Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.324
Filtrar
1.
Analyst ; 148(23): 5991-6000, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37876282

RESUMO

High levels of D-amino acid oxidase (DAO) are associated with neurological and psychiatric disorders, while L-amino acid oxidase (LAO) exhibits antimicrobial and antitumor properties. The enzymatic conversion of the non-fluorescent kynurenine (KYN) into the endogenous weak fluorescent kynurenic acid (KYNA) by the action of DAO has previously been reported. However, the fluorescence of KYNA can be improved by changing the substituents on the aromatic rings. In this study, we prepared different 6-phenyl-substituted KYNA derivatives and investigated their fluorescence properties. Among them, 2-MePh-KYNA showed the maximum fluorescence quantum yield of 0.881 at 340 nm excitation and 418 nm emission wavelengths. The effects of solvent properties (dielectric constant, pKa, viscosity, and proticity) on the fluorescence intensity (FLI) of the KYNA derivatives were explored. The FLI of 2-MePh-KYNA was significantly large in protic solvents. Subsequently, 2-MePh-D-KYN and 2-MePh-L-KYN were prepared with high enantiopurity (>99.25%) for the enzymatic conversion. 2-MePh-D-KYN exhibited high sensitivity (∼19 times that of a commercial DAO substrate and ∼60 times that of the previously reported MeS-D-KYN) and high selectivity, as it was not cross-reactive towards LAO, while 2-MePh-L-KYN was also converted into 2-MePh-KYNA by LAO. Furthermore, the 2-MePh-D-KYN probe successfully detected DAO in eel liver, kidney, and heparin-anticoagulated plasma in the in vitro study.


Assuntos
D-Aminoácido Oxidase , Ácido Cinurênico , L-Aminoácido Oxidase , Ácido Cinurênico/química , Corantes Fluorescentes , Enguias , Animais , L-Aminoácido Oxidase/análise , D-Aminoácido Oxidase/análise , Bioensaio , Fluorescência , Cinética , Fígado/enzimologia , Rim/enzimologia
2.
Biotechnol Bioeng ; 120(12): 3557-3569, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37650151

RESUMO

D-Amino acid oxidase (DAAO) selectively catalyzes the oxidative deamination of  D-amino acids, making it one of the most promising routes for synthesizing optically pure  L-amino acids, including  L-phosphinothricin ( L-PPT), a chiral herbicide with significant market potential. However, the native DAAOs that have been reported have low activity against unnatural acid substrate  D-PPT. Herein, we designed and screened a DAAO from Rhodotorula taiwanensis (RtwDAAO), and improved its catalytic potential toward  D-PPT through protein engineering. A semirational design approach was employed to create a mutation library based on the tunnel-pocket engineering. After three rounds of iterative saturation mutagenesis, the optimal variant M3rd -SHVG was obtained, exhibiting a >2000-fold increase in relative activity. The kinetic parameters showed that M3rd -SHVG improved the substrate binding affinity and turnover number. This is the optimal parameter reported so far. Further, molecular dynamics simulation revealed that the M3rd -SHVG reshapes the tunnel-pocket and corrects the direction of enzyme-substrate binding, allowing efficiently catalyze unnatural substrates. Our strategy demonstrates that the redesign of tunnel-pockets is effective in improving the activity and kinetic efficiency of DAAO, which provides a valuable reference for enzymatic catalysis. With the M3rd -SHVG as biocatalyst, 500 mM D, L-PPT was completely converted and the yield reached 98%. The results laid the foundation for further industrial production.


Assuntos
Aminoácidos , Engenharia de Proteínas , Especificidade por Substrato , Aminoácidos/metabolismo , Ligação Proteica , Oxirredutases/metabolismo , D-Aminoácido Oxidase/genética , D-Aminoácido Oxidase/química , D-Aminoácido Oxidase/metabolismo , Cinética
3.
Enzyme Microb Technol ; 166: 110224, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36889103

RESUMO

D-Amino acid oxidase (DAAO) is an imperative oxidoreductase that oxidizes D-amino acids to corresponding keto acids, producing ammonia and hydrogen peroxide. Previously, based on the sequence alignment of DAAO from Glutamicibacter protophormiae (GpDAAO-1) and (GpDAAO-2), 4 residues (E115, N119, T256, T286) at the surface regions of GpDAAO-2, were subjected to site-directed mutagenesis and achieved 4 single-point mutants with enhanced catalytic efficiency (kcat/Km) compared to parental GpDAAO-2. In the present study, to further enhance the catalytic efficiency of GpDAAO-2, a total of 11 (6 double, 4 triple, and 1 quadruple-point) mutants were prepared by the different combinations of 4 single-point mutants. All mutants and wild types were overexpressed, purified and enzymatically characterized. A triple-point mutant E115A/N119D/T286A exhibited the most significant improvement in catalytic efficiency as compared to wild-type GpDAAO-1 and GpDAAO-2. Structural modeling analysis elucidated that residue Y213 in loop region C209-Y219 might act as the active-site lid for controlling substrate access, the residue K256 substituted by threonine (K256T) might change the hydrogen bonding interaction between residue Y213 and the surrounding residues, and switch the conformation of the active-site lid from the closed state to the open state, resulting in the enhancement in substrate accessibility and catalytic efficiency.


Assuntos
Aminoácidos , Substituição de Aminoácidos , Domínio Catalítico , Cinética , Mutagênese Sítio-Dirigida , Especificidade por Substrato , D-Aminoácido Oxidase
4.
Neurochem Res ; 48(7): 2066-2076, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36786942

RESUMO

The effects of the N-methyl-D-aspartate receptor activators D-serine, D-alanine, and sarcosine against schizophrenia and depression are promising. Nevertheless, high doses of D-serine and sarcosine are associated with undesirable nephrotoxicity or worsened prostatic cancer. Thus, alternatives are needed. DAAO inhibition can increase D-serine as well as D-alanine and protect against D-serine-induced nephrotoxicity. Although several DAAO inhibitors improve the symptoms of schizophrenia and depression, they can increase the plasma levels but not brain levels of D-serine. The mechanism of action of DAAO inhibitors remains unclear. We investigated the effects of the DAAO inhibitor sodium benzoate on the prefrontal cortex and hippocampal level of D-alanine as known another substrate with antipsychotic and antidepressant properties and other NMDAR-related amino acids, such as, L-alanine, D-serine, L-serine, D-glutamate, L-glutamate, and glycine levels. Our results indicate that sodium benzoate exerts antipsychotic and antidepressant-like effects without changing the D-serine levels in the brain prefrontal cortex (PFC) and hippocampus. Moreover, D-alanine levels in the PFC and hippocampus did not change. Despite these negative findings regarding the effects of D-amino acids in the PFC and hippocampus, sodium benzoate exhibited antipsychotic and antidepressant-like effects. Thus, the therapeutic effects of sodium benzoate are independent of D-serine or D-alanine levels. In conclusion, sodium benzoate may be effective among patients with schizophrenia or depression; however, the mechanisms of actions remain to be elucidated.


Assuntos
Antipsicóticos , Ratos , Animais , Antipsicóticos/farmacologia , Benzoato de Sódio/farmacologia , Oxirredutases/metabolismo , Serina/metabolismo , Sarcosina , D-Aminoácido Oxidase , Córtex Pré-Frontal/metabolismo , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Alanina , Hipocampo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
5.
Anal Chem ; 94(42): 14530-14536, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36222234

RESUMO

d-Amino acid oxidase (DAO) has been suggested to be associated with the central nervous system diseases, such as schizophrenia. We newly synthesized a nonfluorescent 5-methylthio-d-kynurenine (MeS-d-KYN), which was converted to blue-fluorescent 6-MeS-kynurenic acid (MeS-KYNA, λex = 364 nm, λem = 450 nm) through a one-step reaction by incubation with DAO. It was revealed that fluorescence intensity increased accompanied by commercial porcine kidney DAO activity (unit) with a good correlation (R2 = 0.9972), suggesting that the fluorometric evaluation of DAO activity using MeS-d-KYN is feasible. MeS-d-KYN was applied to fluorescent DAO imaging in cultured LLC-PK1 cells, and the blue fluorescence of MeS-KYNA overlapped considerably with the location of peroxisomes, which was suggested to be the location of DAO in the cells. Because fluorescence was diminished in the presence of 6-chloro-1,2-benzisoxazol-3(2H)-one (CBIO), a DAO inhibitor, it was considered that DAO activity in cells could be directly evaluated using MeS-d-KYN as the substrate.


Assuntos
Cinurenina , Esquizofrenia , Animais , Suínos , Ácido Cinurênico , D-Aminoácido Oxidase , Fluorometria/métodos
6.
FEBS Lett ; 596(22): 2889-2897, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35665501

RESUMO

d-Serine modulates excitatory neurotransmission by binding to N-methyl-d-aspartate glutamate receptors. d-Amino acid oxidase (DAO) degrades d-amino acids, such as d-serine, in the central nervous system, and is associated with neurological and psychiatric disorders. However, cell types that express brain DAO remain controversial, and whether brain DAO influences systemic d-amino acids in addition to brain d-serine remains unclear. Here, we created astrocyte-specific DAO-conditional knockout mice. Knockout in glial fibrillary acidic protein-positive cells eliminated DAO expression in the hindbrain and increased d-serine levels significantly in the cerebellum. Brain DAO did not influence levels of d-amino acids in the forebrain or periphery. These results show that astrocytic DAO regulates d-serine specifically in the hindbrain.


Assuntos
D-Aminoácido Oxidase , Serina , Animais , Camundongos , Serina/metabolismo , D-Aminoácido Oxidase/genética , D-Aminoácido Oxidase/metabolismo , Astrócitos/metabolismo , Camundongos Knockout , Aminoácidos , Cerebelo/metabolismo
7.
Mol Psychiatry ; 27(9): 3842-3856, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35546635

RESUMO

Bipolar disorder is an often-severe mental health condition characterized by alternation between extreme mood states of mania and depression. Despite strong heritability and the recent identification of 64 common variant risk loci of small effect, pathophysiological mechanisms remain unknown. Here, we analyzed genome sequences from 41 multiply-affected pedigrees and identified variants in 741 genes with nominally significant linkage or association with bipolar disorder. These 741 genes overlapped known risk genes for neurodevelopmental disorders and clustered within gene networks enriched for synaptic and nuclear functions. The top variant in this analysis - prioritized by statistical association, predicted deleteriousness, and network centrality - was a missense variant in the gene encoding D-amino acid oxidase (DAOG131V). Heterologous expression of DAOG131V in human cells resulted in decreased DAO protein abundance and enzymatic activity. In a knock-in mouse model of DAOG131, DaoG130V/+, we similarly found decreased DAO protein abundance in hindbrain regions, as well as enhanced stress susceptibility and blunted behavioral responses to pharmacological inhibition of N-methyl-D-aspartate receptors (NMDARs). RNA sequencing of cerebellar tissue revealed that DaoG130V resulted in decreased expression of two gene networks that are enriched for synaptic functions and for genes expressed, respectively, in Purkinje neurons or granule neurons. These gene networks were also down-regulated in the cerebellum of patients with bipolar disorder compared to healthy controls and were enriched for additional rare variants associated with bipolar disorder risk. These findings implicate dysregulation of NMDAR signaling and of gene expression in cerebellar neurons in bipolar disorder pathophysiology and provide insight into its genetic architecture.


Assuntos
Transtorno Bipolar , Receptores de N-Metil-D-Aspartato , Camundongos , Animais , Humanos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , D-Aminoácido Oxidase/genética , D-Aminoácido Oxidase/metabolismo , Redes Reguladoras de Genes/genética , Cerebelo/metabolismo
8.
J Med Chem ; 65(9): 6775-6802, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35482677

RESUMO

d-Serine is a coagonist of the N-methyl d-aspartate (NMDA) receptor, a key excitatory neurotransmitter receptor. In the brain, d-serine is synthesized from its l-isomer by serine racemase and is metabolized by the D-amino acid oxidase (DAO, DAAO). Many studies have linked decreased d-serine concentration and/or increased DAO expression and enzyme activity to NMDA dysfunction and schizophrenia. Thus, it is feasible to employ DAO inhibitors for the treatment of schizophrenia and other indications. Powered by the Schrödinger computational modeling platform, we initiated a research program to identify novel DAO inhibitors with the best-in-class properties. The program execution leveraged an hDAO FEP+ model to prospectively predict compound potency. A new class of DAO inhibitors with desirable properties has been discovered from this endeavor. Our modeling technology on this program has not only enhanced the efficiency of structure-activity relationship development but also helped to identify a previously unexplored subpocket for further optimization.


Assuntos
N-Metilaspartato , Esquizofrenia , D-Aminoácido Oxidase/metabolismo , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/metabolismo , Relação Estrutura-Atividade
9.
Int J Neuropsychopharmacol ; 25(8): 660-665, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35430632

RESUMO

BACKGROUND: Dysregulation of N-methyl-D-aspartate receptor (NMDAR) neurotransmission has been reported to be implicated in the pathogenesis of Alzheimer's disease (AD). D-amino acid oxidase (DAO), responsible for degradation of NMDAR-related D-amino acids such as D-serine, regulates NMDAR function. A cross-section study found that serum DAO levels were positively related with the severity of cognitive aging among elderly individuals. This 2-year prospective study aimed to explore the role of DAO levels in predicting the outcome of patients with very early-phase AD, such as mild cognitive impairment (MCI). METHODS: Fifty-one patients with MCI and 21 healthy individuals were recruited. Serum DAO levels and cognitive function, measured by the AD assessment scale-cognitive subscale and the Mini-Mental Status Examination, were monitored every 6 months. We employed multiple regressions to examine the role of DAO concentration in cognitive decline in the 2-year period. RESULTS: From baseline to endpoint (24 months), serum DAO levels increased significantly, and cognitive ability declined according to both cognitive tests in the MCI patients. Among the healthy individuals, DAO concentrations also increased and Mini-Mental Status Examination scores declined; however, AD assessment scale-cognitive subscale scores did not significantly change. Further, DAO levels at both months 12 and 18 were predictive of cognitive impairment at month 24 among the MCI patients. CONCLUSIONS: To our knowledge, this is the first study to demonstrate that blood DAO levels increased with cognitive deterioration among the MCI patients in a prospective manner. If replicated by future studies, blood DAO concentration may be regarded as a biomarker for monitoring cognitive change in the patients with MCI.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Idoso , Aminoácidos , Disfunção Cognitiva/diagnóstico , D-Aminoácido Oxidase/sangue , Humanos , Testes Neuropsicológicos , Estudos Prospectivos , Receptores de N-Metil-D-Aspartato
10.
J Biochem ; 171(1): 27-29, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34750609

RESUMO

Since the discovery of D-amino acid oxidase (DAO) in 1935, many studies have been conducted without clarifying its 3D structure for a long time. In 1996, the crystal structure of DAO was determined, and it was shown that the catalytic bases required for the two catalytic mechanisms were not present in the active site. The crystal structure of DAO in complex with o-aminobenzoate was solved and is used for modeling Michaelis complex. The Michaelis complex model provided structural information leading to a new mechanism for reductive half-reaction of DAO. Currently, DAO is being researched for medical and applied purposes.


Assuntos
D-Aminoácido Oxidase , ortoaminobenzoatos , Aminoácidos , Catálise , Domínio Catalítico , D-Aminoácido Oxidase/metabolismo , Modelos Moleculares
11.
Nanomedicine ; 36: 102424, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34174417

RESUMO

In order to generate an antibody directed enzyme prodrug therapy, here we designed a chimeric protein by fusing the F8 antibody that recognizes the EDA of fibronectin (expressed on the tumor neovasculature) and an evolved variant of the ROS-generating enzyme D-amino acid oxidase (DAAO). The F8(scFv)-DAAO-Q144R recombinant protein is expressed by both CHO-S and E. coli cells. The F8(scFv)-DAAO-Q144R from E. coli cells is fully soluble, shows a high specific activity, is more thermostable in blood than the native DAAO, possesses a binding affinity for EDA well suited for efficient tumor accumulation, and localizes in tumor tissues. Notably, the F8(scFv)-DAAO-Q144R conjugate generates a stronger cytotoxicity to tumor cells than the native enzyme, especially when an inhibitor of heme oxygenase-1 (HO-1) is used, making it a promising candidate for a selective antitumor oxidative therapy controlled by the substrate addition, in the so called "activity on demand", thus sparing normal tissue from damage.


Assuntos
Anticorpos Monoclonais Humanizados , Antineoplásicos , Citotoxinas , D-Aminoácido Oxidase , Fibronectinas , Proteínas de Neoplasias , Neoplasias/tratamento farmacológico , Proteínas Recombinantes de Fusão , Anticorpos de Cadeia Única , Animais , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/genética , Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Células CHO , Células COS , Chlorocebus aethiops , Cricetulus , Citotoxinas/química , Citotoxinas/farmacologia , D-Aminoácido Oxidase/química , D-Aminoácido Oxidase/genética , D-Aminoácido Oxidase/farmacologia , Fibronectinas/antagonistas & inibidores , Fibronectinas/genética , Fibronectinas/metabolismo , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/farmacologia
12.
Ann Clin Transl Neurol ; 8(6): 1343-1352, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34018342

RESUMO

OBJECTIVES: Friedreich ataxia (FRDA) is a rare disorder with progressive neurodegeneration and cardiomyopathy. Luvadaxistat (also known as TAK-831; NBI-1065844), an inhibitor of the enzyme d-amino acid oxidase, has demonstrated beneficial effects in preclinical models relevant to FRDA. This phase 2, randomized, double-blind, placebo-controlled, parallel-arm study evaluated the efficacy and safety of oral luvadaxistat in adults with FRDA. METHODS: Adult patients with FRDA were randomized 2:1:2 to placebo, luvadaxistat 75 mg twice daily (BID), or luvadaxistat 300 mg BID for 12 weeks. The primary endpoint changed from baseline at week 12 on the inverse of the time to complete the nine-hole peg test (9-HPT-1 ), a performance-based measure of the function of the upper extremities and manual dexterity. Comparisons between luvadaxistat and placebo were made using a mixed model for repeated measures. RESULTS: Of 67 randomized patients, 63 (94%) completed the study. For the primary endpoint, there was no statistically significant difference in change from baseline on the 9-HPT-1 (seconds-1 ) at week 12 between placebo (0.00029) and luvadaxistat 75 mg BID (-0.00031) or luvadaxistat 300 mg BID (-0.00059); least squares mean differences versus placebo (standard error) were -0.00054 (0.000746) for the 75 mg dose and -0.00069 (0.000616) for the 300 mg dose. Luvadaxistat was safe and well tolerated; the majority of reported adverse events were mild in intensity. INTERPRETATION: Luvadaxistat was safe and well tolerated in this cohort of adults with FRDA; however, it did not demonstrate efficacy as a treatment for this condition.


Assuntos
D-Aminoácido Oxidase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Ataxia de Friedreich/tratamento farmacológico , Adolescente , Adulto , Método Duplo-Cego , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/efeitos adversos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde , Adulto Jovem
13.
Anal Bioanal Chem ; 413(27): 6793-6802, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33791826

RESUMO

Challenges facing enzyme-based electrochemical sensors include substrate specificity, batch to batch reproducibility, and lack of quantitative metrics related to the effect of enzyme immobilization. We present a quick, simple, and general approach for measuring the effect of immobilization and cross-linking on enzyme activity and substrate specificity. The method can be generalized for electrochemical biosensors using an enzyme that releases hydrogen peroxide during its catalytic cycle. Using as proof of concept RgDAAO-based electrochemical biosensors, we found that the Michaelis-Menten constant (Km) decreases post immobilization, hinting at alterations in the enzyme kinetic properties and thus substrate specificity. We confirm the decrease in Km electrochemically by characterizing the substrate specificity of the immobilized RgDAAO using chronoamperometry. Our results demonstrate that enzyme immobilization affects enzyme substrate specificity and this must be carefully evaluated during biosensor development.


Assuntos
D-Aminoácido Oxidase/química , D-Aminoácido Oxidase/metabolismo , Técnicas Eletroquímicas/métodos , Alanina/metabolismo , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Catálise , D-Aminoácido Oxidase/genética , Técnicas Eletroquímicas/instrumentação , Enzimas Imobilizadas/química , Enzimas Imobilizadas/genética , Enzimas Imobilizadas/metabolismo , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/metabolismo , Cinética , Microeletrodos , Fenilenodiaminas/química , Estudo de Prova de Conceito , Reprodutibilidade dos Testes , Serina/metabolismo , Especificidade por Substrato
14.
Tuberculosis (Edinb) ; 128: 102079, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33812176

RESUMO

Mycobacterium tuberculosis H37Ra (Mtb-Ra) ORF MRA_1916 is annotated as a D-amino acid oxidase (DAO). These enzymes perform conversion of d-amino acids to corresponding imino acids followed by conversion into α-keto-acids. In the present study Mtb-Ra recombinants with DAO knockout (KO) and knockout complemented with DAO over-expressing plasmid (KOC) were constructed. The growth studies showed loss of growth of KO in medium containing glycerol as a primary carbon source. Substituting glycerol with acetate or with FBS addition, restored the growth. Growth was also restored in complemented strain (KOC). KO showed increased permeability to hydrophilic dye EtBr and reduced biofilm formation. Also, its survival in macrophages was low. Phagosome maturation studies suggested enhanced colocalization of KO, compared to WT, with lysosomal marker cathepsin D. Also, an increased intensity of Rab5 and iNOS was observed in macrophages infected with KO, compared to WT and KOC. The in vivo survival studies showed no increase in CFU of KO. This is the first study to show functional relevance of DAO encoded by MRA_1916 for Mtb-Ra growth on glycerol, its permeability and biofilm formation. Also, this study clearly demonstrates that DAO deletion leads to Mtb-Ra failing to grow in macrophages and in mice.


Assuntos
Biofilmes/crescimento & desenvolvimento , D-Aminoácido Oxidase/genética , Macrófagos/microbiologia , Mycobacterium tuberculosis/genética , Animais , Proteínas de Bactérias/genética , Técnicas de Inativação de Genes , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium tuberculosis/crescimento & desenvolvimento
15.
Int J Mol Sci ; 22(9)2021 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-33922888

RESUMO

Treatment of schizophrenia (SCZ) historically relies on the use of antipsychotic drugs to treat psychosis, with all of the currently available antipsychotics acting through the antagonism of dopamine D2 receptors. Although antipsychotics reduce psychotic symptoms in many patients, they induce numerous undesirable effects and are not effective against negative and cognitive symptoms. These highlight the need to develop new drugs to treat SCZ. An advanced understanding of the circuitry of SCZ has pointed to pathological origins in the excitation/inhibition balance in regions such as the hippocampus, and restoring function in this region, particularly as a means to compensate for parvalbumin (PV) interneuron loss and resultant hippocampal hyperactivity, may be a more efficacious approach to relieve a broad range of SCZ symptoms. Other targets, such as cholinergic receptors and the trace amine-associated receptor 1 (TAAR1), have also shown some promise for the treatment of SCZ. Importantly, assessing efficacy of novel compounds must take into consideration treatment history of the patient, as preclinical studies suggest prior antipsychotic treatment may interfere with the efficacy of these novel agents. However, while novel therapeutic targets may be more effective in treating SCZ, a more effective approach would be to prevent the transition to SCZ in susceptible individuals. A focus on stress, which has been shown to be a predisposing factor in risk for SCZ, is a possible avenue that has shown promise in preclinical studies. Therefore, therapeutic approaches based on our current understanding of the circuitry of SCZ and its etiology are likely to enable development of more effective therapeutic interventions for this complex disorder.


Assuntos
Antipsicóticos/farmacologia , Esquizofrenia/tratamento farmacológico , Esquizofrenia/prevenção & controle , Animais , Antipsicóticos/uso terapêutico , D-Aminoácido Oxidase/antagonistas & inibidores , D-Aminoácido Oxidase/metabolismo , Antagonistas de Dopamina/uso terapêutico , Ácido Glutâmico/metabolismo , Humanos , Terapia de Alvo Molecular/métodos , Receptores Colinérgicos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Esquizofrenia/metabolismo , Benzoato de Sódio/farmacologia , Ácido gama-Aminobutírico/metabolismo
16.
Methods Mol Biol ; 2280: 199-218, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33751437

RESUMO

This chapter describes a method to assay the activity of reactive intermediate deaminases (Rid), a large family of conserved soluble enzymes, which have been proposed to prevent damages from metabolic intermediates such as the highly reactive and unstable compounds enamines/imines. In this method, the flavin adenine dinucleotide-dependent L- or D-amino acid oxidases generate an imino acid starting from a L- or D- amino acid, respectively. This reaction is coupled to the hydrolysis of the imino acid to the corresponding α-keto acid and ammonium ion catalyzed by a Rid enzyme. The spectrophotometric assay consists of measuring the decrease of the initial rate of formation of the semicarbazone, derived from the spontaneous reaction of the imino acid and semicarbazide, caused by the presence of the Rid enzyme. The set-up and testing of this method imply a preliminary characterization of the ability of the amino acid oxidase to release the imino acid required for the subsequent reactions. To this purpose, the activity of the L- or D-amino acid oxidases with different amino acids can be measured as production of hydrogen peroxide or formation of semicarbazone in parallel assays. The advantages and limitations of this assay of Rid activity are discussed.


Assuntos
D-Aminoácido Oxidase/metabolismo , Iminoácidos/análise , L-Aminoácido Oxidase/metabolismo , Peróxido de Hidrogênio/análise , Hidrólise , Iminoácidos/metabolismo
17.
Pharmacol Res Perspect ; 9(2): e00727, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33710781

RESUMO

D-Amino acid oxidase (DAAO) specifically catalyzes the oxidative deamination of neutral and polar D-amino acids and finally yields byproducts of hydrogen peroxide. Our previous work demonstrated that the spinal astroglial DAAO/hydrogen peroxide (H2 O2 ) pathway was involved in the process of pain and morphine antinociceptive tolerance. This study aimed to report mouse strain specificity of DAAO inhibitors on antinociception and explore its possible mechanism. DAAO inhibitors benzoic acid, CBIO, and SUN significantly inhibited formalin-induced tonic pain in Balb/c and Swiss mice, but had no antinociceptive effect in C57 mice. In contrast, morphine and gabapentin inhibited formalin-induced tonic pain by the same degrees among Swiss, Balb/c and C57 mice. Therefore, mouse strain difference in antinociceptive effects was DAAO inhibitors specific. In addition, intrathecal injection of D-serine greatly increased spinal H2 O2 levels by 80.0% and 56.9% in Swiss and Balb/c mice respectively, but reduced spinal H2 O2 levels by 29.0% in C57 mice. However, there was no remarkable difference in spinal DAAO activities among Swiss, Balb/c and C57 mice. The spinal expression of glutathione (GSH) and glutathione peroxidase (GPx) activity in C57 mice were significantly higher than Swiss and Balb/c mice. Furthermore, the specific GPx inhibitor D-penicillamine distinctly restored SUN antinociception in C57 mice. Our results reported that DAAO inhibitors produced antinociception in a strain-dependent manner in mice and the strain specificity might be associated with the difference in spinal GSH and GPx activity.


Assuntos
Analgésicos/administração & dosagem , Variação Biológica da População , D-Aminoácido Oxidase/antagonistas & inibidores , Nociceptividade/efeitos dos fármacos , Analgésicos/farmacocinética , Animais , D-Aminoácido Oxidase/metabolismo , Glutationa/análise , Glutationa/metabolismo , Glutationa Peroxidase/análise , Glutationa Peroxidase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo
18.
J Biochem ; 170(1): 119-129, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-33725110

RESUMO

D-amino acid oxidase (DAO) is a flavoenzyme catalyzing the oxidation of D-amino acid (AA)s. In the kidney, its expression is detected in proximal tubules, and DAO is considered to play a role in the conversion of D-form AAs to α-keto acids. LLC-PK1 cells, a pig renal proximal tubule cell line, were used to elucidate the regulation of DAO protein synthesis and degradation. In this study, we showed that trypsinization of LLC-PK1 cells in culture system rapidly reduced the intracellular DAO protein level to ∼33.9% of that before treatment, even within 30 min. Furthermore, we observed that the DAO protein level was decreased when LLC-PK1 cells were subjected to AA starvation. To determine the degradation pathway, we treated the cells with chloroquine and MG132. DAO degradation was found to be inhibited by chloroquine, but not by MG132 treatment. We next examined whether or not DAO was degraded by autophagy. We found that AA starvation led to an increased accumulation of LC3-II, suggesting that DAO protein is degraded by autophagy due to AA starvation conditions. Furthermore, treatment with cycloheximide inhibited DAO protein degradation. Taken together, DAO protein is degraded by autophagy under starvation. The present study revealed the potential dynamics of DAO correlated with renal pathophysiology.


Assuntos
Aminoácidos/metabolismo , D-Aminoácido Oxidase/metabolismo , Células Epiteliais/metabolismo , Rim/metabolismo , Animais , Células Cultivadas , Células Epiteliais/citologia , Rim/citologia , Suínos
19.
Int J Mol Sci ; 22(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540681

RESUMO

D-amino acid oxidase (DAAO) is an enzyme that catalyzes the oxidation of D-amino acids generating H2O2. The enzymatic chimera formed by DAAO bound to the choline-binding domain of N-acetylmuramoyl-L-alanine amidase (CLytA) induces cytotoxicity in several pancreatic and colorectal carcinoma and glioblastoma cell models. In the current work, we determined whether the effect of CLytA-DAAO immobilized in magnetic nanoparticles, gold nanoparticles, and alginate capsules offered some advantages as compared to the free CLytA-DAAO. Results indicate that the immobilization of CLytA-DAAO in magnetic nanoparticles increases the stability of the enzyme, extending its time of action. Besides, we compared the effect induced by CLytA-DAAO with the direct addition of hydrogen peroxide, demonstrating that the progressive generation of reactive oxygen species by CLytA-DAAO is more effective in inducing cytotoxicity than the direct addition of H2O2. Furthermore, a pilot study has been initiated in biopsies obtained from pancreatic and colorectal carcinoma and glioblastoma patients to evaluate the expression of the main genes involved in resistance to CLytA-DAAO cytotoxicity. Based on our findings, we propose that CLytA-DAAO immobilized in magnetic nanoparticles could be effective in a high percentage of patients and, therefore, be used as an anti-cancer therapy for pancreatic and colorectal carcinoma and glioblastoma.


Assuntos
D-Aminoácido Oxidase/metabolismo , Nanopartículas de Magnetita/química , Neoplasias/terapia , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes de Fusão/química , Linhagem Celular Tumoral , Neoplasias Colorretais/terapia , D-Aminoácido Oxidase/uso terapêutico , Glioblastoma/terapia , Humanos , Peróxido de Hidrogênio/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias Pancreáticas/terapia , Espécies Reativas de Oxigênio/toxicidade , Neoplasias Pancreáticas
20.
Appl Biochem Biotechnol ; 193(7): 2029-2042, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33538962

RESUMO

D-amino acid oxidase (DAAO) is widely used in the industrial preparation of L-amino acids, and cultivating Escherichia coli (E. coli) expressing DAAO for the biosynthesis of L-phosphinothricin (L-PPT) is very attractive. At present, the biomass production of DAAO by fermentation is still limited in large-scale industrial applications because the expression of DAAO during the fermentation process inhibits the growth of host cells, which limits higher cell density. In this study, the factors that inhibit the growth of bacterial cells during a 5-L fed-batch fermentation process were explored, and the fermentation process was optimized by co-expressing catalase (CAT), by balancing the biomass and the enzyme activity, and by adding exogenous D-alanine (D-Ala) to relieve the limitation of DAAO on the cells and optimize fermentation. Under optimal conditions, the DO-STAT feeding mode with DO controlled at 30% ± 5% and the addition of 27.5 g/L lactose mixed with 2 g/L D-Ala during induction at 28 °C resulted in the production of 26.03 g dry cell weight (DCW)/L biomass and 390.0 U/g DCW specific activity of DAAO; an increase of 78% and 84%, respectively, compared with the initial fermentation conditions. The fermentation strategy was successfully scale-up to a 5000-L fermenter.


Assuntos
Biomassa , D-Aminoácido Oxidase/biossíntese , Escherichia coli/crescimento & desenvolvimento , Expressão Gênica , D-Aminoácido Oxidase/genética , Escherichia coli/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA