Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(33): 13644-13651, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39110983

RESUMO

Intracellular detection and imaging of microRNAs (miRNAs) with low expression usually face the problem of unsatisfactory sensitivity. Herein, a novel dual-function DNA nanowire (DDN) with self-feedback amplification and efficient signal transduction was developed for the sensitive detection and intracellular imaging of microRNA-155 (miRNA-155). Target miRNA-155 triggered catalytic hairpin assembly (CHA) to generate plenty of double-stranded DNA (dsDNA), and a trigger primer exposed in dsDNA initiated a hybridization chain reaction (HCR) between four well-designed hairpins to produce DDN, which was encoded with massive target sequences and DNAzyme. On the one hand, target sequences in DDN acted as self-feedback amplifiers to reactivate cascaded CHA and HCR, achieving exponential signal amplification. On the other hand, DNAzyme encoded in DDN acted as signal transducers, successively cleaving Cy5 and BHQ-2 labeled substrate S to obtain a significantly enhanced fluorescence signal. This efficient signal transduction coupling self-feedback amplification greatly improved the detection sensitivity with a limit of detection of 160 aM for miRNA-155, enabling ultrasensitive imaging of low-abundance miRNA-155 in living cells. The constructed DDN creates a promising fluorescence detection and intracellular imaging platform for low-expressed biomarkers, exhibiting tremendous potential in biomedical studies and clinical diagnosis of diseases.


Assuntos
DNA , MicroRNAs , Nanofios , MicroRNAs/análise , MicroRNAs/metabolismo , Nanofios/química , Humanos , DNA/química , DNA Catalítico/química , DNA Catalítico/metabolismo , Transdução de Sinais , Imagem Óptica , Técnicas de Amplificação de Ácido Nucleico , Limite de Detecção
2.
Anal Chem ; 96(33): 13710-13718, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39115804

RESUMO

Homogeneous electrochemiluminescence (ECL) has gained attention for its simplicity and stability. However, false positives due to solution background interference pose a challenge. To address this, magnetic ECL nanoparticles (Fe3O4@Ru@SiO2 NPs) were synthesized, offering easy modification, magnetic separation, and stable luminescence. These were utilized in an ECL sensor for miRNA-155 (miR-155) detection, with locked DNAzyme and substrate chain (mDNA) modified on their surface. The poor conductivity of long-chain DNA significantly impacts the conductivity and electron transfer capability of Fe3O4@Ru@SiO2 NPs, resulting in weaker ECL signals. Upon target presence, unlocked DNAzyme catalyzes mDNA cleavage, leading to shortened DNA chains and reduced density. In contrast, the presence of short-chain DNA has minimal impact on the conductivity and electron transfer capability of Fe3O4@Ru@SiO2 NPs. Simultaneously, the material surface's electronegativity decreases, weakening the electrostatic repulsion with the negatively charged electrode, resulting in the system detecting stronger ECL signals. This sensor enables homogeneous ECL detection while mitigating solution background interference through magnetic separation. Within a range of 100 fM to 10 nM, the sensor exhibits a linear relationship between ECL intensity and target concentration, with a 26.91 fM detection limit. It demonstrates high accuracy in clinical sample detection, holding significant potential for clinical diagnostics. Future integration with innovative detection strategies may further enhance sensitivity and specificity in biosensing applications.


Assuntos
DNA , Técnicas Eletroquímicas , Medições Luminescentes , MicroRNAs , Dióxido de Silício , MicroRNAs/análise , Técnicas Eletroquímicas/métodos , DNA/química , Dióxido de Silício/química , Humanos , Técnicas Biossensoriais/métodos , Propriedades de Superfície , DNA Catalítico/química , DNA Catalítico/metabolismo , Nanopartículas de Magnetita/química , Limite de Detecção , Rutênio/química
3.
Anal Chem ; 96(33): 13371-13378, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39116285

RESUMO

Biomimetic enzymes have emerged as ideal alternatives to natural enzymes, and there is considerable interest in designing biomimetic enzymes with enhanced catalytic performance to address the low activity of the current biomimetic enzymes. In this study, we proposed a meaningful strategy for constructing an efficient peroxidase-mimicking catalyst, called HhG-MOF, by anchoring histidine (H) and dual hemin-G-quadruplex DNAzyme (double hemin covalently linked to 3' and 5' terminals of G-quadruplex DNA, short as hG) to a mesoporous metal-organic framework (MOF). This design aims to mimic the microenvironment of natural peroxidase. Remarkably, taking a terbium MOF as a typical model, the initial rate of the resulting catalyst was found to be 21.1 and 4.3 times higher than that of Hh-MOF and hG-MOF, respectively. The exceptional catalytic properties of HhG-MOF can be attributed to its strong affinity for substrates. Based on the inhibitory effect of thiocholine (TCh) produced by the reaction between acetylcholinesterase (AChE) and acetylthiocholine, a facile, cost-effective, and sensitive colorimetric method was designed based on HhG-MOF for the measurement of AChE, a marker of several neurological diseases, and its inhibitor. This allowed a linear response in the 0.002 to 1 U L-1 range, with a detection limit of 0.001 U L-1. Furthermore, the prepared sensor demonstrated great selectivity and performed well in real blood samples, suggesting that it holds promise for applications in the clinical field.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Quadruplex G , Hemina , Histidina , Estruturas Metalorgânicas , Hemina/química , Estruturas Metalorgânicas/química , Técnicas Biossensoriais/métodos , Histidina/química , DNA Catalítico/química , DNA Catalítico/metabolismo , Colorimetria , Humanos , Catálise , Materiais Biomiméticos/química
4.
Org Biomol Chem ; 22(33): 6833-6840, 2024 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-39115293

RESUMO

The 10-23 DNAzyme, a catalytic DNA molecule with RNA-cleaving activity, has garnered significant interest for its potential therapeutic applications as a gene-silencing agent. However, the lack of a detailed understanding about its mechanism has hampered progress. A recent structural analysis has revealed a highly organized conformation thanks to the stabilization of specific interactions within the catalytic core of the 10-23 DNAzyme, which facilitate the cleavage of RNA. In this configuration, it has been shown that G14 is in good proximity to the cleavage site which suggests its role as a general base, by activating the 2'-OH nucleophile, in the catalysis of the 10-23 DNAzyme. Also, the possibility of a hydrated metal acting as a general acid has been proposed. In this study, through activity assays, we offer evidence of the involvement of general acid-base catalysis in the mechanism of the 10-23 DNAzyme by analyzing its pH-rate profiles and the role of G14, and metal cofactors like Mg2+ and Pb2+. By substituting G14 with its analogue 2-aminopurine and examining the resultant pH-rate profiles, we propose the participation of G14 in a catalytically relevant proton transfer event, acting as a general base. Further analysis, using Pb2+ as a cofactor, suggests the capability of the hydrated metal ion to act as a general acid. These functional results provide critical insights into the catalytic strategies of RNA-cleaving DNAzymes, revealing common mechanisms among nucleic acid enzymes that cleave RNA.


Assuntos
DNA Catalítico , DNA Catalítico/química , DNA Catalítico/metabolismo , Concentração de Íons de Hidrogênio , Biocatálise , Cinética , Magnésio/química , Magnésio/metabolismo , Catálise , Chumbo/química , Chumbo/metabolismo , DNA de Cadeia Simples
5.
J Nanobiotechnology ; 22(1): 414, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010059

RESUMO

Staphylococcus aureus (SA) poses a serious risk to human and animal health, necessitating a low-cost and high-performance analytical platform for point-of-care diagnostics. Cellulose paper-based field-effect transistors (FETs) with RNA-cleaving DNAzymes (RCDs) can fulfill the low-cost requirements, however, its high hydrophilicity and lipophilicity hinder biochemical modification and result in low sensitivity, poor mechanical stability and poor fouling performance. Herein, we proposed a controllable self-cleaning FET to simplify biochemical modification and improve mechanical stability and antifouling performance. Then, we constructed an RCD-based DNA nanotree to significantly enhance the sensitivity for SA detection. For controllable self-cleaning FET, 1 H,1 H,2 H,2 H-perfluorodecyltrimethoxysilane based-polymeric nanoparticles were synthesized to decorate cellulose paper and whole carbon nanofilm wires. O2 plasma was applied to regulate to reduce fluorocarbon chain density, and then control the hydrophobic-oleophobic property in sensitive areas. Because negatively charged DNA affected the sensitivity of semiconducting FETs, three Y-shaped branches with low-cost were designed and applied to synthesize an RCD-based DNA-Nanotree based on similar DNA-origami technology, which further improved the sensitivity. The trunk of DNA-Nanotree was composed of RCD, and the canopy was self-assembled using multiple Y-shaped branches. The controllable self-cleaning FET biosensor was applied for SA detection without cultivation, which had a wide linear range from 1 to 105 CFU/mL and could detect a low value of 1 CFU/mL.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Staphylococcus aureus , DNA Catalítico/química , DNA Catalítico/metabolismo , Técnicas Biossensoriais/métodos , Transistores Eletrônicos , RNA/metabolismo , Limite de Detecção , Celulose/química , Papel , Nanopartículas/química , Humanos
6.
ACS Appl Mater Interfaces ; 16(31): 40499-40514, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39051468

RESUMO

Crohn's disease (CD) is a refractory chronic inflammatory bowel disease (IBD) with unknown etiology. Transmural inflammation, involving the intestine and mesentery, represents a characteristic pathological feature of CD and serves as a critical contributor to its intractability. Here, this study describes an oral pyroptosis nanoinhibitor loaded with tumor necrosis factor-α (TNF-α) deoxyribozymes (DNAzymes) (DNAzymes@degradable silicon nanoparticles@Mannose, Dz@MDSN), which can target macrophages at the site of inflammation and respond to reactive oxygen species (ROS) to release drugs. Dz@MDSN can not only break the inflammatory cycle in macrophages by degrading TNF-α mRNA but also reduce the production of ROS mainly from macrophages. Moreover, Dz@MDSN inhibits excessive pyroptosis in epithelial cells through ROS clearance, thereby repairing the intestinal barrier and reducing the translocation of intestinal bacteria to the mesentery. Consequently, these combined actions synergistically contribute to the suppression of inflammation within both the intestine and the mesentery. This study likely represents the first successful attempt in the field of utilizing nanomaterials to achieve transmural healing for CD, which also provides a promising treatment strategy for CD patients.


Assuntos
Doença de Crohn , DNA Catalítico , Piroptose , Fator de Necrose Tumoral alfa , Doença de Crohn/tratamento farmacológico , Doença de Crohn/patologia , Doença de Crohn/metabolismo , Piroptose/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Humanos , Animais , Administração Oral , Camundongos , DNA Catalítico/química , DNA Catalítico/metabolismo , DNA Catalítico/farmacologia , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Silício/química , Silício/farmacologia , Manose/química , Manose/farmacologia , Células RAW 264.7 , Masculino
7.
J Hazard Mater ; 476: 135115, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38976962

RESUMO

A label-free fluorescent sensing strategy for the rapid and highly sensitive detection of Pb2+ was developed by integrating Pb2+ DNAzyme-specific cleavage activity and a tetrahedral DNA nanostructure (TDN)-enhanced hyperbranched hybridization chain reaction (hHCR). This strategy provides accelerated reaction rates because of the highly effective collision probability and enriched local concentrations from the spatial confinement of the TDN, thus showing a higher detection sensitivity and a more rapid detection process. Moreover, a hairpin probe based on a G-triplex instead of a G-quadruplex or chemical modification makes hybridization chain reaction more controlled and flexible, greatly improving signal amplification capacities and eliminating labeled DNA probes. The enhanced reaction rates and improved signal amplification efficiency endowed the biosensors with high sensitivity and a rapid response. The label-free detection of Pb2+ based on G-triplex combined with thioflavin T can be achieved with a detection limit as low as 1.8 pM in 25 min. The proposed Pb2+-sensing platform was also demonstrated to be applicable for Pb2+ detection in tap water, river water, shrimp, rice, and soil samples, thus showing great potential for food safety and environmental monitoring.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Chumbo , Limite de Detecção , Hibridização de Ácido Nucleico , Chumbo/análise , Chumbo/química , DNA Catalítico/química , Técnicas Biossensoriais/métodos , Nanoestruturas/química , Poluentes Químicos da Água/análise , DNA/química , DNA/análise , Animais , Monitoramento Ambiental/métodos , Oryza/química , Poluentes Ambientais/análise
8.
Mikrochim Acta ; 191(8): 483, 2024 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052195

RESUMO

Alpha-foetoprotein (AFP) is taken as a diagnostic tumor marker for the screening and diagnosis of cancer. Nucleic acid-based isothermal amplification strategies are emerging as a potential technology in early screening and clinical diagnosis of AFP. The leakages between hairpins dramatically increase the background and reduce the sensitivity. Thus, it is necessary to develop some strategies to reduce the leakage for isothermal amplification strategies. A DNAzyme-locked leakless enzyme-free amplification system was developed for AFP detection in liver cancer and breast cancer. AFP could open the apt-hairpin and initiate the catalytic hairpin assembly (CHA) reaction to produce a Y-shaped duplex. Two tails of a Y-shaped duplex cleaved the two kinds of leakless hairpins. Then, the third tail of the Y-shaped duplex catalyzed the second CHA between the cleaved leakless hairpins to recover the fluorescent intensity. The limit of detection reached 5 fg/mL by the two levels of signal amplifications. Importantly, the leakless hairpin design effectively reduced leakage between hairpins and weakened the background. In addition, it also showed a great promising potential for AFP detection in early screening and clinical diagnosis.


Assuntos
Neoplasias da Mama , DNA Catalítico , Limite de Detecção , Neoplasias Hepáticas , Técnicas de Amplificação de Ácido Nucleico , alfa-Fetoproteínas , DNA Catalítico/química , DNA Catalítico/metabolismo , alfa-Fetoproteínas/análise , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos , Neoplasias da Mama/diagnóstico , Neoplasias Hepáticas/diagnóstico , Feminino , Biomarcadores Tumorais/sangue , Técnicas Biossensoriais/métodos
9.
Anal Chem ; 96(28): 11383-11389, 2024 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-38946419

RESUMO

Apurinic/apyrimidinic endonuclease 1 (APE1), as a vital base excision repair enzyme, is essential for maintaining genomic integrity and stability, and its abnormal expression is closely associated with malignant tumors. Herein, we constructed an electrochemiluminescence (ECL) biosensor for detecting APE1 activity by combining nanoconfined ECL silver nanoclusters (Ag NCs) with X-shaped DNA recognizer-triggered cascade amplification. Specifically, the Ag NCs were prepared and confined in the glutaraldehyde-cross-linked chitosan hydrogel network using the one-pot method, resulting in a strong ECL response and exceptional stability in comparison with discrete Ag NCs. Furthermore, the self-assembled X-shaped DNA recognizers were designed for APE1 detection, which not only improved reaction kinetics due to the ordered arrangement of recognition sites but also achieved high sensitivity by utilizing the recognizer-triggered cascade amplification of strand displacement amplification (SDA) and DNAzyme catalysis. As expected, this biosensor achieved sensitive ECL detection of APE1 in the range of 1.0 × 10-3 U·µL-1 to 1.0 × 10-10 U·µL-1 with the detection limit of 2.21 × 10-11 U·µL-1, rendering it a desirable approach for biomarker detection.


Assuntos
Técnicas Biossensoriais , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Técnicas Eletroquímicas , Medições Luminescentes , Nanopartículas Metálicas , Prata , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/análise , Prata/química , Humanos , Nanopartículas Metálicas/química , Técnicas Eletroquímicas/métodos , Medições Luminescentes/métodos , Técnicas Biossensoriais/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA/química , Limite de Detecção , DNA Catalítico/química , DNA Catalítico/metabolismo
10.
Biosens Bioelectron ; 263: 116574, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39029276

RESUMO

In this work, a platinum-nickel based nanozyme is prepared and used as a coreaction accelerator in the luminol-H2O2 electrochemiluminescence (ECL) system to construct an ECL biosensor for dimethyl phthalate (DMP) detection. The PtNi/NC nanozyme possesses dispersed metal active sites, and the synergistic effect of Pt and Ni endows it with excellent catalytic performance, which effectively converts H2O2 into more superoxide anions, and then significantly enhances the ECL intensity of the luminol system. The ECL mechanism is investigated by combining cyclic voltammetry and ECL with different types of free radical scavengers. Simultaneously, an "off-on" biosensor is constructed by integrating 3D DNA walker with enzyme-free recycling amplification for ultrasensitive detection of DMP. The biosensor based on PtNi/NC nanozyme mediated luminol-H2O2 system and 3D DNA walker exhibits a linear range of 1 × 10-16 to 1 × 10-6 M with a detection limit of 4.3 × 10-17 M (S/N = 3), and displays good stability and specificity. This study demonstrates the advantages of PtNi/NC nanozyme in enhancing the luminol-H2O2 ECL system, providing new strategy for designing efficient ECL emitter and offering a new method for detecting phthalate esters.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Peróxido de Hidrogênio , Limite de Detecção , Medições Luminescentes , Luminol , Ácidos Ftálicos , Platina , Técnicas Biossensoriais/métodos , Luminol/química , Medições Luminescentes/métodos , Técnicas Eletroquímicas/métodos , Platina/química , Peróxido de Hidrogênio/química , Ácidos Ftálicos/química , Níquel/química , Nanopartículas Metálicas/química , DNA/química , DNA Catalítico/química
11.
Biosens Bioelectron ; 263: 116607, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39067412

RESUMO

The CRISPR/Cas12a system is increasingly used in biosensor development. However, high background signal and low sensitivity for the non-nucleic acid targets detection is challenging. Here, a padlock activator which could inhibit the trans-cleavage activity of CRISPR/Cas12a system in the intact form by steric hindrance effect (PAIT effect) was designed for non-nucleic acid targets detection. The PAIT effect disappeared when padlock activator was separated into two split activators. To verify the feasibility of padlock activator, a Ca2+ sensor was developed based on PAIT effect with the assistance of DNAzyme, activity of which was Ca2+ dependent. In the presence of Ca2+, DNAzyme was activated to cleave its substrate, a padlock activator modified with adenine ribonucleotide, into split padlock activators which would trigger the trans-cleavage activity of Cas12a to generate fluorescence. There was a mathematical relationship between the fluorescence intensity and the logarithm of Ca2+ concentration ranging from 10 pM to 1 nM, with a limit of detection of 3.98 pM. The little interference of Mg2+, Mn2+, Cd2+, Cu2+, Na+, Al3+, K+, Fe2+, and Fe3+ indicated high selectivity. Recovery ranged from 93.32% to 103.28% with RSDs from 1.87% to 12.74% showed a good accuracy and reliability. Furthermore, the proposed sensor could be applied to detect Ca2+ in mineral water, milk powder and urine. The results were consistent with that of flame atomic absorption spectroscopy. Thus, PAIT effect is valuable for expanding the application boundary of CRISPR/Cas12a system.


Assuntos
Técnicas Biossensoriais , Sistemas CRISPR-Cas , Cálcio , Técnicas Biossensoriais/métodos , Cálcio/metabolismo , Cálcio/química , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/metabolismo , DNA Catalítico/química , Animais , Leite/química , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Limite de Detecção
12.
Biosens Bioelectron ; 263: 116613, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39084044

RESUMO

The biomimetic enzyme cascade system plays a key role in biosensing as a sophisticated signal transduction and amplification strategy. However, constructing a regulated enzyme cascade sensing system remains challenging due to the mismatch of multiple enzyme activities and poor stability. Herein, we design an efficient dual-enhanced enzyme cascade hybrid system (UFD-DEC) containing DNA-controlled nanozymes (Fe-cdDNA) and enzyme (urease) via combining the electrostatic contact effect with the hydrogel-directed confinement effect. Precise modulation of Fe-cdDNA nanozyme by DNA offers a means to control its catalytic efficiency. This regulated UFD-DEC system accelerates the reaction rate and provides remarkable stability compared with the free enzyme system. Benefiting from the plasticity properties of hydrogels, a "lab-in-a-tube" platform was constructed by encapsulating UFD-DEC in a microcentrifuge tube. Such a UFD-DEC-based hydrogel tube exhibits sufficient adaptability to profile urea when used in conjunction with a smartphone-assisted image processing algorithm, which on-site delivers urea information with a detection limit of 0.12 mmol L-1. This customizable and inexpensive miniaturized biosensor platform for monitoring urea may facilitate point-of-care testing applications.


Assuntos
Técnicas Biossensoriais , Hidrogéis , Limite de Detecção , Urease , Técnicas Biossensoriais/métodos , Hidrogéis/química , Urease/química , Ureia/análise , Ureia/química , DNA Catalítico/química , DNA/química
13.
J Am Chem Soc ; 146(30): 20685-20699, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39012486

RESUMO

The primer-guided entropy-driven high-throughput evolution of the DNA-based constitutional dynamic network, CDN, is introduced. The entropy gain associated with the process provides a catalytic principle for the amplified emergence of the CDN. The concept is applied to develop a programmable, spatially localized DNA circuit for effective in vitro and in vivo theranostic, gene-regulated treatment of cancer cells. The localized circuit consists of a DNA tetrahedron core modified at its corners with four tethers that include encoded base sequences exhibiting the capacity to emerge and assemble into a [2 × 2] CDN. Two of the tethers are caged by a pair of siRNA subunits, blocking the circuit into a mute, dynamically inactive configuration. In the presence of miRNA-21 as primer, the siRNA subunits are displaced, resulting in amplified release of the siRNAs silencing the HIF-1α mRNA and fast dynamic reconfiguration of the tethers into a CDN. The resulting CDN is, however, engineered to be dynamically reconfigured by miRNA-155 into an equilibrated mixture enriched with a DNAzyme component, catalyzing the cleavage of EGR-1 mRNA. The DNA tetrahedron nanostructure stimulates enhanced permeation into cancer cells. The miRNA-triggered entropy-driven reconfiguration of the spatially localized circuit leads to the programmable, cooperative bis-gene-silencing of HIF-1α and EGR-1 mRNAs, resulting in the effective and selective apoptosis of breast cancer cells and effective inhibition of tumors in tumor bearing mice.


Assuntos
DNA , Entropia , Terapia Genética , MicroRNAs , Humanos , Animais , MicroRNAs/metabolismo , MicroRNAs/genética , MicroRNAs/química , DNA/química , Camundongos , RNA Interferente Pequeno/química , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico , Feminino , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , DNA Catalítico/química , DNA Catalítico/metabolismo , DNA Catalítico/genética
14.
Nano Lett ; 24(31): 9750-9759, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39052067

RESUMO

Clostridium butyricum (CbAgo)-based bioassays are popular due to their programmability and directional cleavage capabilities. However, the relatively compact protein structure of CbAgo limits its cleavage activity (even at the optimal temperature), thus restricting its wider application. Here, we observed that guide DNA (gDNA) with specific structural features significantly enhanced CbAgo cleavage efficiency. Then, we invented a novel gDNA containing DNAzyme segments (gDNAzyme) that substantially enhanced the CbAgo cleavage efficency (by 100%). Using a molecular dynamics simulation system, we found that the augmented cleavage efficiency might be attributed to the large-scale global movement of the PIWI domain of CbAgo and an increased number of cleavage sites. Moreover, this gDNAzyme feature allowed us to create a biosensor that simultaneously and sensitively detected three pathogenic bacteria without DNA extraction and amplification. Our work not only dramatically expands applications of the CbAgo-based biosensor but also provides unique insight into the protein-DNA interactions.


Assuntos
Proteínas Argonautas , Técnicas Biossensoriais , Clostridium butyricum , Clostridium butyricum/genética , Clostridium butyricum/metabolismo , Técnicas Biossensoriais/métodos , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , DNA Catalítico/química , DNA Catalítico/metabolismo , Simulação de Dinâmica Molecular , DNA/química
15.
Biomacromolecules ; 25(8): 4913-4924, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38963792

RESUMO

DNAzymes are DNA oligonucleotides that have catalytic activity without the assistance of protein enzymes. In particular, RNA-cleaving DNAzymes were considered as ideal candidates for gene therapy due to their unique characteristics. Nevertheless, efforts to use DNAzyme as a gene therapeutic agent are limited by issues such as their low physiological stability in serum and intracellular delivery efficiency. In this study, we developed a nanosized synthetic DNA hydrogel functionalized with a DNAzyme tetrahedron (TDz Dgel) to overcome these limitations. We observed remarkable improvement in the gene-silencing effect as well as intracellular uptake without the support of gene transfection reagents using TDz Dgel. The improved catalytic activity of the DNAzyme resulted from the combination of the cell-penetrating DNA tetrahedron structure and high stability of DNA hydrogel. We envision that this approach will become a convenient and efficient strategy for gene-silencing therapy using DNAzyme in the future.


Assuntos
DNA Catalítico , Inativação Gênica , DNA Catalítico/química , DNA Catalítico/genética , DNA Catalítico/metabolismo , Humanos , DNA/química , DNA/genética , Hidrogéis/química , Células HeLa , Transfecção/métodos
16.
J Hazard Mater ; 476: 135172, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38996685

RESUMO

Developing sensors with high selectivity and sensitivity is of great significance for pesticide analysis in environmental assessment. Herein, a versatile three-way sensor array was designed for the detection of the pesticide atrazine, based on the integration of catalytic hairpin assembly (CHA) amplification and three-mode signal transducers. With atrazine, CHA was triggered to generate abundant G-quadruplex. The produced G-quadruplex hybrid could assemble with thioflavin T (TFT) or hemin to mimic enzyme and induce the fluorescence enhancement by TFT, or the colorimetric increase by the oxidized chromogenic substrate and the naked-eye color change by inhibiting the L-cysteine-mediated aggregation of gold nanoparticles. A distinctive three-mode array was successfully constructed with convenience, on-site accessibility and high sensitivity for enzyme-free practical analysis of atrazine. It is also effective and reliable for analyzing real samples including paddy water, paddy soil and polished rice. The detection limits for atrazine were as low as 7.4 pg/mL by colorimetric observation and 0.25 pg/mL by fluorescent detection. Furthermore, the array was exploited to monitor the residue, distribution and bioaccumulation of atrazine in maize and rice for food security and environmental assessment. Hence, this work presented a versatile example for sensitive and on-site all-in-one pesticide analysis arrays with multiple signal report modes.


Assuntos
Atrazina , Produtos Agrícolas , DNA Catalítico , Quadruplex G , Atrazina/análise , DNA Catalítico/química , DNA Catalítico/metabolismo , Produtos Agrícolas/química , Aptâmeros de Nucleotídeos/química , Monitoramento Ambiental/métodos , Técnicas Biossensoriais/métodos , Oryza/química , Zea mays/química , Herbicidas/análise , Herbicidas/química , Praguicidas/análise , Praguicidas/química , Nanopartículas Metálicas/química , Ouro/química , Benzotiazóis/química , Limite de Detecção , Hemina/química , Poluentes Químicos da Água/análise , Colorimetria
17.
Anal Chem ; 96(28): 11603-11610, 2024 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-38953495

RESUMO

Long noncoding RNAs (lncRNAs) act as the dynamic regulatory molecules that control the expression of genes and affect numerous biological processes, and their dysregulation is associated with tumor progression. Herein, we develop a fluorescent light-up aptasensor to simultaneously measure multiple lncRNAs in living cells and breast tissue samples based on the DNAzyme-mediated cleavage reaction and transcription-driven synthesis of light-up aptamers. When target lncRNAs are present, they can be recognized by template probes to form the active DNAzyme structures, initiating the T4 PNK-catalyzed dephosphorylation-triggered extension reaction to generate double-strand DNAs with the T7 promoter sequences. The corresponding T7 promoters can initiate the transcription amplification catalyzed by the T7 RNA polymerase to generate abundant Broccoli aptamers and malachite green aptamers, which can bind DFHBI-1T and MG to generate strong fluorescence signals. Taking advantage of the good selectivity of DNAzyme-mediated cleavage of lncRNAs, high amplification efficiency of T7 transcription-driven amplification reaction, and bright fluorescence of the RNA aptamer-fluorophore complex, this method exhibits high sensitivity with a detection limit of 21.4 aM for lncRNA HOTAIR and 18.47 aM for lncRNA MALAT1, and it can accurately measure multiple lncRNAs in both tumor cell lines and breast tissue samples, providing a powerful paradigm for biomedical research and early clinic diagnostics.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , DNA Catalítico , Corantes Fluorescentes , RNA Longo não Codificante , DNA Catalítico/química , DNA Catalítico/metabolismo , RNA Longo não Codificante/análise , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/genética , Humanos , Aptâmeros de Nucleotídeos/química , Corantes Fluorescentes/química , Limite de Detecção , Fluorescência
18.
Anal Chem ; 96(28): 11205-11215, 2024 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-38967035

RESUMO

Lipid nanoparticles (LNPs) are emerging as one of the most promising drug delivery systems. The long-circulating effect of intact LNPs (i-LNPs) is the key to efficacy and toxicity in vivo. However, the significant challenge is specific and sensitive detection of i-LNPs. Herein, a dual-recognition fluorescence enzyme-linked immunosorbent assay (DR-FELISA) was developed to directly isolate and detect i-LNPs by combining dual-recognition separation with a one-step signal amplification strategy. The microplates captured and enriched i-LNPs through antibody-antigen reaction. Dual-chol probes were spontaneously introduced into the lipid bilayer of captured i-LNPs, converting the detection of i-LNPs into the detection of double-cholesterol probes. Finally, the end of the dual-chol probes initiated the localized scaffolding autocatalytic DNA circuits (SADC) system for further signal amplification. The SADC system provides a sensitive and efficient amplifier through localized network structures and self-assembled triggers. Simultaneous recognition of i-LNPs surface PEG-lipid and lipid bilayer structures significantly eliminates interference from biological samples. i-LNPs were detected with high selectivity, ranging from 0.2 to 1.25 mg/mL with a limit of detection of 0.1 mg/mL. Moreover, this method allows the isolation and quantitative analysis of different formulations of i-LNPs in serum samples with a satisfactory recovery rate ranging from 94.8 to 116.3%. Thus, the DR-FELISA method provides an advanced platform for the exclusive and sensitive detection of i-LNPs, providing new insights for the study of the quality and intracorporal process of complex formulations.


Assuntos
Ensaio de Imunoadsorção Enzimática , Ensaio de Imunoadsorção Enzimática/métodos , DNA Catalítico/química , DNA Catalítico/metabolismo , Nanopartículas/química , Técnicas de Amplificação de Ácido Nucleico/métodos , Humanos , Corantes Fluorescentes/química , Estudos de Viabilidade
19.
Anal Chem ; 96(29): 11951-11958, 2024 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-38990770

RESUMO

DNAzyme-based assays have found extensive utility in pathogenic bacteria detection but often suffer from limited sensitivity and specificity. The integration of a signal amplification strategy could address this challenge, while the existing combination methods require extensive modification to accommodate various DNAzymes, limiting the wide-spectrum bacteria detection. We introduced a novel hook-like DNAzyme-activated autocatalytic nucleic acid circuit for universal pathogenic bacteria detection. The hook-like connector DNA was employed to seamlessly integrate the recognition element DNAzyme with the isothermal enzyme-free autocatalytic hybridization chain reaction and catalytic hairpin assembly for robust exponential signal amplification. This innovative autocatalytic circuit substantially amplifies the output signals from the DNAzyme recognition module, effectively overcoming DNAzyme's inherent sensitivity constraints in pathogen identification. The biosensor exhibits a strong linear response within a range of 1.5 × 103 to 3.7 × 107 CFU/mL, achieving a detection limit of 1.3 × 103 CFU/mL. Noted that the sensor's adaptability as a universal detection platform is established by simply modifying the hook-like connector module, enabling the detection of various pathogenic bacteria of considerable public health importance reported by the World Health Organization, including Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, and Salmonella typhimurium. Additionally, the specificity of DNAzyme in bacterial detection is markedly improved due to the signal amplification process of the autocatalytic circuit. This hook-like DNAzyme-activated autocatalytic platform presents a versatile, sensitive, and specific approach for pathogenic bacteria detection, promising to significantly expand the applications of DNAzyme in bacteria detection.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , DNA Catalítico/química , DNA Catalítico/metabolismo , Técnicas Biossensoriais/métodos , Bactérias/isolamento & purificação , Bactérias/genética , Limite de Detecção , Técnicas de Amplificação de Ácido Nucleico , Escherichia coli/isolamento & purificação , Escherichia coli/genética
20.
Anal Chem ; 96(29): 11780-11789, 2024 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-39001810

RESUMO

Heavy metal contamination in food and water is a major public health concern because heavy metals are toxic in minute amounts. DNAzyme sensors are emerging as a promising tool for rapid onsite detection of heavy metals, which can aid in minimizing exposure. However, DNAzyme activity toward its target metal is not absolute and has cross-reactivity with similar metals, which is a major challenge in the wide-scale application of DNAzyme sensors for environmental monitoring. To address this, we constructed a four DNAzyme array (17E, GR-5, EtNA, and NaA43) and used a pattern-based readout to improve sensor accuracy. We measured cross-reactivity between three metal cofactors (Pb2+, Ca2+, and Na+) and common interferents (Mg2+, Zn2+, Mn2+, UO22+, Li+, K+, and Ag+) and then used t-SNE analysis to identify and quantify the metal ion. We further showed that this method can be used for distinguishing mixtures of metals and detecting Pb2+ in environmental soil samples at micromolar concentrations.


Assuntos
DNA Catalítico , Metais Pesados , DNA Catalítico/química , DNA Catalítico/metabolismo , Metais Pesados/análise , Técnicas Biossensoriais/métodos , Monitoramento Ambiental/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA