Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
1.
Biosensors (Basel) ; 14(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38920595

RESUMO

This work reports the development of novel curcuminoid-based electrochemical sensors for the detection of environmental pollutants from water. In this study, the first set of electrochemical experiments was carried out using curcumin-conjugated multi-walled carbon nanotubes (MWCNT-CM) for 1,4-dioxane detection. The MWCNT-CM/GCE showed good sensitivity (103.25 nA nM-1 cm-2 in the linear range 1 nM to 1 µM), with LOD of 35.71 pM and LOQ of 108.21 pM. The second set of electrochemical experiments was carried out with bisdemethoxy curcumin analog quantum dots (BDMCAQD) for hydrazine detection. The BDMCAQD/GCE exhibited good sensitivity (74.96 nA nM-1 cm-2 in the linear range 100 nM to 1 µM), with LOD of 10 nM and LOQ of 44.93 nM. Thus, this work will serve as a reference for the fabrication of metal-free electrochemical sensors using curcuminoids as the redox mediator for the enhanced detection of environmental pollutants.


Assuntos
Curcumina , Técnicas Eletroquímicas , Hidrazinas , Nanotubos de Carbono , Hidrazinas/análise , Curcumina/análise , Nanotubos de Carbono/química , Dioxanos , Técnicas Biossensoriais , Poluentes Ambientais/análise , Pontos Quânticos , Limite de Detecção , Poluentes Químicos da Água/análise
2.
Anal Methods ; 16(24): 3983-3992, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38853673

RESUMO

Edible oil-based switchable-hydrophilicity solvent liquid-liquid microextraction was coupled with smartphone digital image colorimetry for the determination of total curcuminoids. Images of the colored extracts were captured in a laboratory-made colorimetric box, which were then split into their red-green-blue channels. Optimum extraction conditions were achieved using 550 µL of almond oil as the extraction solvent and 0.40 M sodium hydroxide for hydrolysis of the oil to the salt of its fatty acid. Phosphoric acid (2.0 mL, 4.0 M) was used as the hydrophilicity-switching trigger, while pH of the sample solution adjusted to 5.50 and extraction time of 1.0 min, were found to be optimum. Optimum detection conditions were achieved at a distance of 7.0 cm from the detection camera, a region of interest of 175 px2, a detection wavelength of 420 nm and 50.0% brightness of the light source. The limit of detection was found to be 0.020 µg mL-1. A good linearity was achieved as indicated by coefficients of determination above 0.9965. The proposed method was used for the determination of total curcuminoids in tea and turmeric samples with percentage relative recoveries of 95.0-105.0% and percentage relative standard deviations below 8.7%.


Assuntos
Colorimetria , Microextração em Fase Líquida , Óleos de Plantas , Smartphone , Microextração em Fase Líquida/métodos , Colorimetria/métodos , Óleos de Plantas/química , Interações Hidrofóbicas e Hidrofílicas , Curcumina/análise , Curcumina/química , Análise de Alimentos/métodos , Solventes/química , Limite de Detecção
3.
J Mass Spectrom ; 59(6): e5036, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38726689

RESUMO

Turmeric and ginger are extensively employed as functional ingredients due to their high content of curcuminoids and gingerols, considered the key bioactive compounds found in these roots. In this study, we present an innovative and fast method for the assay of curcuminoids and gingerols in different foods containing the two spices, with the aim of monitoring the quality of products from a nutraceutical perspective. The proposed approach is based on paper spray tandem mass spectrometry coupled with the use of a labeled internal standard, which has permitted to achieve the best results in terms of specificity and accuracy. All the calculated analytical parameters were satisfactory; accuracy values are around 100% for all spiked samples and the precision data result lower than 15%. The protocol was applied to several real samples, and to demonstrate its robustness and reliability, the results were compared to those arising from the common liquid chromatographic method.


Assuntos
Curcuma , Álcoois Graxos , Espectrometria de Massas em Tandem , Zingiber officinale , Zingiber officinale/química , Curcuma/química , Espectrometria de Massas em Tandem/métodos , Álcoois Graxos/análise , Reprodutibilidade dos Testes , Limite de Detecção , Catecóis/análise , Análise de Alimentos/métodos , Curcumina/análise , Curcumina/análogos & derivados , Papel
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124428, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38781825

RESUMO

The combination of Curcumin (CRN), resveratrol (RSV), and quercetin (QRN) has significant antioxidant effects and is found to be more effective than a single polyphenol. Spectrophotometric methods are considered one of the most common analytical techniques for the determination of the drugs due to their sensitivity, rapidness, low cost, and reproducibility. Therefore, the presence of new, and simple methods for the determination of such compounds will be highly valuable, specially in the presence of spectral overlap. In this research, five different facile spectrophotometric methods were investigated for the simultaneous determination of that ternary mixture for the first time, including zero order (I), first derivative (II), ratio difference double divisor (III), first derivative ratio spectra (IV), and mean centering (V) methods. The designed approaches were linear over the concentration ranges of (1.0-10.0), (0.5-8.0), and (1.0-14.0) µg/mL, respectively for curcumin, resveratrol, and quercetin. The different methods were then validated as stated by the International Council of Harmonization. The accuracy and precision have been evaluated by statistical analysis including student t-test, variance ratio F-test, and ANOVA. Moreover, the greenness and whiteness of the proposed methods were assessed to ensure the adherence to the greenness characters.


Assuntos
Antioxidantes , Curcumina , Polifenóis , Quercetina , Resveratrol , Espectrofotometria , Antioxidantes/análise , Espectrofotometria/métodos , Polifenóis/análise , Resveratrol/análise , Quercetina/análise , Curcumina/análise , Química Verde/métodos , Reprodutibilidade dos Testes , Estilbenos/análise , Estilbenos/química
5.
Food Chem ; 450: 139347, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38653047

RESUMO

Food freshness monitoring is an important component in ensuring food safety for consumers and the food industry. Therefore, there is an urgent need for a portable, low-cost, and efficient detection method to determine the freshness. In this study, polyvinyl alcohol (PVA) was used as polymer carrier to prepare electrospinning film containing curcumin (Cur) and gardenia blue (GB) as intelligent indicator label on food packaging for real-time nondestructive detection of freshness of shrimp. The detection limit of ammonia response is less than or equal to 20 ppm, and the detection time is about 1 min, indicating that it has a sensitive response effect. At the same time, a smartphone application that can identify amines in response to color changes has been developed, and consumers can understand freshness by scanning the label. This study demonstrates the huge potential of smart indicator labels for food freshness monitoring.


Assuntos
Embalagem de Alimentos , Álcool de Polivinil , Smartphone , Animais , Álcool de Polivinil/química , Embalagem de Alimentos/instrumentação , Aminas/química , Aminas/análise , Penaeidae/química , Frutos do Mar/análise , Curcumina/química , Curcumina/análise
6.
Anal Sci ; 40(7): 1311-1321, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38607598

RESUMO

This research developed a colorimetric assay for semi-quantitative curcumin detection. The screening test was performed using a ferric chloride to form a brownish color which was further used to evaluate the amount of curcumin in the turmeric powder samples. The quantitative assay was performed based on the color intensity of the curcumin target using a smartphone digital image colorimetry with a developed lightbox constructed with a white light-emitting diodes (LED) light source as the measurement device. Images in red, green, and blue (RGB) color were processed to obtain relevant colors from the image and the color values were used to analyze curcumin concentrations. The intensity of the ΔB was correlated to the concentration of curcumin with high sensitivity. The method showed a linear range between 0.25 and 5 mg L-1 with the LOD and LOQ of 0.12 and 0.41 mg L-1, respectively. Sample analysis was carried out in turmeric powders. Curcumin in turmeric powder samples was simply extracted using acetonitrile followed by dilution 100 times for sample preparation. The accuracy was tested by spiking 0.25, 1.00, and 4.00 mg L-1 of standard curcumin into the turmeric sample solution. The average percentage recoveries were acceptable in all samples (90-104%). The method was validated by comparing the results obtained from the proposed method and high-performance liquid chromatography (HPLC). There was no statistically significant difference between the two methods (P = 0.05).


Assuntos
Colorimetria , Curcuma , Curcumina , Pós , Smartphone , Curcumina/análise , Curcumina/química , Curcuma/química , Pós/química
7.
Int J Biol Macromol ; 266(Pt 1): 131089, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521340

RESUMO

Herein, for the very first time, we report a paper-like biomass, eggshell membrane (ESM), as a suitable platform for the fabrication of a colorimetric sensor (E-Cot). Green ethanolic extract, curcumin (CUR), was used as a sensing material to coat with the ESM. The present E-Cot effectively changed its color (yellow to red) in the real-time monitoring for chicken spoilage. The E-Cot exhibits barrier properties due to its inherent semi-permeability characteristics. Interestingly, the E-Cot showed a significant change in total color difference value (ΔE, 0 days - 0.0-39.6, after 1 day - 39.6-42.1, after 2 days - 42.1-53.6, after 3 days- 53.6-60.1, and after 4 days - 60.1-66.3, detectable by the naked eye) in the real-time monitoring for chicken freshness. In addition, the present E-Cot smart colorimetric sensor is reversible with a change in pH, and the sensor can be reused. Further, the hydrophobic nature of the E-Cot was confirmed by water contact angle analysis (WCA, contact angle of 101.21 ± 8.39). Good antibacterial, barrier, and optical properties of the present E-Cot were also found. Owing to the advantages such as green, efficient, cost-effective, biodegradable, reusable, sustainable, and simple preparation, we believe that the present E-Cot would be a more attractive candidate.


Assuntos
Galinhas , Colorimetria , Curcumina , Casca de Ovo , Animais , Curcumina/química , Curcumina/análise , Colorimetria/métodos , Casca de Ovo/química , Cor , Química Verde/métodos
8.
Talanta ; 269: 125401, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37979509

RESUMO

For the first time, a fast and easy extraction method based on a unique reusable and switchable deep eutectic solvent (made of octylamine, succinic acid, and water as precursors) was presented and utilized for the microextraction and determination of curcumin as a model analyte. The main factors used to induce a phase transition in the as-prepared deep eutectic solvent were solutions of NaOH and HCl. Among the standout characteristics of the suggested deep eutectic solvent are the removal of toxic organic solvents like THF, the lack of a need for centrifugation, and the ability to be reused in subsequent extractions. The influence of effective parameters (i.e., proportions of deep eutectic solvent structure components, volume of prepared deep eutectic solvent, volume and concertation of NaOH, volume of HCl, and salt effect) on the extraction procedure were investigated. The calibration curve also was linear in the range of 35-500 µg L-1 with coefficients of determination (R2) of 0.9976. Limit of detection (S/N = 3) 10.0 µg L-1, the limit of quantification (LOQ) of 35.0 µg L-1, the relative standard deviations (RSDs %) composed of intra-day RSD (4.7) and inter-day RSD (6.4), preconcentration factor of 40.0, enrichment factor of 38.68, and relative recovery of 92.6%-100.3 % were achieved. The reusable and switchable deep eutectic solvent based-dispersive liquid-liquid microextraction technique was proficiently employed to expedite easy and fast extraction of curcumin from water and food samples.


Assuntos
Curcumina , Microextração em Fase Líquida , Solventes/química , Água/química , Curcumina/análise , Solventes Eutéticos Profundos , Hidróxido de Sódio , Limite de Detecção , Microextração em Fase Líquida/métodos
9.
Mater Horiz ; 10(10): 4163-4171, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37338170

RESUMO

Sweat pH is an important indicator for diagnosing disease states, such as cystic fibrosis. However, conventional pH sensors are composed of large brittle mechanical parts and need additional instruments to read signals. These pH sensors have limitations for practical wearable applications. In this study, we propose wearable colorimetric sweat pH sensors based on curcumin and thermoplastic-polyurethane (C-TPU) electrospun-fibers to diagnose disease states by sweat pH monitoring. This sensor aids in pH monitoring by changing color in response to chemical structure variation from enol to di-keto form via H-atom separation. Its chemical structure variation changes the visible color due to light absorbance and reflectance changes. Furthermore, it can rapidly and sensitively detect sweat pH due to its superior permeability and wettability. By O2 plasma activation and thermal pressing, this colorimetric pH sensor can be easily attached to various fabric substrates such as swaddling and patient clothing via surface modification and mechanical interlocking of C-TPU. Furthermore, the diagnosable clothing is durable and reusable enough to neutral washing conditions due to the reversible pH colorimetric sensing performance by restoring the enol form of curcumin. This study contributes to the development of smart diagnostic clothing for cystic fibrosis patients who require continuous sweat pH monitoring.


Assuntos
Curcumina , Fibrose Cística , Dispositivos Eletrônicos Vestíveis , Humanos , Suor/química , Fibrose Cística/diagnóstico , Colorimetria , Curcumina/análise , Têxteis , Concentração de Íons de Hidrogênio
10.
J Sep Sci ; 46(10): e2200789, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36892097

RESUMO

Terpene-conjugated curcuminoids are conjugates of curcuminoids and bisabolanes in the rhizomes of Curcuma longa L. The fragmentation pathways of known three terpene-conjugated curcuminoids (bisabolocurcumin-ether, bisabocurcumin, and demethoxybisabolocurcumin ether) and curcumin, demethoxycurcumin, and bisdemethoxycurcumin were investigated using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry in negative mode to rapidly search and discover similar unknown compounds of the acetone fraction of turmeric. Subsequently, compounds 1-3 were founded in the acetone fraction based on molecular weight and above fragmentation pathways (the characteristic fragment ions, the most and second most abundant fragment ions produced in MS2 spectra). Terpecurcumin X (1) and terpecurcumin Y (3) were further separated by liquid chromatography-tandem mass spectrometry guided isolation technique to verify their structures by nuclear magnetic resonance, electrospray ionization high-resolution mass spectroscopy, ultraviolet and visible spectra and infrared spectra. Interestingly, 1 and 3 were new compounds. The results indicate the feasibility and significant advantages of liquid chromatography-tandem mass spectrometry for the rapid discovery and analysis of new constituents in traditional Chinese medicine. In vitro, Terpene-conjugated curcuminoids had better nitric oxide inhibitory activity than the other seven curcuminoids (demethoxycurcumin, bisdemethoxycurcumin, curdione, curcumenone, bisacurone, curcumenol, and germacron).


Assuntos
Curcumina , Terpenos , Terpenos/análise , Espectrometria de Massas em Tandem/métodos , Acetona , Diarileptanoides , Cromatografia Líquida , Curcumina/análise , Cromatografia Líquida de Alta Pressão/métodos , Anti-Inflamatórios , Curcuma/química
11.
Food Chem ; 414: 135561, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36827781

RESUMO

Organic macromolecules form carcinogenic and toxic substances such as polycyclic aromatic hydrocarbons (PAHs) under high temperature baking. Thus, this study investigated the effects and inhibition pathways of different curcumin concentrations (0.01, 0.05, 0.25, 0.3 mg/g) on seven PAHs in grilled chicken wings. The results demonstrated that curcumin concentrations displayed positive effects in inhibiting the formation of PAHs (16%-72%), increasing the total phenolic content (397.5-1934.4 mg/g) and free radical scavenging activity, and reducing TBARS values (31.15%-47.76%) and fatty acid content. Additionally, PCA and Pearson correlation analyses indicated that lipid oxidation (r = 0.42) and unsaturated fatty acids (r = 0.55) could promote the production of PAHs, while DPPH, ABTS and TPC could counteract their facilitation of PAHs. In conclusion, the addition of appropriate amounts of curcumin before grilling is a feasible strategy to reduce fat oxidation levels and the number of free radicals for the purpose of limiting PAHs content.


Assuntos
Curcumina , Hidrocarbonetos Policíclicos Aromáticos , Animais , Galinhas , Curcumina/farmacologia , Curcumina/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Culinária/métodos , Temperatura Alta
12.
Artigo em Inglês | MEDLINE | ID: mdl-36753841

RESUMO

Curcumin is a natural phenol found in the rhizome of Curcuma longa. It has been studied to treat several human carcinomas, such as melanomas and breast, head and neck, prostate, and ovary cancers. Here, we develop and validate a method for recovering curcumin from the skin layers and mucosa and selectively quantifying it, aiming to support permeation studies in developing topical formulations containing the natural compound. Recovery of curcumin from the stratum corneum, remaining skin, and mucosa was performed using ethanol, DMSO/ethanol, and DMSO, respectively, under mild stirring for specific periods. The separation of curcumin from the other curcuminoids, skin, and mucosa interferents was obtained using a C18 column as a stationary phase. The mobile phase was composed of pH 3.0 phosphoric acid at 1.0 mmol/L and acetonitrile (47:53, v/v), which flowed at 1 mL min-1. UV-Vis detection of curcumin was at 424 nm. The chromatographic method was selective, linear (r > 0.999), with a regression curve in the concentration range from 1.0 to 30.0 µg mL-1, robust, precise, and accurate, with curcumin recovery rates higher than 95 ± 7 % from the mucosa, 82 ± 2 % from the stratum corneum, and 65 ± 10 % from the remaining skin. Finally, the method was successfully used in a skin permeation test performed with porcine skin and mucosa. The validated method is, therefore, suitable for the recovery and quantification of curcumin from the skin layers and mucosa, favoring the development of new topical formulations destined for these sites of administration.


Assuntos
Curcumina , Animais , Suínos , Humanos , Curcumina/análise , Cromatografia Líquida de Alta Pressão/métodos , Dimetil Sulfóxido , Mucosa/química , Etanol
13.
J Mech Behav Biomed Mater ; 138: 105551, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36459707

RESUMO

OBJECTIVE: The purpose of this study was to evaluate the effect of using natural cross-linkers as sumac and curcumin on the durability of the resin-dentin bond and stiffness of demineralized dentin matrix. METHODS: Thirty sound molars were divided into 5 groups: Control (CO), Grape Seed extract (GSE), Cacao seed extract (CSE), Sumac extract (SE) and Curcumin extract (CE). The teeth had their coronal dentin exposed, etched, and pre-treated for 1 min with the extracts. Teeth were then bonded using Single-Bond II adhesive and 4 mm composite was built up on dentin surface. Teeth were sectioned into 1 × 1 × 8mm beams and their micro-tensile bond strength (µTBS) was tested after 24 h and 6 months of water storage. For stiffness testing, 15 teeth were sectioned to obtain dentin beams (1 × 1 × 6.5 mm), the beams were demineralized in 10% phosphoric acid then rinsed and divided into 5 groups. Beams were then immersed in their respective extract solution for 1 min after which they were subjected to a 3- point loading test using a universal testing machine to calculate their modulus of elasticity. RESULTS: After 24 h, no significant difference in µTBS was shown between all groups. After 6 Months, GSE, CE, and SE showed significantly higher µTBS compared to CO (p ≥ 0.05). For the modulus of elasticity; only GSE showed a significantly higher modulus compared to other groups. CLINICAL RELEVANCE: The application of grape seed extract, curcumin and sumac extract as dentin pre-treatments appear to be a promising approach to enhance the durability of the resin-dentin bond in a clinically relevant application time.


Assuntos
Curcumina , Colagem Dentária , Extrato de Sementes de Uva , Extrato de Sementes de Uva/farmacologia , Curcumina/farmacologia , Curcumina/análise , Dentina/química , Elasticidade , Colágeno/análise , Resistência à Tração , Teste de Materiais , Adesivos Dentinários/química , Cimentos de Resina/química , Resinas Compostas/química
14.
J AOAC Int ; 106(4): 979-991, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-36440895

RESUMO

BACKGROUND: Jatyadi taila (JT) is a well-known Ayurvedic wound-healing product, comprising 16 different medicinally important plants, including Curcuma longa, Terminalia chebula, and Jasminum officinale. OBJECTIVE: The proposed work discusses the development and validation of the green and economical stability-indicating HPTLC method for quantification of the key marker phytoconstituents, curcumin (CUR), gallic acid (GA), and ursolic acid (UA), from JT. METHOD: Quality standard parameters for JT were determined following standard procedures. The marker constituents CUR, GA, and UA were resolved from JT using toluene-ethyl acetate-formic acid (6:2:1, v/v/v) as the mobile phase and subsequently derivatized to estimate UA. The developed plates were subjected to HPTLC-MS analysis. All constituents were subjected to forced degradation to determine the proposed technique's stability-indicating property and the accelerated stability studies of marketed formulation and marker constituents. Greenness evaluation of the method was aided by the AGREE methodology. RESULTS: The Rf values of CUR, GA, and UA were found to be 0.60 and 0.60; 0.27 and 0.28; and 0.74 and 0.77 from reference standard and oil samples respectively, when analyzed at 366 nm, 290 nm, and 366 nm, respectively. HPTLC-MS was carried out to verify the active constituents present in JT. The constituents followed first-order degradation kinetics. The quantity of CUR, GA, and UA in JT was reduced at the end of accelerated stability studies. The developed approach was validated in compliance with the International Conference on Harmonization (ICH) Q2 (R2) guideline. CONCLUSIONS: Among the chosen key markers, GA was highly unstable during forced degradation. JT should be stored at a controlled temperature using more protective packaging material to ensure its quality and efficacy. HIGHLIGHTS: The developed method can be used as a quality control tool for JT as it can be used to determine the stability of the key marker compounds the herbal formulation.


Assuntos
Curcumina , Triterpenos , Ácido Gálico/análise , Curcumina/análise , Triterpenos/análise , Cromatografia em Camada Fina/métodos , Ácido Ursólico
15.
Analyst ; 148(1): 175-181, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36472862

RESUMO

Curcumin is a dietary spice and coloring agent widely used in food and herbal medicine. Herein, we visualized the distribution of curcumin in fresh Curcuma longa (turmeric) root sections using the state-of-the-art vacuum-ultraviolet (VUV, 118 nm) single photon-postionization mass spectrometric imaging method. Compared with other mass spectrometric imaging methods, the proposed method does not require any sample pre-treatment. The proposed approach could be more conducive to in situ detection of small molecules. The mass spectroscopic imaging (MSI) images of curcumin sections with a lateral resolution of 100 µm indicated that the concentrations of curcumin decreased from the phloem to the xylem of the root. We also show MS imaging of curcumin in the turmeric root at different maturity periods, revealing the transformation of this endogenous species. The result of quantitative analysis indicates that the total curcumin content of the mature turmeric root is estimated to be 3.43%, which is consistent with the previous report that the content of curcumin in the turmeric root is estimated between 3% and 5%. The report indicated that the proposed method of VUV single photon postionization MSI can be used to explore the metabolic process of plants, which is critical for herbal farming, harvest, and its ingredient extraction.


Assuntos
Curcumina , Curcumina/análise , Curcuma/química , Curcuma/metabolismo , Espectrometria de Massas , Extratos Vegetais/química
16.
Talanta ; 246: 123495, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35483317

RESUMO

There is an urgent need to measure aflatoxin B1 (AFB1) in food to prevent contaminated food consumption. In this work, a novel colorimetric enzyme-linked immunosorbent assay (ELISA) was developed for the detection of AFB1 using curcumin as a colorimetric indicator. An indirect competitive enzyme-label immunoassay was developed using urease and rabbit anti-mouse immunoglobulin G labeled with gold nanoparticles as the signal-transduction tag. Urease catalyzed the hydrolysis of urea to produce ammonia, which increased the pH of the solution. The phenolic hydroxyl group of curcumin ionized into phenolic oxygen anions under alkaline conditions, which strengthened the synergistic effect of electron supply and absorption in curcumin. As a result, the color of curcumin changed from yellow to reddish-brown, producing a visible color change. Under optimal conditions, AFB1 could be qualitatively determined with the naked eye, and quantitatively assessed by measuring the ratio of absorbance at wavelengths of 550 and 428 nm. The change in the ratio of absorbance Δ550/Δ428 decreased linearly in a range of 0.01-5 ng mL-1, and the limit of detection was 67 pg mL-1. Therefore, the selectivity and reliability of this proposed method were well validated. This method was also successfully used for the quantitation of AFB1 in spiked rice flour and wheat flour samples. This approach may broaden the application field of colorimetric ELISA for aflatoxin, providing a promising platform for the rapid screening of aflatoxin in food.


Assuntos
Aflatoxinas , Curcumina , Nanopartículas Metálicas , Aflatoxina B1/análise , Aflatoxinas/análise , Animais , Catálise , Colorimetria/métodos , Curcumina/análise , Grão Comestível/química , Ensaio de Imunoadsorção Enzimática , Farinha/análise , Ouro , Limite de Detecção , Camundongos , Coelhos , Reprodutibilidade dos Testes , Triticum , Urease
17.
J Pharm Biomed Anal ; 212: 114631, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35231794

RESUMO

Due to the numerous potential health benefits of Curcuma, turmeric dietary supplements (DS) are among the top selling products. To assess the quality of these formulations, thirty Curcuma DS along with five standard Curcuma rhizomes were analyzed with UHPLC-MS and 1H NMR. The chemometric treatment of the UHPLC-MS spectra showed a significant variability of their chemical composition that was confirmed by 1H NMR which allowed the absolute quantification of the Curcuma major bioactive components, i.e. curcuminoids (curcumin, demethoxycurcumin and bisdemethoxycurcumin), and turmerones (aryl-, α- and ß-) as well as piperine, a commonly associated curcumin bioavailability enhancer: respectively 3.5-556, 0-8.6, 0.18-8.1 mg/capsule or tablet. The comparison of the actual and claimed quantities of curcuminoids and piperine showed that 58% of the DS contained the expected amounts of actives.


Assuntos
Curcuma , Curcumina , Cromatografia Líquida , Curcuma/química , Curcumina/análise , Diarileptanoides , Suplementos Nutricionais/análise , Extratos Vegetais/química , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas em Tandem
18.
Protoplasma ; 259(2): 301-315, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34023960

RESUMO

Turmeric (Curcuma longa L.; Zingiberaceae), an economically important crop and a major spice in Indian cuisine, produces natural yellow color (curcumin) as well as curcuminoids which are widely utilized in traditional and modern medicinal practices. During the turmeric culture, the fluctuations of precipitation and seasonal changes in the whole life cycle play a major role, especially water shortage and decreasing temperature (in winter season), leading to rhizome dormancy under extreme weather conditions. The objective of this investigation was to understand how the water deficit and reduced temperature affect turmeric growth, physiological adaptation, quantity, and quality of turmeric rhizomes. Four-month-old turmeric plants were subjected to four treatments, namely normal temperature and well-watered (RT-WW), or water-deficit (RT-WD) conditions in the greenhouse, 25 °C controlled temperature and well-watered (CT-WW), or water-deficit (CT-WD) conditions in glasshouse. Leaf osmotic potential considerably declined in 30 days CT-WD treatment, leading to chlorophyll degradation by 26.04%, diminution of maximum quantum yield of PSII (Fv/Fm) by 23.50%, photon yield of PSII (ΦPSII) by 29.01%, and reduction of net photosynthetic rate (Pn) by 89.39% over CT-WW (control). After 30 days water withholding, fresh- and dry-weights of rhizomes of turmeric plants grown under CT-WD declined by 30-50% when compared with RT-WW conditions. Subsequently, curcuminoid content was reduced by 40% over RT-WW plants (control), whereas transcriptional expression levels of curcuminoids-related genes (CURS1, CURS2, CURS3, and DCS) were upregulated in CT-WD conditions. In summary, the water withholding and controlled temperature (constant at 25 °C day/night) negatively affected turmeric plants as abiotic stresses tend to limit overall plant growth performances and curcuminoid yield.


Assuntos
Curcuma , Curcumina , Adaptação Fisiológica , Curcuma/metabolismo , Curcumina/análise , Curcumina/metabolismo , Curcumina/farmacologia , Diarileptanoides/metabolismo , Extratos Vegetais/farmacologia , Temperatura , Água/metabolismo
19.
Food Chem ; 370: 131007, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34507212

RESUMO

Turmeric has faced authenticity issues as instances of economic-adulterations to reduce the cost. We used carbon-14 and HPLC analyses as complementary methods to verify "all-natural" label claims of commercial dietary supplements containing turmeric ingredients. A high percentage of curcumin-to-curcuminoids value was used as an indicator to imply the presence of synthetic curcumin. However, using the HPLC method alone did not provide direct evidence of curcuminoids' natural origin, whereas using only the carbon-14 method cannot test for potency label claims and determine which constituent(s) contain 14C radiocarbon. By analyzing results from both methods, a significant correlation between the percentage of curcumin-to-curcuminoids and % biobased carbon (Pearson's r = -0.875, p < 0.001) indicated that synthetic curcumin was greatly attributed to determined synthetic ingredients. Only four out of the 14 samples analyzed supported authentic label claims. This orthogonal testing strategy showed its potential for the quality control of turmeric products.


Assuntos
Curcuma , Curcumina , Radioisótopos de Carbono , Curcumina/análise , Diarileptanoides , Suplementos Nutricionais , Extratos Vegetais
20.
Braz. J. Pharm. Sci. (Online) ; 58: e201041, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1420465

RESUMO

Abstract Curcumin is a plant-derived compound with polypharmacological properties that are hampered by its poor solubility, fast degradation, etc. Wound closure complications that follow tooth extraction are numerous, and relatively frequently additional treatment is needed to prevent unwanted process chronification. The present study aims to compare the effects of free and the nanoliposome-encapsulated curcumin on tooth extraction wound closure. The experiments were performed on Wistar rats where both forms of curcumin were applied topically on a tooth extraction wound for seven days. Changes in tissue oxidative stress (malondialdehyde and oxidized proteins concentrations, and catalase activity) and inflammation (nitric oxide levels and myeloperoxidase activity) related parameters were studied three and seven days following the tooth extraction. Also, the extent of pathohistological changes and osteopontin immunohistochemical expression were studied. The obtained results indicate that both forms of curcumin prevent an increase in oxidative stress and inflammation-related parameters in the studied samples at 3-and 7-day time points. Additionally, we found that curcumin diminished tissue inflammatory response and osteopontin expression, while at the same time it caused faster granulation tissue maturation. The encapsulation of curcumin in nanoliposomes proved to be better in improving the extraction wound healing process than the free curcumin, giving this formulation a potential in the pharmaceutical industry.


Assuntos
Animais , Masculino , Feminino , Ratos , Extração Dentária/classificação , Infecção dos Ferimentos/classificação , Ferimentos e Lesões/tratamento farmacológico , Curcumina/análise , Técnicas de Fechamento de Ferimentos/classificação , Inflamação/tratamento farmacológico , Cicatrização/efeitos dos fármacos , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA