Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Parasit Vectors ; 17(1): 199, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698452

RESUMO

BACKGROUND: Enteric parasitic infections remain a major public health problem globally. Cryptosporidium spp., Cyclospora spp. and Giardia spp. are parasites that cause diarrhea in the general populations of both developed and developing countries. Information from molecular genetic studies on the speciation of these parasites and on the role of animals as vectors in disease transmission is lacking in Ghana. This study therefore investigated these diarrhea-causing parasites in humans, domestic rats and wildlife animals in Ghana using molecular tools. METHODS: Fecal samples were collected from asymptomatic school children aged 9-12 years living around the Shai Hills Resource Reserve (tourist site), from wildlife (zebras, kobs, baboons, ostriches, bush rats and bush bucks) at the same site, from warthogs at the Mole National Park (tourist site) and from rats at the Madina Market (a popular vegetable market in Accra, Ghana. The 18S rRNA gene (18S rRNA) and 60-kDa glycoprotein gene (gp60) for Cryptosporidium spp., the glutamate dehydrogenase gene (gdh) for Giardia spp. and the 18S rDNA for Cyclospora spp. were analyzed in all samples by PCR and Sanger sequencing as markers of speciation and genetic diversity. RESULTS: The parasite species identified in the fecal samples collected from humans and animals included the Cryptosporidium species C. hominis, C. muris, C. parvum, C. tyzzeri, C. meleagridis and C. andersoni; the Cyclopora species C. cayetanensis; and the Gardia species, G. lamblia and G. muris. For Cryptosporidium, the presence of the gp60 gene confirmed the finding of C. parvum (41%, 35/85 samples) and C. hominis (29%, 27/85 samples) in animal samples. Cyclospora cayetanensis was found in animal samples for the first time in Ghana. Only one human sample (5%, 1/20) but the majority of animal samples (58%, 51/88) had all three parasite species in the samples tested. CONCLUSIONS: Based on these results of fecal sample testing for parasites, we conclude that animals and human share species of the three genera (Cryptosporidium, Cyclospora, Giardia), with the parasitic species mostly found in animals also found in human samples, and vice-versa. The presence of enteric parasites as mixed infections in asymptomatic humans and animal species indicates that they are reservoirs of infections. This is the first study to report the presence of C. cayetanensis and C. hominis in animals from Ghana. Our findings highlight the need for a detailed description of these parasites using high-throughput genetic tools to further understand these parasites and the neglected tropical diseases they cause in Ghana where such information is scanty.


Assuntos
Animais Domésticos , Animais Selvagens , Criptosporidiose , Cryptosporidium , Cyclospora , Ciclosporíase , Fezes , Animais , Gana/epidemiologia , Cyclospora/genética , Cyclospora/isolamento & purificação , Cyclospora/classificação , Cryptosporidium/genética , Cryptosporidium/isolamento & purificação , Cryptosporidium/classificação , Fezes/parasitologia , Ciclosporíase/epidemiologia , Ciclosporíase/parasitologia , Ciclosporíase/veterinária , Animais Selvagens/parasitologia , Criptosporidiose/parasitologia , Criptosporidiose/epidemiologia , Criptosporidiose/transmissão , Humanos , Criança , Animais Domésticos/parasitologia , Ratos , DNA de Protozoário/genética , RNA Ribossômico 18S/genética , Giardíase/veterinária , Giardíase/parasitologia , Giardíase/epidemiologia , Diarreia/parasitologia , Diarreia/veterinária , Diarreia/epidemiologia , Filogenia , Giardia/genética , Giardia/isolamento & purificação , Giardia/classificação
2.
BMC Genomics ; 25(1): 246, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443790

RESUMO

BACKGROUND: Cyclospora cayetanensis is a protozoan parasite that causes intestinal illness in humans worldwide. Despite its global distribution, most genomic data for C. cayetanensis has been obtained from isolates collected in the United States, leaving genetic variability among globally distributed isolates underexplored. RESULTS: In the present study, the genome of an isolate of C. cayetanensis obtained from a child with diarrhea living in Mexico was sequenced and assembled. Evaluation of the assembly using a lineage typing system recently developed by the Centers for Disease Control and Prevention revealed that this isolate is lineage A. CONCLUSIONS: Given that the only other whole genome assembly available from Mexico was classified as lineage B, the data presented here represent an important step in expanding our knowledge of the diversity of C. cayetanensis isolates from Mexico at the genomic level.


Assuntos
Cyclospora , Criança , Humanos , Cyclospora/genética , México , Genômica , Diarreia
3.
Microbiol Spectr ; 11(6): e0138823, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37819113

RESUMO

IMPORTANCE: Human-infecting Cyclospora spp. cause gastrointestinal distress among healthy individuals contributing to morbidity and putting stress on the economics of countries and companies in the form of produce recalls. Accessible and easy-to-use diagnostic tools available to a wide variety of laboratories would aid in the early detection of possible outbreaks of cyclosporiasis. This, in turn, will assist in the timely traceback investigation to the suspected source of an outbreak by informing the smallest possible recall and protecting consumers from contaminated produce. This manuscript describes two novel detection methods with improved performance for the causative agents of cyclosporiasis when compared to the currently used 18S assay.


Assuntos
Cyclospora , Ciclosporíase , Humanos , Cyclospora/genética , Ciclosporíase/diagnóstico , Ciclosporíase/epidemiologia , DNA de Protozoário , Surtos de Doenças , Fezes
4.
Parasitol Res ; 122(11): 2641-2650, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37676306

RESUMO

Cyclospora cayetanensis is an enteric coccidian parasite responsible for gastrointestinal disease transmitted through contaminated food and water. It has been documented in several countries, mostly with low-socioeconomic levels, although major outbreaks have hit developed countries. Detection methods based on oocyst morphology, staining, and molecular testing have been developed. However, the current MLST panel offers an opportunity for enhancement, as amplification of all molecular markers remains unfeasible in the majority of samples. This study aims to address this challenge by evaluating two approaches for analyzing the genetic diversity of C. cayetanensis and identifying reliable markers for subtyping: core homologous genes and mitochondrial genome analysis. A pangenome was constructed using 36 complete genomes of C. cayetanensis, and a haplotype network and phylogenetic analysis were conducted using 33 mitochondrial genomes. Through the analysis of the pangenome, 47 potential markers were identified, emphasizing the need for more sequence data to achieve comprehensive characterization. Additionally, the analysis of mitochondrial genomes revealed 19 single-nucleotide variations that can serve as characteristic markers for subtyping this parasite. These findings not only contribute to the selection of molecular markers for C. cayetanensis subtyping, but they also drive the knowledge toward the potential development of a comprehensive genotyping method for this parasite.


Assuntos
Cyclospora , Parasitos , Animais , Cyclospora/genética , Filogenia , Tipagem de Sequências Multilocus , Parasitos/genética , Técnicas de Genotipagem , Biomarcadores
5.
Diagn Microbiol Infect Dis ; 107(2): 116030, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37572510

RESUMO

Cyclosporiasis is a foodborne diarrheal illness caused by the parasite Cyclospora cayetanensis. The BioFire® FilmArray® gastrointestinal (FilmArray GI) panel is a common method for diagnosing cyclosporiasis from clinical stool samples. The currently published limit of detection (LOD) of this panel is in genome equivalents; however, it is unclear how this relates to the number of C. cayetanensis oocysts in a clinical sample. In this study, we developed a technique to determine the LOD in terms of oocysts, using a cell sorter to sort 1 to 50 C. cayetanensis oocyst(s) previously purified from three human stool sources. We found the FilmArray GI panel detected samples with ≥20 C. cayetanensis oocysts in 100% of replicates, with varying detection among samples with 1, 5, or 10 C. cayetanensis oocysts. This method provides a parasitologically relevant LOD that should enable comparison among C. cayetanensis detection techniques, including the FilmArray GI panel.


Assuntos
Cyclospora , Ciclosporíase , Parasitos , Animais , Humanos , Cyclospora/genética , Ciclosporíase/diagnóstico , Ciclosporíase/parasitologia , Limite de Detecção , Fezes/parasitologia , Oocistos/genética
6.
Epidemiol Infect ; 151: e131, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37466070

RESUMO

Cyclosporiasis results from an infection of the small intestine by Cyclospora parasites after ingestion of contaminated food or water, often leading to gastrointestinal distress. Recent developments in temporally linking genetically related Cyclospora isolates demonstrated effectiveness in supporting epidemiological investigations. We used 'temporal-genetic clusters' (TGCs) to investigate reported cyclosporiasis cases in the United States during the 2021 peak-period (1 May - 31 August 2021). Our approach split 655 genotyped isolates into 55 genetic clusters and 31 TGCs. We linked two large multi-state epidemiological clusters (Epidemiologic Cluster 1 [n = 136 cases, 54 genotyped] and Epidemiologic Cluster 2 [n = 42 cases, 15 genotyped]) to consumption of lettuce varieties; however, product traceback did not identify a specific product for either cluster due to the lack of detailed product information. To evaluate the utility of TGCs, we performed a retrospective case study comparing investigation outcomes of outbreaks first detected using epidemiological methods with those of the same outbreaks had TGCs been used to first detect them. Our study results indicate that adjustments to routine epidemiological approaches could link additional cases to epidemiological clusters of cyclosporiasis. Overall, we show that CDC's integrated genotyping and epidemiological investigations provide valuable insights into cyclosporiasis outbreaks in the United States.


Assuntos
Cyclospora , Ciclosporíase , Humanos , Ciclosporíase/epidemiologia , Cyclospora/genética , Cyclospora/isolamento & purificação , Surtos de Doenças , Epidemiologia Molecular , Estados Unidos/epidemiologia , Estudos Retrospectivos , Fezes/microbiologia
8.
J Food Prot ; 86(2): 100037, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36916572

RESUMO

Regulatory methods for detection of the foodborne protozoan parasite Cyclospora cayetanensis must be specific and sensitive. To that end, we designed and evaluated (in a single laboratory validation) a novel and improved primer/probe combination (Mit1C) for real-time PCR detection of C. cayetanensis in produce. The newly developed primer/probe combination targets a conserved region of the mitochondrial genome of C. cayetanensis that varies in other closely related organisms. The primer/probe combination was evaluated both in silico and using several real-time PCR kits and polymerases against an inclusivity/exclusivity panel comprised of a variety of C. cayetanensis oocysts, as well as DNA from other related Cyclospora spp. and closely related parasites. The new primer/probe combination amplified only C. cayetanensis, thus demonstrating specificity. Sensitivity was evaluated by artificially contaminating cilantro, raspberries, and romaine lettuce with variable numbers (200 and 5) of C. cayetanensis oocysts. As few as 5 oocysts were detected in 75%, 67.7%, and 50% of the spiked produce samples (cilantro, raspberries, and romaine lettuce), respectively, all uninoculated samples and no-template real-time PCR controls were negative. The improved primer/probe combination should prove an effective analytical tool for the specific detection of C. cayetanensis in produce.


Assuntos
Coriandrum , Cyclospora , Ciclosporíase , Rubus , Animais , Cyclospora/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Oocistos , Ciclosporíase/diagnóstico , Ciclosporíase/parasitologia
9.
Indian J Gastroenterol ; 42(2): 241-248, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36930399

RESUMO

BACKGROUND: Cryptosporidium spp., Cystoisospora belli and Cyclospora cayetanensis are common intestinal coccidian parasites causing gastroenteritis. The clinical presentation caused by each parasite is indistinguishable from each other. Uniplex polymerase chain reaction (PCR) for these three groups of intestinal coccidian parasites was developed by us in our laboratory. Thereafter, we planned to develop a single-run multiplex polymerase chain reaction (mPCR) assay to detect Cryptosporidium spp., C. belli and C. cayetanensis simultaneously from a stool sample and described it here as coccidian mPCR. METHODS: New primers for C. belli and C. cayetanensis were designed and uniplex PCRs were standardized. The coccidian mPCR was standardized with known positive DNA control isolates. It was validated with 58 known positive and 58 known negative stool samples, which were previously identified by uniplex PCR. RESULTS: The coccidian mPCR was standardized with earlier primers designed by us for Cryptosporidium spp. and C. cayetanensis, and a newly designed primer for the internal transcribed spacer-1 (ITS-1) gene for C. belli. The coccidian mPCR was 92.1% sensitive for Cryptosporidium spp., and 100% sensitive for C. belli and C. cayetanensis each, when tested on 116 known samples. It was 100% specific for all intestinal coccidian parasites. Two representative PCR products of the newly designed ITS-1 primer for C. belli were sequenced and submitted to the GenBank, which best match with the sequences of C. belli. CONCLUSION: A highly sensitive, specific, cost-effective, indigenous, single-run coccidian mPCR has been developed, which can simultaneously detect Cryptosporidium spp., C. belli and C. cayetanensis.


Assuntos
Criptosporidiose , Cryptosporidium , Cyclospora , Enteropatias Parasitárias , Parasitos , Animais , Humanos , Reação em Cadeia da Polimerase Multiplex , Parasitos/genética , Criptosporidiose/parasitologia , Cryptosporidium/genética , Cyclospora/genética , Fezes
10.
Exp Parasitol ; 248: 108497, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36906252

RESUMO

Cyclospora cayetanensis infections, also known as cyclosporiasis, persist to be the prevalent emerging protozoan parasite and an opportunist that causes digestive illness in immunocompromised individuals. In contrast, this causal agent can affect people of all ages, with children and foreigners being the most susceptible populations. For most immunocompetent patients, the disease is self-limiting; in extreme circumstances, this illness can manifest as severe or persistent diarrhea as well as colonize on secondary digestive organs leading to death. According to recent reports, worldwide 3.55% of people are infected by this pathogen, with Asia and Africa being more prevalent. For the treatment, trimethoprim-sulfamethoxazole is the only licensed drug and does not appear to work as well in some patient populations. Therefore, the much more effective strategy to avoid this illness is immunization through the vaccine. This present study uses immunoinformatics for identifying a computational multi-epitope-based peptide vaccine candidate for Cyclospora cayetanensis. Following the review of the literature, a highly efficient, secure, and vaccine complex based on multi-epitopes was designed by utilizing the identified proteins. These selected proteins were then used to predict non-toxic and antigenic HTL-epitopes, B-cell-epitopes, and CTL-epitopes. Ultimately, both a few linkers and an adjuvant were combined to create a vaccine candidate with superior immunological epitopes. Then, to establish the vaccine-TLR complex binding constancy, the TLR receptor and vaccine candidates were placed into the FireDock, PatchDock, and ClusPro servers for molecular docking and iMODS server for molecular-dynamic simulation. Finally, this selected vaccine construct was cloned into Escherichia coli strain-K12; thus, the constructed vaccines against Cyclospora cayetanensiscould improve the host immune response and can be produced experimentally.


Assuntos
Cyclospora , Ciclosporíase , Criança , Humanos , Simulação de Acoplamento Molecular , Ciclosporíase/prevenção & controle , Epitopos de Linfócito T/química , Epitopos de Linfócito T/metabolismo , Epitopos de Linfócito B/química , Cyclospora/genética , Desenvolvimento de Vacinas , Biologia Computacional/métodos , Hospedeiro Imunocomprometido , Vacinas de Subunidades Antigênicas
11.
Am J Epidemiol ; 192(5): 772-781, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-36617302

RESUMO

Comparing parasite genotypes to inform parasitic disease outbreak investigations involves computation of genetic distances that are typically analyzed by hierarchical clustering to identify related isolates, indicating a common source. A limitation of hierarchical clustering is that hierarchical clusters are not discrete; they are nested. Consequently, small groups of similar isolates exist within larger groups that get progressively larger as relationships become increasingly distant. Investigators must dissect hierarchical trees at a partition number ensuring grouped isolates belong to the same strain; a process typically performed subjectively, introducing bias into resultant groupings. We describe an unbiased, probabilistic framework for partition number selection that ensures partitions comprise isolates that are statistically likely to belong to the same strain. We computed distances and established a normalized distribution of background distances that we used to demarcate a threshold below which the closeness of relationships is unlikely to be random. Distances are hierarchically clustered and the dendrogram dissected at a partition number where most within-partition distances fall below the threshold. We evaluated this framework by partitioning 1,137 clustered Cyclospora cayetanensis genotypes, including 552 isolates epidemiologically linked to various outbreaks. The framework was 91% sensitive and 100% specific in assigning epidemiologically linked isolates to the same partition.


Assuntos
Cyclospora , Ciclosporíase , Parasitos , Animais , Humanos , Cyclospora/genética , Ciclosporíase/epidemiologia , Ciclosporíase/parasitologia , Genótipo , Análise por Conglomerados
12.
Microb Pathog ; 174: 105952, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36528327

RESUMO

Enterocytozoon bieneusi, Cryptosporidium spp. and Cyclospora cayetanensis are three important zoonotic pathogens which were a major cause of foodborne or waterborne intestinal diseases in humans and animals. However, very little data about occurrence and genotypes of the three parasites in Ningbo in the south wing of the Yangtze River Delta, China, which is important for a tourist city. In the present study, molecular characterization of E. bieneusi, C. cayetanensis and Cryptosporidium spp. in fecal samples from 489 diarrheal outpatients were carried out. As a result, a total of 35 (7.16%, 35/489) and three (0.61%, 3/489) samples were positive for E. bieneusi and C. cayetanensis respectively. No Cryptosporidium-positive sample or mixed-infections were detected. Four known E. bieneusi genotypes (Type IV, D, I and CHN4) and 8 novel genotypes (NBH1-NBH8) were identified with type IV was the dominant genotype (n = 14), followed by genotypes D (n = 5), NBH8 (n = 5) and NBH7 (n = 3). The remaining genotypes were found in one sample each, and these genotypes were belonged to the previously described high-potential zoonotic group 1. One novel sequence named NBC315, and the other two sequences (NBC30 and NBC370) identical with the reported sequence were detected. Therefore, the existence and importance of zoonotic potential of E. bieneusi and C. cayetanensis in diarrheal outpatients in Ningbo indicates the public health threats, and more investigations should be carried out in human populations, animals and other environmental sources from the One Health perspective.


Assuntos
Criptosporidiose , Cyclospora , Enterocytozoon , Animais , Humanos , Enterocytozoon/genética , Cyclospora/genética , Pacientes Ambulatoriais , China/epidemiologia , Genótipo , Diarreia/epidemiologia , Fezes/parasitologia , Filogenia , Criptosporidiose/epidemiologia , Criptosporidiose/parasitologia , Prevalência
13.
Foodborne Pathog Dis ; 19(12): 796-805, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36450125

RESUMO

Cyclosporiasis is an emerging disease caused by Cyclospora cayetanensis, which induces protracting and relapsing gastroenteritis and has been linked to huge and complicated travel- and food-related outbreaks worldwide. Cyclosporiasis has become more common in both developing and developed countries as a result of increased global travel and the globalization of the human food supply. It is not just a burden on individual human health but also a worldwide public health problem. As a pathogen of interest, the molecular biological characteristics of C. cayetanensis have advanced significantly over the last few decades. However, only one FDA-approved molecular platform has been commercially used in the investigation of cyclosporiasis outbreaks. More potential molecular markers and genotyping of C. cayetanensis in samples based on the polymorphic region of the whole genomes might differentiate between separate case clusters and would be useful in tracing back investigations, especially during cyclosporiasis outbreak investigations. Considering that there is no effective vaccine for cyclosporosis, epidemiological investigation using effective tools is crucial for controlling cyclosporiasis by source tracking. Therefore, more and more epidemiological investigative studies for human cyclosporiasis should be promoted around the world to get a deeper understanding of its characteristics as well as management. This review focuses on major cyclosporiasis outbreaks and potential molecular markers for tracing back investigations into cyclosporiasis outbreaks.


Assuntos
Cyclospora , Ciclosporíase , Gastroenterite , Humanos , Ciclosporíase/diagnóstico , Ciclosporíase/epidemiologia , Cyclospora/genética , Surtos de Doenças , Gastroenterite/epidemiologia
14.
Mol Phylogenet Evol ; 177: 107608, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35963590

RESUMO

Multi-locus sequence typing (MLST) is widely used to investigate genetic relationships among eukaryotic taxa, including parasitic pathogens. MLST analysis workflows typically involve construction of alignment-based phylogenetic trees - i.e., where tree structures are computed from nucleotide differences observed in a multiple sequence alignment (MSA). Notably, alignment-based phylogenetic methods require that all isolates/taxa are represented by a single sequence. When multiple loci are sequenced these sequences may be concatenated to produce one tree that includes information from all loci. Alignment-based phylogenetic techniques are robust and widely used yet possess some shortcomings, including how heterozygous sites are handled, intolerance for missing data (i.e., partial genotypes), and differences in the way insertions-deletions (indels) are scored/treated during tree construction. In certain contexts, 'haplotype-based' methods may represent a viable alternative to alignment-based techniques, as they do not possess the aforementioned limitations. This is namely because haplotype-based methods assess genetic similarity based on numbers of shared (i.e., intersecting) haplotypes as opposed to similarities in nucleotide composition observed in an MSA. For haplotype-based comparisons, choosing an appropriate distance statistic is fundamental, and several statistics are available to choose from. However, a comprehensive assessment of various available statistics for their ability to produce a robust haplotype-based phylogenetic reconstruction has not yet been performed. We evaluated seven distance statistics by applying them to extant MLST datasets from the gastrointestinal parasite Cyclospora cayetanensis and two species of pathogenic nematode of the genus Strongyloides. We compare the genetic relationships identified using each statistic to epidemiologic, geographic, and host metadata. We show that Barratt's heuristic definition of genetic distance was the most robust among the statistics evaluated. Consequently, it is proposed that Barratt's heuristic represents a useful approach for use in the context of challenging MLST datasets possessing features (i.e., high heterozygosity, partial genotypes, and indel or repeat-based polymorphisms) that confound or preclude the use of alignment-based methods.


Assuntos
Cyclospora , Cyclospora/genética , Haplótipos , Tipagem de Sequências Multilocus/métodos , Nucleotídeos , Filogenia
15.
Food Microbiol ; 104: 103980, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35287809

RESUMO

The risk of foodborne parasite infection linked to the consumption of contaminated fresh produce has long been known. However, despite epidemiological links between the outbreaks and contaminated berries, few studies have assessed the magnitude of parasite contamination on fresh produce sold in Europe. The present study was aimed to address the knowledge gap on parasite contamination of berries sold in Norway. Samples of blueberries, strawberries, and raspberries were analysed by multiplex qPCR for detection of Echinococcus multilocularis, Toxoplasma gondii, and Cyclospora cayetanensis. In addition, a simplex qPCR method was employed for detecting contamination of the berries with Cryptosporidium spp. A total of 820 samples of berries, each of around 30 g (274 samples of blueberries, 276 samples of raspberries, and 270 samples of strawberries), were analysed. We found an overall occurrence of 2.9%, 6.6%, and 8.3% for T. gondii, C. cayetanensis, and Cryptosporidium spp., respectively, whereas E. multilocularis was not detected from any of the samples investigated. Strawberries and raspberries were most often contaminated with Cryptosporidium spp., whereas blueberries were contaminated mostly with C. cayetanensis. Detection of parasite contaminants on fresh berries indicates the need for a system to ensure the parasitological safety of fresh berries.


Assuntos
Criptosporidiose , Cryptosporidium , Cyclospora , Parasitos , Animais , Cryptosporidium/genética , Cyclospora/genética , Frutas/parasitologia , Parasitos/genética
16.
J Infect Dis ; 225(12): 2176-2180, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34606577

RESUMO

Cyclosporiasis is a diarrheal illness caused by the foodborne parasite Cyclospora cayetanensis. Annually reported cases have been increasing in the United States prompting development of genotyping tools to aid cluster detection. A recently developed Cyclospora genotyping system based on 8 genetic markers was applied to clinical samples collected during the cyclosporiasis peak period of 2020, facilitating assessment of its epidemiologic utility. While the system performed well and helped inform epidemiologic investigations, inclusion of additional markers to improve cluster detection was supported. Consequently, investigations have commenced to identify additional markers to enhance performance.


Assuntos
Cyclospora , Ciclosporíase , Saladas , Cyclospora/genética , Ciclosporíase/diagnóstico , Ciclosporíase/epidemiologia , Ciclosporíase/parasitologia , Surtos de Doenças , Genótipo , Humanos , Estados Unidos/epidemiologia
17.
PLoS One ; 16(10): e0258157, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34597342

RESUMO

Eimeria parasites cause enteric disease in livestock and the closely related Cyclospora cayetanensis causes human disease. Oocysts of these coccidian parasites undergo maturation (sporulation) before becoming infectious. Here, we assessed transcription in maturing oocysts of Eimeria acervulina, a widespread chicken parasite, predicted gene functions, and determined which of these genes also occur in C. cayetanensis. RNA-Sequencing yielded ~2 billion paired-end reads, 92% of which mapped to the E. acervulina genome. The ~6,900 annotated genes underwent temporally-coordinated patterns of gene expression. Fifty-three genes each contributed >1,000 transcripts per million (TPM) throughout the study interval, including cation-transporting ATPases, an oocyst wall protein, a palmitoyltransferase, membrane proteins, and hypothetical proteins. These genes were enriched for 285 gene ontology (GO) terms and 13 genes were ascribed to 17 KEGG pathways, defining housekeeping processes and functions important throughout sporulation. Expression differed in mature and immature oocysts for 40% (2,928) of all genes; of these, nearly two-thirds (1,843) increased their expression over time. Eight genes expressed most in immature oocysts, encoding proteins promoting oocyst maturation and development, were assigned to 37 GO terms and 5 KEGG pathways. Fifty-six genes underwent significant upregulation in mature oocysts, each contributing at least 1,000 TPM. Of these, 40 were annotated by 215 GO assignments and 9 were associated with 18 KEGG pathways, encoding products involved in respiration, carbon fixation, energy utilization, invasion, motility, and stress and detoxification responses. Sporulation orchestrates coordinated changes in the expression of many genes, most especially those governing metabolic activity. Establishing the long-term fate of these transcripts in sporulated oocysts and in senescent and deceased oocysts will further elucidate the biology of coccidian development, and may provide tools to assay infectiousness of parasite cohorts. Moreover, because many of these genes have homologues in C. cayetanensis, they may prove useful as biomarkers for risk.


Assuntos
Coccídios/genética , Coccidiose/genética , Eimeria/genética , Regulação da Expressão Gênica/genética , Animais , Biomarcadores/metabolismo , Galinhas/genética , Galinhas/parasitologia , Coccídios/patogenicidade , Coccidiose/parasitologia , Cyclospora/genética , Cyclospora/parasitologia , Eimeria/patogenicidade , Humanos , Gado/parasitologia , Modelos Biológicos
18.
Epidemiol Infect ; 149: e214, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34511150

RESUMO

Cyclosporiasis is an illness characterised by watery diarrhoea caused by the food-borne parasite Cyclospora cayetanensis. The increase in annual US cyclosporiasis cases led public health agencies to develop genotyping tools that aid outbreak investigations. A team at the Centers for Disease Control and Prevention (CDC) developed a system based on deep amplicon sequencing and machine learning, for detecting genetically-related clusters of cyclosporiasis to aid epidemiologic investigations. An evaluation of this system during 2018 supported its robustness, indicating that it possessed sufficient utility to warrant further evaluation. However, the earliest version of CDC's system had some limitations from a bioinformatics standpoint. Namely, reliance on proprietary software, the inability to detect novel haplotypes and absence of a strategy to select an appropriate number of discrete genetic clusters would limit the system's future deployment potential. We recently introduced several improvements that address these limitations and the aim of this study was to reassess the system's performance to ensure that the changes introduced had no observable negative impacts. Comparison of epidemiologically-defined cyclosporiasis clusters from 2019 to analogous genetic clusters detected using CDC's improved system reaffirmed its excellent sensitivity (90%) and specificity (99%), and confirmed its high discriminatory power. This C. cayetanensis genotyping system is robust and with ongoing improvement will form the basis of a US-wide C. cayetanensis genotyping network for clinical specimens.


Assuntos
Cyclospora/genética , Ciclosporíase/diagnóstico , Ciclosporíase/epidemiologia , Surtos de Doenças , Técnicas de Laboratório Clínico , Análise por Conglomerados , Cyclospora/classificação , Cyclospora/isolamento & purificação , Ciclosporíase/parasitologia , DNA de Protozoário/genética , Fezes/parasitologia , Genótipo , Técnicas de Genotipagem , Humanos , Epidemiologia Molecular , Estados Unidos/epidemiologia
19.
Ann Agric Environ Med ; 28(2): 267-270, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34184509

RESUMO

INTRODUCTION AND OBJECTIVE: Cyclospora cayetanensis, a coccidian protozoan species, has been recently found to cause diarrhea in all age groups in immunocompetent and immunocompromised individuals in most regions of the world. This study aimed to conduct the molecular detection of C. cayetanensis and to determine the genetic diversity of the 18S ribosomal RNA (rRNA) gene sequence of C. cayetanensis isolated from individuals living in different provinces in Turkey by using PCR-single-strand conformation polymorphism (SSCP). MATERIAL AND METHODS: A total of 22 subjects were included in the study. Fourteen of the subjects were female and eight were male, with ages ranging between 7-65 years. Stool specimens were examined using wet mount and modified acid-fast staining methods, which revealed the presence of oocysts in the samples. The 18S rRNA ITS-1 Ccits37f-GCTTGCTATGTTTTAGCATGTGG and Ccits501r-GCACAATGAATGCACACACA gene regions were used as primers. The PCR products were analyzed by agarose gel electrophoresis and visualized on a UV transilluminator. For the SSCP, the PCR products were denatured with formamide, run for 16 h in 6% (49:1) polyacrylamide gel, and then imaged with silver staining. RESULTS: SSCP assay was performed given that the DNA strands demonstrated different folds; the DNA strands contain different nucleotides based on the PCR-SSCP results for the Cyclospora strains collected in 4 provinces. Moreover, 3 different band profiles were observed in the investigated samples. A slight mutation difference was observed among the strains collected. CONCLUSIONS: Further comprehensive studies involving more C. cayetanensis-positive specimens and utilizing different mutation screening methods are warranted to demonstrate mutation differences in Cyclopora strains in Turkey.


Assuntos
Cyclospora/genética , Ciclosporíase/parasitologia , Polimorfismo Conformacional de Fita Simples , Adolescente , Adulto , Idoso , Criança , Cyclospora/classificação , Cyclospora/isolamento & purificação , DNA de Protozoário/química , DNA de Protozoário/genética , Fezes/parasitologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , RNA Ribossômico 18S/química , RNA Ribossômico 18S/genética , Turquia , Adulto Jovem
20.
Zoonoses Public Health ; 68(8): 861-867, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34156154

RESUMO

Cyclosporiasis is a global, emerging disease in humans caused by Cyclospora cayetanensis. The role of animals in the epidemiology of cyclosporiasis is not fully understood. We conducted a narrative review of the published literature on C. cayetanensis in animals. MEDLINE® (Web of Science™ ), Agricola (ProQuest), CABI Global Health (1979 to December 2020) and Food Science and Technology Abstracts (EBSCOhost) (1979 to February 2020) were searched. Studies of C. cayetanensis in or on any species of animal were eligible. Thirteen relevant studies were found. C. cayetanensis was found in wild and farmed Mediterranean mussels (Mytilus galloprovincialis), wild grooved carpet shell clams (Ruditapes decussatus) and in the faeces of dogs (domestic and street), wild chickens, wild rhesus macaques (Macaca mulatta), chimpanzees (Pan troglodytes) from a wildlife research centre, and Cynomolgus monkeys (Macaca fascicularis) from an experimental primate research centre. As the small intestines of the naturally exposed animals were not biopsied, existence of a natural animal reservoir of C. cayetanensis could not be confirmed. Animals shedding oocysts in their faeces may be paratenic hosts. Investigators were able to successfully infect the following animals with C. cayetanensis: oysters, Asian freshwater clams (Corbicula fluminea), Swiss albino mice and guinea pigs. Future non-laboratory studies of animals should use PCR coupled with DNA sequencing to confirm that the species found is C. cayetanensis. The potential role of animals in the transport of oocysts and contamination of food, water, and soil could be explored through future primary research.


Assuntos
Cyclospora , Ciclosporíase , Doenças do Cão , Doenças dos Roedores , Animais , Galinhas , Cyclospora/genética , Ciclosporíase/epidemiologia , Ciclosporíase/veterinária , Cães , Fezes , Cobaias , Macaca mulatta , Camundongos , Oocistos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA