Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.728
Filtrar
1.
Med Oncol ; 41(6): 153, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743323

RESUMO

The mechanism by which DNMT3B facilitates esophageal cancer (ESCA) progression is currently unknown, despite its association with adverse prognoses in several cancer types. To investigate the potential therapeutic effects of the Chinese herbal medicine rhubarb on esophageal cancer (ESCA), we adopted an integrated bioinformatics approach. Gene Set Enrichment Analysis (GSEA) was first utilized to screen active anti-ESCA components in rhubarb. We then employed Weighted Gene Co-expression Network Analysis (WGCNA) to identify key molecular modules and targets related to the active components and ESCA pathogenesis. This system-level strategy integrating multi-omics data provides a powerful means to unravel the molecular mechanisms underlying the anticancer activities of natural products, like rhubarb. To investigate module gene functional enrichment, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted. In addition, we evaluated the predictive impact of DNMT3B expression on ESCA patients utilizing the Kaplan-Meier method. Finally, we conducted experiments on cell proliferation and the cell cycle to explore the biological roles of DNMT3B. In this study, we identified Rhein as the main active ingredient of rhubarb that exhibited significant anti-ESCA activity. Rhein markedly suppressed ESCA cell proliferation. Utilizing Weighted Gene Co-expression Network Analysis (WGCNA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, we determined that the blue module was associated with Rhein target genes and the cell cycle. Additionally, DNMT3B was identified as a Rhein target gene. Analysis of The Cancer Genome Atlas (TCGA) database revealed that higher DNMT3B levels were associated with poor prognosis in ESCA patients. Furthermore, Rhein partially reversed the overexpression of DNMT3B to inhibit ESCA cell proliferation. In vitro studies demonstrated that Rhein and DNMT3B inhibition disrupted the S phase of the cell cycle and affected the production of cell cycle-related proteins. In this study, we found that Rhein exerts its anti-proliferative effects in ESCA cells by targeting DNMT3B and regulating the cell cycle.


Assuntos
Antraquinonas , Ciclo Celular , Proliferação de Células , DNA (Citosina-5-)-Metiltransferases , DNA Metiltransferase 3B , Neoplasias Esofágicas , Humanos , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Antraquinonas/farmacologia , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Rheum/química , Biologia Computacional
2.
PeerJ ; 12: e17363, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766487

RESUMO

Background: Promoter hypermethylation of the tumor suppressor gene is one of the well-studied causes of cancer development. The drugs that reverse the process by driving demethylation could be a candidate for anticancer therapy. This study was designed to investigate the effects of arsenic disulfide on PTPL1 methylation in diffuse large B cell lymphoma (DLBCL). Methods: We knocked down the expression of PTPL1 in two DLBCL cell lines (i.e., DB and SU-DHL-4 cells) using siRNA. Then the DLBCL proliferation was determined in the presence of PTPL1 knockdown. The methylation of PTPL1 in DLBCL cells was analyzed by methylation specific PCR (MSPCR). The effect of arsenic disulfide on the PTPL1 methylation was determined in DLBCL cell lines in the presence of different concentrations of arsenic disulfide (5 µM, 10 µM and 20 µM), respectively. To investigate the potential mechanism on the arsenic disulfide-mediated methylation, the mRNA expression of DNMT1, DNMT3B and MBD2 was determined. Results: PTPL1 functioned as a tumor suppressor gene in DLBCL cells, which was featured by the fact that PTPL1 knockdown promoted the proliferation of DLBCL cells. PTPL1 was found hypermethylated in DLBCL cells. Arsenic disulfide promoted the PTPL1 demethylation in a dose-dependent manner, which was related to the inhibition of DNMTs and the increase of MBD2. Conclusion: Experimental evidence shows that PTPL1 functions as a tumor suppressor gene in DLBCL progression. PTPL1 hyper-methylation could be reversed by arsenic disulfide in a dose-dependent manner.


Assuntos
Proliferação de Células , Metilação de DNA , Linfoma Difuso de Grandes Células B , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/patologia , Linfoma Difuso de Grandes Células B/metabolismo , Linhagem Celular Tumoral , Metilação de DNA/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Arsenicais/farmacologia , DNA Metiltransferase 3B , Dissulfetos/farmacologia , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Técnicas de Silenciamento de Genes , Regiões Promotoras Genéticas/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
3.
Methods Cell Biol ; 186: 131-150, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38705597

RESUMO

Hypomethylating therapies using decitabine or azacitidine are actively investigated to treat acute myeloid leukemia, myelodysplastic syndromes, as maintenance therapy after allogenic stem cell transplant and hemoglobinopathies. The therapeutic mechanism is to de-repress genes that have been turned off through oncogenesis or development via methylation. The therapy can be non-cytotoxic at low dosage, sparing healthy stem cells and operating on committed precursors. Because the methods of determining maximum tolerated dose are not well suited to this paradigm, and because the mechanism of action, which is depletion of DNA methylase 1 (DNMT1), is complex and dependent on passing through a cell cycle, a pharmacodynamic assay that measures DNMT1 can inform clinical trials aimed at establishing and improving therapy. Herein, we provide an assay that measures DNMT1 relative levels in circulating T cells of peripheral blood.


Assuntos
Azacitidina , DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA , Decitabina , Azacitidina/farmacologia , Humanos , Decitabina/farmacologia , Metilação de DNA/efeitos dos fármacos , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , Antimetabólitos Antineoplásicos/farmacologia , Antimetabólitos Antineoplásicos/uso terapêutico , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/metabolismo
4.
J Am Coll Cardiol ; 83(18): 1717-1727, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38692825

RESUMO

BACKGROUND: The expansion of hematopoietic stem cells caused by acquired somatic mutations (clonal hematopoiesis [CH]) is a novel cardiovascular risk factor. The prognostic value of CH in patients with carotid atherosclerosis remains to be evaluated. OBJECTIVES: This study assessed the prognostic significance of CH in patients with atherosclerosis as detected by ultrasound of the carotid artery. METHODS: We applied deep sequencing of selected genomic regions within the genes DNMT3A, TET2, ASXL1, and JAK2 to screen for CH in 968 prospectively collected patients with asymptomatic carotid atherosclerosis evaluated by duplex sonography. RESULTS: We detected clonal markers at variant allele frequency ≥2% in 133 (13.7%) of 968 patients (median age 69.2 years), with increasing prevalence at advanced age. Multivariate analyses including age and established cardiovascular risk factors revealed overall presence of CH to be significantly associated with increased risk of cardiovascular death (HR: 1.50; 95% CI: 1.12-2.00; P = 0.007), reflected also at the single gene level. The effect of CH was more pronounced in older patients and independent of the patients' inflammatory status as measured by high-sensitivity C-reactive protein. Simultaneous assessment of CH and degree of carotid stenosis revealed combined effects on cardiovascular mortality, depicted by a superior risk for patients with >50% stenosis and concomitant CH (adjusted HR: 1.60; 95% CI: 1.08-2.38; P = 0.020). CONCLUSIONS: CH status in combination with the extent of carotid atherosclerosis jointly predict long-term mortality. Determination of CH can provide additional prognostic information in patients with asymptomatic carotid atherosclerosis.


Assuntos
Estenose das Carótidas , Hematopoiese Clonal , Janus Quinase 2 , Humanos , Masculino , Feminino , Idoso , Hematopoiese Clonal/genética , Estenose das Carótidas/genética , Estenose das Carótidas/complicações , Estenose das Carótidas/diagnóstico por imagem , Pessoa de Meia-Idade , DNA Metiltransferase 3A , Dioxigenases , Estudos Prospectivos , Proteínas de Ligação a DNA/genética , Proteínas Repressoras/genética , Proteínas Proto-Oncogênicas/genética , Prognóstico , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/mortalidade , DNA (Citosina-5-)-Metiltransferases/genética
5.
Commun Biol ; 7(1): 582, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755427

RESUMO

The DNA methyltransferase DNMT3C appeared as a duplication of the DNMT3B gene in muroids and is required for silencing of young retrotransposons in the male germline. Using specialized assay systems, we investigate the flanking sequence preferences of DNMT3C and observe characteristic preferences for cytosine at the -2 and -1 flank that are unique among DNMT3 enzymes. We identify two amino acids in the catalytic domain of DNMT3C (C543 and V547) that are responsible for the DNMT3C-specific flanking sequence preferences and evolutionary conserved in muroids. Reanalysis of published data shows that DNMT3C flanking preferences are consistent with genome-wide methylation patterns in mouse ES cells only expressing DNMT3C. Strikingly, we show that CpG sites with the preferred flanking sequences of DNMT3C are enriched in murine retrotransposons that were previously identified as DNMT3C targets. Finally, we demonstrate experimentally that DNMT3C has elevated methylation activity on substrates derived from these biological targets. Our data show that DNMT3C flanking sequence preferences match the sequences of young murine retrotransposons which facilitates their methylation. By this, our data provide mechanistic insights into the molecular co-evolution of repeat elements and (epi)genetic defense systems dedicated to maintain genomic stability in mammals.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Metilação de DNA , Retroelementos , Animais , Retroelementos/genética , Camundongos , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Ilhas de CpG , Masculino
6.
Nat Commun ; 15(1): 3266, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627502

RESUMO

DNA methyltransferase 3A (DNMT3A) and its catalytically inactive cofactor DNA methyltransferase 3-Like (DNMT3L) proteins form functional heterotetramers to deposit DNA methylation in mammalian germ cells. While both proteins have an ATRX-DNMT3-DNMT3L (ADD) domain that recognizes histone H3 tail unmethylated at lysine-4 (H3K4me0), the combined and differential roles of the domains in the two proteins have not been fully defined in vivo. Here we investigate DNA methylation landscapes in female and male germ cells derived from mice with loss-of-function amino acid substitutions in the ADD domains of DNMT3A and/or DNMT3L. Mutations in either the DNMT3A-ADD or the DNMT3L-ADD domain moderately decrease global CG methylation levels, but to different degrees, in both germ cells. Furthermore, when the ADD domains of both DNMT3A and DNMT3L lose their functions, the CG methylation levels are much more reduced, especially in oocytes, comparable to the impact of the Dnmt3a/3L knockout. In contrast, aberrant accumulation of non-CG methylation occurs at thousands of genomic regions in the double mutant oocytes and spermatozoa. These results highlight the critical role of the ADD-H3K4me0 binding in proper CG and non-CG methylation in germ cells and the various impacts of the ADD domains of the two proteins.


Assuntos
Metilação de DNA , DNA Metiltransferase 3A , Animais , Feminino , Masculino , Camundongos , DNA (Citosina-5-)-Metiltransferases/metabolismo , Células Germinativas/metabolismo , Histonas/metabolismo , Fatores de Transcrição/metabolismo
7.
Nat Commun ; 15(1): 3111, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600075

RESUMO

DNA methyltransferases DNMT3A- and DNMT3B-mediated DNA methylation critically regulate epigenomic and transcriptomic patterning during development. The hotspot DNMT3A mutations at the site of Arg822 (R882) promote polymerization, leading to aberrant DNA methylation that may contribute to the pathogenesis of acute myeloid leukemia (AML). However, the molecular basis underlying the mutation-induced functional misregulation of DNMT3A remains unclear. Here, we report the crystal structures of the DNMT3A methyltransferase domain, revealing a molecular basis for its oligomerization behavior distinct to DNMT3B, and the enhanced intermolecular contacts caused by the R882H or R882C mutation. Our biochemical, cellular, and genomic DNA methylation analyses demonstrate that introducing the DNMT3B-converting mutations inhibits the R882H-/R882C-triggered DNMT3A polymerization and enhances substrate access, thereby eliminating the dominant-negative effect of the DNMT3A R882 mutations in cells. Together, this study provides mechanistic insights into DNMT3A R882 mutations-triggered aberrant oligomerization and DNA hypomethylation in AML, with important implications in cancer therapy.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Leucemia Mieloide Aguda , Humanos , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Mutação , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Metilação de DNA/genética , DNA/metabolismo
8.
FEBS Lett ; 598(9): 1094-1109, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38627195

RESUMO

Allele-specific epigenetic events regulate the expression of specific genes such as tumor suppressor genes. Methods to biochemically identify epigenetic regulators remain limited. Here, we used insertional chromatin immunoprecipitation (iChIP) to address this issue. iChIP combined with quantitative mass spectrometry identified DNA methyltransferase 1 (DNMT1) and epigenetic regulators as proteins that potentially interact with a region of the p16INK4A gene that is CpG-methylated in one allele in HCT116 cells. Some of the identified proteins are involved in the CpG methylation of this region, and of these, DEAD-box helicase 24 (DDX24) contributes to CpG methylation by regulating the protein levels of DNMT1. Thus, iChIP is a useful method to identify proteins which bind to a target locus of interest.


Assuntos
Ilhas de CpG , Inibidor p16 de Quinase Dependente de Ciclina , DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA , Epigênese Genética , Humanos , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , Células HCT116 , Imunoprecipitação da Cromatina , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética
9.
Drug Metab Dispos ; 52(6): 555-564, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38565301

RESUMO

Cytochrome P450 1A2 (CYP1A2) is a known tumor suppressor in hepatocellular carcinoma (HCC), but its expression is repressed in HCC and the underlying mechanism is unclear. In this study, we investigated the epigenetic mechanisms of CYP1A2 repression and potential therapeutic implications. In HCC tumor tissues, the methylation rates of CYP1A2 CpG island (CGI) and DNA methyltransferase (DNMT) 3A protein levels were significantly higher, and there was a clear negative correlation between DNMT3A and CYP1A2 protein expression. Knockdown of DNMT3A by siRNA significantly increased CYP1A2 expression in HCC cells. Additionally, treating HCC cells with decitabine (DAC) resulted in a dose-dependent upregulation of CYP1A2 expression by reducing the methylation level of CYP1A2 CGI. Furthermore, we observed a decreased enrichment of H3K27Ac in the promoter region of CYP1A2 in HCC tissues. Treatment with the trichostatin A (TSA) restored CYP1A2 expression in HCC cells by increasing H3K27Ac levels in the CYP1A2 promoter region. Importantly, combination treatment of sorafenib with DAC or TSA resulted in a leftward shift of the dose-response curve, lower IC50 values, and reduced colony numbers in HCC cells. Our findings suggest that hypermethylation of the CGI at the promoter, mediated by the high expression of DNMT3A, and hypoacetylation of H3K27 in the CYP1A2 promoter region, leads to CYP1A2 repression in HCC. Epigenetic drugs DAC and TSA increase HCC cell sensitivity to sorafenib by restoring CYP1A2 expression. Our study provides new insights into the epigenetic regulation of CYP1A2 in HCC and highlights the potential of epigenetic drugs as a therapeutic approach for HCC. SIGNIFICANCE STATEMENT: This study marks the first exploration of the epigenetic mechanisms underlying cytochrome P450 (CYP) 1A2 suppression in hepatocellular carcinoma (HCC). Our findings reveal that heightened DNA methyltransferase expression induces hypermethylation of the CpG island at the promoter, coupled with diminished H3K27Ac levels, resulting in the repression of CYP1A2 in HCC. The use of epigenetic drugs such as decitabine and trichostatin A emerges as a novel therapeutic avenue, demonstrating their potential to restore CYP1A2 expression and enhance sorafenib sensitivity in HCC cells.


Assuntos
Carcinoma Hepatocelular , Citocromo P-450 CYP1A2 , Metilação de DNA , Epigênese Genética , Neoplasias Hepáticas , Sorafenibe , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Humanos , Sorafenibe/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/genética , Metilação de DNA/efeitos dos fármacos , Linhagem Celular Tumoral , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , DNA Metiltransferase 3A , Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Decitabina/farmacologia , Ilhas de CpG/genética , Ácidos Hidroxâmicos/farmacologia , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/efeitos dos fármacos
10.
BMC Plant Biol ; 24(1): 312, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38649800

RESUMO

BACKGROUND: DNA methylation is an important epigenetic mode of genomic DNA modification and plays a vital role in maintaining epigenetic content and regulating gene expression. Cytosine-5 DNA methyltransferase (C5-MTase) are the key enzymes in the process of DNA methylation. However, there is no systematic analysis of the C5-MTase in cotton so far, and the function of DNMT2 genes has not been studied. METHODS: In this study, the whole genome of cotton C5-MTase coding genes was identified and analyzed using a bioinformatics method based on information from the cotton genome, and the function of GhDMT6 was further validated by VIGS experiments and subcellular localization analysis. RESULTS: 33 C5-MTases were identified from three cotton genomes, and were divided into four subfamilies by systematic evolutionary analysis. After the protein domain alignment of C5-MTases in cotton, 6 highly conserved motifs were found in the C-terminus of 33 proteins involved in methylation modification, which indicated that C5-MTases had a basic catalytic methylation function. These proteins were divided into four classes based on the N-terminal difference, of which DNMT2 lacks the N-terminal regulatory domain. The expression of C5-MTases in different parts of cotton was different under different stress treatments, which indicated the functional diversity of cotton C5-MTase gene family. Among the C5-MTases, the GhDMT6 had a obvious up-regulated expression. After silencing GhDMT6 with VIGS, the phenotype of cotton seedlings under different stress treatments showed a significant difference. Compared with cotton seedlings that did not silence GhDMT6, cotton seedlings silencing GhDMT6 showed significant stress resistance. CONCLUSION: The results show that C5-MTases plays an important role in cotton stress response, which is beneficial to further explore the function of DNMT2 subfamily genes.


Assuntos
Secas , Gossypium , Gossypium/genética , Gossypium/enzimologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metilação de DNA , Regulação da Expressão Gênica de Plantas , Tolerância ao Sal/genética , Família Multigênica , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Filogenia , Genoma de Planta , Genes de Plantas
11.
Neurosci Lett ; 830: 137770, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616004

RESUMO

Women are disproportionately affected by stress-related disorders like depression. In our prior research, we discovered that females exhibit lower basal hypothalamic reelin levels, and these levels are differentially influenced by chronic stress induced through repeated corticosterone (CORT) injections. Although epigenetic mechanisms involving DNA methylation and the formation of repressor complexes by DNA methyl-transferases (DNMTs) and Methyl-CpG binding protein 2 (MeCP2) have been recognized as regulators of reelin expression in vitro, there is limited understanding of the impact of stress on the epigenetic regulation of reelin in vivo and whether sex differences exist in these mechanisms. To address these questions, we conducted various biochemical analyses on hypothalamic brain samples obtained from male and female rats previously treated with either 21 days of CORT (40 mg/kg) or vehicle (0.9 % saline) subcutaneous injections. Upon chronic CORT treatment, a reduction in reelin fragment NR2 was noted in males, while the full-length molecule remained unaffected. This decrease paralleled with an elevation in MeCP2 and a reduction in DNMT3a protein levels only in males. Importantly, sex differences in baseline and CORT-induced reelin protein levels were not associated with changes in the methylation status of the Reln promoter. These findings suggest that CORT-induced reelin decreases in the hypothalamus may be a combination of alterations in downstream processes beyond gene transcription. This research brings novel insights into the sexually distinct consequences of chronic stress, an essential aspect to understand, particularly concerning its role in the development of depression.


Assuntos
Moléculas de Adesão Celular Neuronais , Corticosterona , DNA Metiltransferase 3A , Proteínas da Matriz Extracelular , Hipotálamo , Proteína 2 de Ligação a Metil-CpG , Proteínas do Tecido Nervoso , Proteína Reelina , Serina Endopeptidases , Animais , Feminino , Masculino , Ratos , Moléculas de Adesão Celular Neuronais/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Proteína 2 de Ligação a Metil-CpG/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Serina Endopeptidases/metabolismo , Caracteres Sexuais , Ratos Long-Evans
12.
Biomed Pharmacother ; 174: 116572, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626519

RESUMO

Epigenetic regulation and mitochondrial dysfunction are essential to the progression of idiopathic pulmonary fibrosis (IPF). Curcumin (CCM) in inhibits the progression of pulmonary fibrosis by regulating the expression of specific miRNAs and pulmonary fibroblast mitochondrial function; however, the underlying mechanism is unclear. C57BL/6 mice were intratracheally injected with bleomycin (5 mg/kg) and treated with CCM (25 mg/kg body weight/3 times per week, intraperitoneal injection) for 28 days. Verhoeff-Van Gieson, Picro sirius red, and Masson's trichrome staining were used to examine the expression and distribution of collagen and elastic fibers in the lung tissue. Pulmonary fibrosis was determined using micro-computed tomography and transmission electron microscopy. Human pulmonary fibroblasts were transfected with miR-29a-3p, and RT-qPCR, immunostaining, and western blotting were performed to determine the expression of DNMT3A and extracellular matrix collagen-1 (COL1A1) and fibronectin-1 (FN1) levels. The expression of mitochondrial electron transport chain complex (MRC) and mitochondrial function were detected using western blotting and Seahorse XFp Technology. CCM in increased the expression of miR-29a-3p in the lung tissue and inhibited the DNMT3A to reduce the COL1A1 and FN1 levels leading to pulmonary extracellular matrix remodeling. In addition, CCM inhibited pulmonary fibroblasts MRC and mitochondrial function via the miR-29a-3p/DNMT3A pathway. CCM attenuates pulmonary fibrosis via the miR-29a-3p/DNMT3A axis to regulate extracellular matrix remodeling and mitochondrial function and may provide a new therapeutic intervention for preventing pulmonary fibrosis.


Assuntos
Curcumina , DNA Metiltransferase 3A , Matriz Extracelular , Fibroblastos , Camundongos Endogâmicos C57BL , MicroRNAs , Mitocôndrias , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Curcumina/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , DNA Metiltransferase 3A/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Humanos , Camundongos , Masculino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Bleomicina , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Modelos Animais de Doenças
13.
Br J Haematol ; 204(5): 1844-1855, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522849

RESUMO

Recursive partitioning of healthy consortia led to the development of the Clonal Hematopoiesis Risk Score (CHRS) for clonal haematopoiesis (CH); however, in the practical setting, most cases of CH are diagnosed after patients present with cytopenias or related symptoms. To address this real-world population, we characterize the clinical trajectories of 94 patients with CH and distinguish CH harbouring canonical DNMT3A/TET2/ASXL1 mutations alone ('sole DTA') versus all other groups ('non-sole DTA'). TET2, rather than DNMT3A, was the most prevalent mutation in the real-world setting. Sole DTA patients did not progress to myeloid neoplasm (MN) in the absence of acquisition of other mutations. Contrastingly, 14 (20.1%) of 67 non-sole DTA patients progressed to MN. CHRS assessment showed a higher frequency of high-risk CH in non-sole DTA (vs. sole DTA) patients and in progressors (vs. non-progressors). RUNX1 mutation conferred the strongest risk for progression to MN (odds ratio [OR] 10.27, 95% CI 2.00-52.69, p = 0.0053). The mean variant allele frequency across all genes was higher in progressors than in non-progressors (36.9% ± 4.62% vs. 24.1% ± 1.67%, p = 0.0064). This analysis in the post-CHRS era underscores the natural history of CH, providing insight into patterns of progression to MN.


Assuntos
Hematopoiese Clonal , Proteínas de Ligação a DNA , Dioxigenases , Mutação , Humanos , Hematopoiese Clonal/genética , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Proteínas de Ligação a DNA/genética , DNA Metiltransferase 3A , Adulto , Idoso de 80 Anos ou mais , Progressão da Doença , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , DNA (Citosina-5-)-Metiltransferases/genética
14.
Oncogene ; 43(18): 1386-1396, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467852

RESUMO

Clear cell renal cell carcinoma (ccRCC) presents a unique profile characterized by high levels of angiogenesis and robust vascularization. Understanding the underlying mechanisms driving this heterogeneity is essential for developing effective therapeutic strategies. This study revealed that ubiquitin B (UBB) is downregulated in ccRCC, which adversely affects the survival of ccRCC patients. UBB exerts regulatory control over vascular endothelial growth factor A (VEGFA) by directly interacting with specificity protein 1 (SP1), consequently exerting significant influence on angiogenic processes. Subsequently, we validated that DNA methyltransferase 3 alpha (DNMT3A) is located in the promoter of UBB to epigenetically inhibit UBB transcription. Additionally, we found that an unharmonious UBB/VEGFA ratio mediates pazopanib resistance in ccRCC. These findings underscore the critical involvement of UBB in antiangiogenic therapy and unveil a novel therapeutic strategy for ccRCC.


Assuntos
Carcinoma de Células Renais , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais , Neovascularização Patológica , Fator de Transcrição Sp1 , Fator A de Crescimento do Endotélio Vascular , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/irrigação sanguínea , Carcinoma de Células Renais/tratamento farmacológico , Humanos , Neoplasias Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/irrigação sanguínea , Neoplasias Renais/metabolismo , Neoplasias Renais/tratamento farmacológico , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp1/genética , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Linhagem Celular Tumoral , Animais , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Indazóis/farmacologia , Indazóis/uso terapêutico , DNA Metiltransferase 3A/metabolismo , Sulfonamidas/farmacologia , Camundongos , Ubiquitina/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regiões Promotoras Genéticas , Feminino , Masculino , Angiogênese
15.
Bone ; 183: 117085, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522809

RESUMO

Overgrowth and intellectual disability disorders in humans are typified by length/height and/or head circumference ≥ 2 standard deviations above the mean as well as intellectual disability and behavioral comorbidities, including autism and anxiety. Tatton-Brown-Rahman Syndrome is one type of overgrowth and intellectual disability disorder caused by heterozygous missense mutations in the DNA methyltransferase 3A (DNMT3A) gene. Numerous DNMT3A mutations have been identified in Tatton-Brown-Rahman Syndrome patients and may be associated with varying phenotype severities of clinical presentation. Two such mutations are the R882H and P904L mutations which result in severe and mild phenotypes, respectively. Mice with paralogous mutations (Dnmt3aP900L/+ and Dnmt3aR878H/+) exhibit overgrowth in their long bones (e.g., femur, humerus), but the mechanisms responsible for their skeletal overgrowth remain unknown. The goal of this study is to characterize skeletal phenotypes in mouse models of Tatton-Brown-Rahman Syndrome and identify potential cellular mechanisms involved in the skeletal overgrowth phenotype. We report that mature mice with the Dnmt3aP900L/+ or Dnmt3aR878H/+ mutation exhibit tibial overgrowth, cortical bone thinning, and weakened bone mechanical properties. Dnmt3aR878H/+ mutants also contain larger bone marrow adipocytes while Dnmt3aP900L/+ mutants show no adipocyte phenotype compared to control animals. To understand the potential cellular mechanisms regulating these phenotypes, growth plate chondrocytes, osteoblasts, and osteoclasts were assessed in juvenile mutant mice using quantitative static histomorphometry and dynamic histomorphometry. Tibial growth plates appeared thicker in mutant juvenile mice, but no changes were observed in osteoblast activity or osteoclast number in the femoral mid-diaphysis. These studies reveal new skeletal phenotypes associated with Tatton-Brown-Rahman Syndrome in mice and provide a rationale to extend clinical assessments of patients with this condition to include bone density and quality testing. These findings may be also informative for skeletal characterization of other mouse models presenting with overgrowth and intellectual disability phenotypes.


Assuntos
Anormalidades Múltiplas , Deficiência Intelectual , Anormalidades Musculoesqueléticas , Humanos , Animais , Camundongos , DNA (Citosina-5-)-Metiltransferases/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto , DNA Metiltransferase 3A , Anormalidades Múltiplas/genética , Mutação
16.
Adv Sci (Weinh) ; 11(16): e2308531, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38380551

RESUMO

Gallbladder cancer (GBC) is an extremely lethal malignancy with aggressive behaviors, including liver or distant metastasis; however, the underlying mechanisms driving the metastasis of GBC remain poorly understood. In this study, it is found that DNA methyltransferase DNMT3A is highly expressed in GBC tumor tissues compared to matched adjacent normal tissues. Clinicopathological analysis shows that DNMT3A is positively correlated with liver metastasis and poor overall survival outcomes in patients with GBC. Functional analysis confirms that DNMT3A promotes the metastasis of GBC cells in a manner dependent on its DNA methyltransferase activity. Mechanistically, DNMT3A interacts with and is recruited by YAP/TAZ to recognize and access the CpG island within the CDH1 promoter and generates hypermethylation of the CDH1 promoter, which leads to transcriptional silencing of CDH1 and accelerated epithelial-to-mesenchymal transition. Using tissue microarrays, the association between the expression of DNMT3A, YAP/TAZ, and CDH1 is confirmed, which affects the metastatic ability of GBC. These results reveal a novel mechanism through which DNMT3A recruitment by YAP/TAZ guides DNA methylation to drive GBC metastasis and provide insights into the treatment of GBC metastasis by targeting the functional connection between DNMT3A and YAP/TAZ.


Assuntos
DNA Metiltransferase 3A , Neoplasias da Vesícula Biliar , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Antígenos CD , Caderinas , Linhagem Celular Tumoral , Modelos Animais de Doenças , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/genética , DNA Metiltransferase 3A/metabolismo , DNA Metiltransferase 3A/genética , Transição Epitelial-Mesenquimal/genética , Neoplasias da Vesícula Biliar/genética , Neoplasias da Vesícula Biliar/metabolismo , Neoplasias da Vesícula Biliar/patologia , Regulação Neoplásica da Expressão Gênica/genética , Metástase Neoplásica/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética
17.
J Transl Med ; 22(1): 128, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308276

RESUMO

BACKGROUND: DNMT3L is a crucial DNA methylation regulatory factor, yet its function and mechanism in hepatocellular carcinoma (HCC) remain poorly understood. Bioinformatics-based big data analysis has increasingly gained significance in cancer research. Therefore, this study aims to elucidate the role of DNMT3L in HCC by integrating big data analysis with experimental validation. METHODS: Dozens of HCC datasets were collected to analyze the expression of DNMT3L and its relationship with prognostic indicators, and were used for molecular regulatory relationship evaluation. The effects of DNMT3L on the malignant phenotypes of hepatoma cells were confirmed in vitro and in vivo. The regulatory mechanisms of DNMT3L were explored through MSP, western blot, and dual-luciferase assays. RESULTS: DNMT3L was found to be downregulated in HCC tissues and associated with better prognosis. Overexpression of DNMT3L inhibits cell proliferation and metastasis. Additionally, CDO1 was identified as a target gene of DNMT3L and also exhibits anti-cancer effects. DNMT3L upregulates CDO1 expression by competitively inhibiting DNMT3A-mediated methylation of CDO1 promoter. CONCLUSIONS: Our study revealed the role and epi-transcriptomic regulatory mechanism of DNMT3L in HCC, and underscored the essential role and applicability of big data analysis in elucidating complex biological processes.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Big Data , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , Neoplasias Hepáticas/genética , Regiões Promotoras Genéticas/genética
18.
Chem Biol Interact ; 392: 110907, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38395253

RESUMO

The regulation of gene expression is fundamental to health and life and is essentially carried out at the promoter region of the DNA of each gene. Depending on the molecular context, this region may be accessible or non-accessible (possibility of integration of RNA polymerase or not at this region). Among enzymes that control this process, DNA methyltransferase enzymes (DNMTs), are responsible for DNA demethylation at the CpG islands, particularly at the promoter regions, to regulate transcription. The aberrant activity of these enzymes, i.e. their abnormal expression or activity, can result in the repression or overactivation of gene expression. Consequently, this can generate cellular dysregulation leading to instability and tumor development. Several reports highlighted the involvement of DNMTs in human cancers. The inhibition or activation of DNMTs is a promising therapeutic approach in many human cancers. In the present work, we provide a comprehensive and critical summary of natural bioactive molecules as primary inhibitors of DNMTs in human cancers. The active compounds hold the potential to be developed as anti-cancer epidrugs targeting DNMTs.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Neoplasias , Humanos , DNA (Citosina-5-)-Metiltransferases/genética , Neoplasias/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , Ilhas de CpG , Metilação de DNA , Epigênese Genética
19.
Int J Dev Neurosci ; 84(2): 154-159, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38296839

RESUMO

OBJECTIVE: Schizophrenia belongs to a severe mental illness with complicated clinical presentations, an ill-defined pathogenesis, and no known cause. Many genetic studies imply that polygenic interaction is important in the development of schizophrenia. The main mechanism of the RELN-BDNF-CREB-DNMT signaling pathway in neurodevelopment involves RELN, brain-derived neurotrophic factor (BDNF), transcription factor cyclic adenosine monophosphate response element binding protein (CREB), DNA methyltransferase 1 (DNMT1), as well as DNA methyltransferase 3B (DNMT3B). An early case-control research on 15 polymorphisms in the RELN, CREB, BDNF, DNMT1, and DNMT3B genes was done. A single gene variation has little effect on the pathogenesis of schizophrenia, but the combination of intergenic variation loci has a bigger impact because schizophrenia is a complex polygenic disorder. The objective of the current study sought to explore the impact of genetic interactions between RELN, BDNF, CREB, DNMT1, and DNMT3B on schizophrenia in order to further highlight the genetic factors influencing the risk of schizophrenia. METHODS: Taking the case-control study design, with the Diagnostic and Statistical Manual of Mental Disorders-Fifth Edition (DSM-5) to be the evaluation norm, 134 individuals suffering from schizophrenia hospitalized in the Third People's Hospital of Zhongshan City within January 2018 to April 2020 (case group) were selected, and 64 healthy individuals (control group) from the same geographical area had been chosen as well. MassArray identified DNMT1 gene single nucleotide polymorphisms (rs2114724 and rs2228611) and DNMT3B gene SNPs (rs2424932, rs1569686, rs6119954, and rs2424908). Using the generalized multifactor dimensionality reduction (GMDR), the RELN-BDNF-CREB-DNMT pathway's gene interactions were examined for their impact on schizophrenia. RESULTS: GMDR analysis showed that the three-order interaction model RELN (rs2073559, rs2229864)-DNMT3B (rs2424908) was the optimal model (p = 0.001), with the consistency of cross-validation of 10/10 and the test accuracy of 0.8711. CONCLUSION: The interaction between the RELN (rs2073559, rs2229864)-DNMT3B (rs2424908) may be related to schizophrenia, and large sample sizes should be verified in different population.


Assuntos
DNA Metiltransferase 3B , Predisposição Genética para Doença , Proteína Reelina , Esquizofrenia , Humanos , Fator Neurotrófico Derivado do Encéfalo/genética , Estudos de Casos e Controles , DNA (Citosina-5-)-Metiltransferases/genética , Polimorfismo de Nucleotídeo Único/genética , Esquizofrenia/genética , Transdução de Sinais , Proteína Reelina/genética , DNA Metiltransferase 3B/genética
20.
Analyst ; 149(4): 1002-1021, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38204433

RESUMO

The abnormal expression of human DNA methyltransferases (DNMTs) is closely related with the occurrence and development of a wide range of human cancers. DNA (cytosine-5)-methyltransferase-1 (DNMT1) is the most abundant human DNA methyltransferase and is mainly responsible for genomic DNA methylation patterns. Abnormal expression of DNMT1 has been found in many kinds of tumors, and DNMT1 has become a valuable target for the diagnosis and drug therapy of diseases. Nowadays, DNMT1 has been found to be involved in multiple cancers such as pancreatic cancer, breast cancer, bladder cancer, lung cancer, gastric cancer and other cancers. In order to achieve early diagnosis and for scientific research, various analytical methods have been developed for qualitative or quantitative detection of low-abundance DNMT1 in biological samples and human tumor cells. Herein, we provide a brief explication of the research progress of DNMT1 involved in various cancer types. In addition, this review focuses on the types, principles, and applications of DNMT1 detection methods, and discusses the challenges and potential future directions of DNMT1 detection.


Assuntos
Neoplasias da Mama , DNA (Citosina-5-)-Metiltransferases , Humanos , Feminino , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA , Neoplasias da Mama/genética , DNA/metabolismo , Biomarcadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA