of the zinc pools in the proteobacterium Cupriavidus metallidurans. About 60% of the theoretical proteome of C. metallidurans was identified, quantified, and the defect in zinc allocation was compared between a ΔzupT mutant and its parent strain. In both strains, the number of zinc-binding proteins and their binding sites exceeded that of the zinc ions per cell, indicating that the totality of the zinc proteome provides empty binding sites for the incoming zinc ions. This zinc repository plays a central role in zinc homeostasis in C. metallidurans and probably also in other organisms.


Assuntos
Cupriavidus/metabolismo , Cupriavidus/fisiologia , Zinco/metabolismo , Proteínas de Bactérias/metabolismo , Cupriavidus/química , Mutação , Proteoma/metabolismo , Proteômica , Zinco/análise , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA