Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 23540, 2024 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-39384884

RESUMO

The replication of RNA viruses relies on the activity of RNA-dependent RNA polymerases (RdRps). Despite large variations in their genomic sequences, viral RdRps share a common architecture generally known as a closed right hand. The P2 polymerase of cystovirus φ6 is currently among the best characterized viral RdRps. This polymerase is responsible for carrying out both replication and transcription of the viral double-stranded RNA genome using de novo initiation. Despite the extensive biochemical and structural studies conducted on φ6 P2, further structural information on other cystoviral RdRps is crucial to elucidate the structural and functional diversity of viral RdRps. Here, we have determined the atomic X-ray structure of the RdRp P2 from the φ6-related cystovirus φ8 at 3Å resolution. This structure completes the existing set of structural information on the φ8 polymerase complex and sheds light on the difference and similarities with related cystoviral RdRps.


Assuntos
Cystoviridae , RNA Polimerase Dependente de RNA , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , RNA Polimerase Dependente de RNA/genética , Cystoviridae/genética , Cystoviridae/metabolismo , Cystoviridae/química , Modelos Moleculares , Cristalografia por Raios X , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , RNA Viral/genética , RNA Viral/química , RNA Viral/metabolismo , Conformação Proteica
2.
Viruses ; 13(8)2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34452516

RESUMO

Bacteriophages (phages) are predicted to be the most ubiquitous biological entity on earth, and yet, there are still vast knowledge gaps in our understanding of phage diversity and phage-host interactions. Approximately one hundred Acinetobacter-infecting DNA viruses have been identified, and in this report, we describe eight more. We isolated two typical dsDNA lytic podoviruses (CAP1-2), five unique dsRNA lytic cystoviruses (CAP3-7), and one dsDNA lysogenic siphovirus (SLAP1), all capable of infecting the multidrug resistant isolate Acinetobacter radioresistens LH6. Using transmission electron microscopy, bacterial mutagenesis, phage infectivity assays, carbohydrate staining, mass-spectrometry, genomic sequencing, and comparative studies, we further characterized these phages. Mutation of the LH6 initiating glycosyltransferase homolog, PglC, necessary for both O-linked glycoprotein and capsular polysaccharide (CPS) biosynthesis, prevented infection by the lytic podovirus CAP1, while mutation of the pilin protein, PilA, prevented infection by CAP3, representing the lytic cystoviruses. Genome sequencing of the three dsRNA segments of the isolated cystoviruses revealed low levels of homology, but conserved synteny with the only other reported cystoviruses that infect Pseudomonas species. In Pseudomonas, the cystoviruses are known to be enveloped phages surrounding their capsids with the inner membrane from the infected host. To characterize any membrane-associated glycoconjugates in the CAP3 cystovirus, carbohydrate staining was used to identify a low molecular weight lipid-linked glycoconjugate subsequently identified by mutagenesis and mass-spectrometry as bacterial lipooligosaccharide. Together, this study demonstrates the isolation of new Acinetobacter-infecting phages and the determination of their cell receptors. Further, we describe the genomes of a new genus of Cystoviruses and perform an initial characterization of membrane-associated glycoconjugates.


Assuntos
Acinetobacter/virologia , Bacteriófagos/química , Bacteriófagos/genética , Cystoviridae/química , Cystoviridae/genética , Podoviridae/química , Podoviridae/genética , RNA Viral/genética , Acinetobacter/efeitos dos fármacos , Antibacterianos/farmacologia , Bacteriófagos/classificação , Bacteriófagos/metabolismo , Cystoviridae/classificação , Cystoviridae/metabolismo , Farmacorresistência Bacteriana Múltipla , Cromatografia Gasosa-Espectrometria de Massas , Genoma Viral , Filogenia , Podoviridae/classificação , Podoviridae/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , RNA Viral/metabolismo , Receptores Virais/genética , Receptores Virais/metabolismo
3.
Biochemistry ; 54(38): 5828-38, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26333183

RESUMO

Molecular dynamics (MD) simulations combined with biochemical studies have suggested the presence of long-range networks of functionally relevant conformational flexibility on the nanosecond time scale in single-subunit RNA polymerases in many RNA viruses. However, experimental verification of these dynamics at a sufficient level of detail has been lacking. Here we describe the fast, picosecond to nanosecond dynamics of an archetypal viral RNA-directed RNA polymerase (RdRp), the 75 kDa P2 protein from cystovirus ϕ12, using analyses of (1)H-(1)H dipole-dipole cross-correlated relaxation at the methyl positions of Ile (δ1), Leu, Val, and Met residues. Our results, which represent the most detailed experimental characterization of fast dynamics in a viral RdRp until date, reveal a highly connected dynamic network as predicted by MD simulations of related systems. Our results suggest that the entry portals for template RNA and substrate NTPs are relatively disordered, while conserved motifs involved in metal binding, nucleotide selection, and catalysis display greater rigidity. Perturbations at the active site through metal binding or functional mutation affect dynamics not only in the immediate vicinity but also at remote regions. Comparison with the limited experimental and extensive functional and in silico results available for homologous systems suggests conservation of the overall pattern of dynamics in viral RdRps.


Assuntos
Cystoviridae/química , Simulação de Dinâmica Molecular , RNA Polimerase Dependente de RNA/química , Proteínas Virais/química , Sequência de Aminoácidos , Cystoviridae/genética , Cystoviridae/metabolismo , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/metabolismo , Metilação , Dados de Sequência Molecular , Mutação Puntual , Conformação Proteica , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
4.
J Mol Biol ; 426(14): 2580-93, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24813120

RESUMO

In bacteriophages of the cystovirus family, the polymerase complex (PX) encodes a 75-kDa RNA-directed RNA polymerase (P2) that transcribes the double-stranded RNA genome. Also a constituent of the PX is the essential protein P7 that, in addition to accelerating PX assembly and facilitating genome packaging, plays a regulatory role in transcription. Deletion of P7 from the PX leads to aberrant plus-strand synthesis suggesting its influence on the transcriptase activity of P2. Here, using solution NMR techniques and the P2 and P7 proteins from cystovirus ϕ12, we demonstrate their largely electrostatic interaction in vitro. Chemical shift perturbations on P7 in the presence of P2 suggest that this interaction involves the dynamic C-terminal tail of P7, more specifically an acidic cluster therein. Patterns of chemical shift changes induced on P2 by the P7 C-terminus resemble those seen in the presence of single-stranded RNA suggesting similarities in binding. This association between P2 and P7 reduces the affinity of the former toward template RNA and results in its decreased activity both in de novo RNA synthesis and in extending a short primer. Given the presence of C-terminal acidic tracts on all cystoviral P7 proteins, the electrostatic nature of the P2/P7 interaction is likely conserved within the family and could constitute a mechanism through which P7 regulates transcription in cystoviruses.


Assuntos
Cystoviridae/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Cystoviridae/química , Cystoviridae/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Mapeamento de Interação de Proteínas , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/química , Proteínas Virais/genética
5.
Proteins ; 81(8): 1479-84, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23568335

RESUMO

We have determined the structure of P2, the self-priming RdRp from cystovirus φ12 in two crystal forms (A, B) at resolutions of 1.7 Å and 2.1 Å. Form A contains Mg(2+) bound at a site that deviates from the canonical noncatalytic position seen in form B. These structures provide insight into the temperature sensitivity of a ts-mutant. However, the tunnel through which template ssRNA accesses the active site is partially occluded by a flexible loop; this feature, along with suboptimal positioning of other structural elements that prevent the formation of a stable initiation complex, indicate an inactive conformation in crystallo.


Assuntos
Cystoviridae/enzimologia , RNA Polimerase Dependente de RNA/química , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Cystoviridae/química , Cystoviridae/metabolismo , Magnésio/metabolismo , Conformação Molecular , RNA/metabolismo , RNA Polimerase Dependente de RNA/metabolismo
6.
BMC Microbiol ; 10: 55, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20170499

RESUMO

BACKGROUND: Bacteriophage Phi12 is a member of the Cystoviridae and is distinct from Phi6, the first member of that family. We have recently isolated a number of related phages and five showed high similarity to Phi12 in the amino acid sequences of several proteins. Bacteriophage Phi2954 is a member of this group. RESULTS: Phi2954 was isolated from radish leaves and was found to have a genome of three segments of double-stranded RNA (dsRNA), placing it in the Cystoviridae. The base sequences for many of the genes and for the segment termini were similar but not identical to those of bacteriophage Phi12. However, the host specificity was for the type IV pili of Pseudomonas syringae HB10Y rather than for the rough LPS to which Phi12 attaches. Reverse genetics techniques enabled the production of infectious phage from cDNA copies of the genome. Phage were constructed with one, two or three genomic segments. Phage were also produced with altered transcriptional regulation. Although the pac sequences of Phi2954 show no similarity to those of Phi12, segment M of Phi2954 could be acquired by Phi12 resulting in a change of host specificity. CONCLUSIONS: We have isolated a new member of the bacteriophage family Cystoviridae and find that although it shows similarity to other members of the family, it has unique properties that help to elucidate viral strategies for genomic packaging and gene expression.


Assuntos
Cystoviridae/genética , Genoma Viral , RNA de Cadeia Dupla/genética , RNA Viral/genética , Sequência de Aminoácidos , Sequência de Bases , Mapeamento Cromossômico , Cystoviridae/química , Cystoviridae/isolamento & purificação , Eletroforese em Gel de Ágar , Engenharia Genética , Dados de Sequência Molecular , Mutação , Nucleocapsídeo/genética , Nucleocapsídeo/metabolismo , Folhas de Planta/virologia , Pseudomonas syringae/genética , Pseudomonas syringae/virologia , RNA de Cadeia Dupla/química , RNA Viral/química , RNA Viral/isolamento & purificação , Raphanus/virologia , Alinhamento de Sequência
7.
J Mol Biol ; 382(2): 402-22, 2008 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-18647606

RESUMO

Cystoviruses are a class of enveloped double-stranded RNA viruses that use a multiprotein polymerase complex (PX) to replicate and transcribe the viral genome. Although the structures of the polymerase and ATPase components of the cystoviral PX are known and their functional behavior is understood to a large extent, no atomic-resolution structural information is available for the major capsid protein P1 that defines the overall structure and symmetry of the viral capsid and the essential protein P7. Toward obtaining a complete structural and functional understanding of the cystoviral PX, we have obtained the structure of P7 from the cystovirus phi 12 at a resolution of 1.8 A. The N-terminal core region (1-129) of P7 forms a novel homodimeric alpha/beta-fold having structural similarities with BRCT domains implicated in multiple protein-protein interactions in DNA repair proteins. Our results, combined with the known role of P7 in stabilizing the nucleation complex during capsid assembly, hint toward its participation in key protein-protein interactions within the cystoviral PX. Additionally, we have found through solution NMR studies that the C-terminal tail of P7 (130-169) that is essential for virus viability, although highly disordered, contains a nascent helix. We demonstrate for the first time, through NMR titrations, that P7 is capable of interacting with RNA. We find that both the N-terminal core and the dynamic C-terminal tail of P7 play a role in RNA recognition. This interaction leads to a significant reduction of the degree of disorder in the C-terminal tail. Given the requirement of P7 in maintaining genome packaging efficiency and transcriptional fidelity, our data suggest a central biological role for P7-RNA interactions.


Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Cystoviridae/química , Conformação Proteica , Sequência de Aminoácidos , Bacteriófagos , Proteínas do Capsídeo/genética , Cristalografia por Raios X , Dimerização , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Dobramento de Proteína , RNA/química , RNA/metabolismo , Alinhamento de Sequência
8.
Res Microbiol ; 154(4): 245-51, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12798228

RESUMO

Bacteriophages are classified into one order and 13 families. Over 5100 phages have been examined in the electron microscope since 1959. At least 4950 phages (96%) are tailed. They constitute the order Caudovirales and three families. Siphoviridae or phages with long, noncontractile tails predominate (61% of tailed phages). Polyhedral, filamentous, and pleomorphic phages comprise less than 4% of bacterial viruses. Bacteriophages occur in over 140 bacterial or archaeal genera. Their distribution reflects their origin and bacterial phylogeny. Bacteriophages are polyphyletic, arose repeatedly in different hosts, and constitute 11 lines of descent. Tailed phages appear as monophyletic and as the oldest known virus group.


Assuntos
Bacteriófagos , Evolução Biológica , Bacteriófagos/química , Bacteriófagos/classificação , Bacteriófagos/crescimento & desenvolvimento , Bacteriófagos/ultraestrutura , Caudovirales/química , Caudovirales/crescimento & desenvolvimento , Caudovirales/fisiologia , Caudovirales/ultraestrutura , Corticoviridae/química , Corticoviridae/crescimento & desenvolvimento , Corticoviridae/ultraestrutura , Cystoviridae/química , Cystoviridae/crescimento & desenvolvimento , Cystoviridae/ultraestrutura , Fuselloviridae/química , Fuselloviridae/crescimento & desenvolvimento , Fuselloviridae/ultraestrutura , Inoviridae/química , Inoviridae/crescimento & desenvolvimento , Inoviridae/ultraestrutura , Leviviridae/química , Leviviridae/crescimento & desenvolvimento , Leviviridae/ultraestrutura , Lipothrixviridae/química , Lipothrixviridae/crescimento & desenvolvimento , Lipothrixviridae/ultraestrutura , Microviridae/química , Microviridae/crescimento & desenvolvimento , Microviridae/ultraestrutura , Rudiviridae/química , Rudiviridae/crescimento & desenvolvimento , Rudiviridae/ultraestrutura , Tectiviridae/química , Tectiviridae/crescimento & desenvolvimento , Tectiviridae/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA