Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(4): 410-413, 2024 Apr 15.
Artigo em Chinês | MEDLINE | ID: mdl-38660906

RESUMO

The first patient, a 10-year-old girl, presented with pancytopenia and recurrent epistaxis, along with a history of repeated upper respiratory infections, café-au-lait spots, and microcephaly. Genetic testing revealed compound heterozygous mutations in the DNA ligase IV (LIG4) gene, leading to a diagnosis of LIG4 syndrome. The second patient, a 6-year-old girl, was seen for persistent thrombocytopenia lasting over two years and was noted to have short stature, hyperpigmented skin, and hand malformations. She had a positive result from chromosome breakage test. She was diagnosed with Fanconi anemia complementation group A. Despite similar clinical presentations, the two children were diagnosed with different disorders, suggesting that children with hemocytopenia and malformations should not only be evaluated for hematological diseases but also be screened for other potential underlying conditions such as immune system disorders.


Assuntos
Anormalidades Múltiplas , Humanos , Feminino , Criança , Anormalidades Múltiplas/genética , Pancitopenia/etiologia , Pancitopenia/genética , DNA Ligase Dependente de ATP/genética , DNA Ligase Dependente de ATP/deficiência , Trombocitopenia/genética , Trombocitopenia/etiologia , Citopenia
2.
Nat Commun ; 15(1): 2156, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461154

RESUMO

This study establishes the physiological role of Fused in Sarcoma (FUS) in mitochondrial DNA (mtDNA) repair and highlights its implications to the pathogenesis of FUS-associated neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). Endogenous FUS interacts with and recruits mtDNA Ligase IIIα (mtLig3) to DNA damage sites within mitochondria, a relationship essential for maintaining mtDNA repair and integrity in healthy cells. Using ALS patient-derived FUS mutant cell lines, a transgenic mouse model, and human autopsy samples, we discovered that compromised FUS functionality hinders mtLig3's repair role, resulting in increased mtDNA damage and mutations. These alterations cause various manifestations of mitochondrial dysfunction, particularly under stress conditions relevant to disease pathology. Importantly, rectifying FUS mutations in patient-derived induced pluripotent cells (iPSCs) preserves mtDNA integrity. Similarly, targeted introduction of human DNA Ligase 1 restores repair mechanisms and mitochondrial activity in FUS mutant cells, suggesting a potential therapeutic approach. Our findings unveil FUS's critical role in mitochondrial health and mtDNA repair, offering valuable insights into the mechanisms underlying mitochondrial dysfunction in FUS-associated motor neuron disease.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Mitocondriais , Doença dos Neurônios Motores , Proteína FUS de Ligação a RNA , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , DNA Mitocondrial/genética , Ligases/metabolismo , Camundongos Transgênicos , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/metabolismo , Mutação , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , DNA Ligase Dependente de ATP/genética , DNA Ligase Dependente de ATP/metabolismo
3.
Nucleic Acids Res ; 52(7): 3810-3822, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38366780

RESUMO

Base excision repair (BER) involves the tightly coordinated function of DNA polymerase ß (polß) and DNA ligase I (LIG1) at the downstream steps. Our previous studies emphasize that defective substrate-product channeling, from gap filling by polß to nick sealing by LIG1, can lead to interruptions in repair pathway coordination. Yet, the molecular determinants that dictate accurate BER remains largely unknown. Here, we demonstrate that a lack of gap filling by polß leads to faulty repair events and the formation of deleterious DNA intermediates. We dissect how ribonucleotide challenge and cancer-associated mutations could adversely impact the ability of polß to efficiently fill the one nucleotide gap repair intermediate which subsequently results in gap ligation by LIG1, leading to the formation of single-nucleotide deletion products. Moreover, we demonstrate that LIG1 is not capable of discriminating against nick DNA containing a 3'-ribonucleotide, regardless of base-pairing potential or damage. Finally, AP-Endonuclease 1 (APE1) shows distinct substrate specificity for the exonuclease removal of 3'-mismatched bases and ribonucleotides from nick repair intermediate. Overall, our results reveal that unfilled gaps result in impaired coordination between polß and LIG1, defining a possible type of mutagenic event at the downstream steps where APE1 could provide a proofreading role to maintain BER efficiency.


Assuntos
DNA Ligase Dependente de ATP , DNA Polimerase beta , Reparo do DNA , DNA Polimerase beta/metabolismo , DNA Polimerase beta/genética , DNA Ligase Dependente de ATP/metabolismo , DNA Ligase Dependente de ATP/genética , Humanos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA/metabolismo , DNA/genética , Dano ao DNA , DNA Ligases/metabolismo , DNA Ligases/genética , Reparo por Excisão
4.
Eur J Hum Genet ; 32(5): 545-549, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38351293

RESUMO

Severe ventriculomegaly is a rare congenital brain defect, usually detected in utero, of poor neurodevelopmental prognosis. This ventricular enlargement can be the consequence of different mechanisms: either by a disruption of the cerebrospinal fluid circulation or abnormalities of its production/absorption. The aqueduct stenosis is one of the most frequent causes of obstructive ventriculomegaly, however, fewer than 10 genes have been linked to this condition and molecular bases remain often unknown. We report here 4 fetuses from 2 unrelated families presenting with ventriculomegaly at prenatal ultra-sonography as well as an aqueduct stenosis and skeletal abnormalities as revealed by fetal autopsy. Genome sequencing identified biallelic pathogenic variations in LIG4, a DNA-repair gene responsible for the LIG4 syndrome which associates a wide range of clinical manifestations including developmental delay, microcephaly, short stature, radiation hypersensitivity and immunodeficiency. Thus, not only this report expands the phenotype spectrum of LIG4-related disorders, adding ventriculomegaly due to aqueduct stenosis, but we also provide the first neuropathological description of fetuses carrying LIG4 pathogenic biallelic variations.


Assuntos
DNA Ligase Dependente de ATP , Hidrocefalia , Fenótipo , Humanos , Feminino , Hidrocefalia/genética , Hidrocefalia/patologia , Hidrocefalia/diagnóstico por imagem , Masculino , DNA Ligase Dependente de ATP/genética , Aqueduto do Mesencéfalo/patologia , Aqueduto do Mesencéfalo/anormalidades , Aqueduto do Mesencéfalo/diagnóstico por imagem , Feto/patologia , Gravidez , Mutação , Adulto , Constrição Patológica/genética , Constrição Patológica/patologia
5.
BMC Microbiol ; 24(1): 29, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245708

RESUMO

BACKGROUND: The ATP-dependent DNA ligase Lig E is present as an accessory DNA ligase in numerous proteobacterial genomes, including many disease-causing species. Here we have constructed a genomic Lig E knock-out in the obligate human pathogen Neisseria gonorrhoeae and characterised its growth and infection phenotype. RESULTS: This demonstrates that N. gonorrhoeae Lig E is a non-essential gene and its deletion does not cause defects in replication or survival of DNA-damaging stressors. Knock-out strains were partially defective in biofilm formation on an artificial surface as well as adhesion to epithelial cells. In addition to in vivo characterisation, we have recombinantly expressed and assayed N. gonorrhoeae Lig E and determined the crystal structure of the enzyme-adenylate engaged with DNA substrate in an open non-catalytic conformation. CONCLUSIONS: These findings, coupled with the predicted extracellular/ periplasmic location of Lig E indicates a role in extracellular DNA joining as well as providing insight into the binding dynamics of these minimal DNA ligases.


Assuntos
DNA Ligases , Neisseria gonorrhoeae , Humanos , DNA Ligase Dependente de ATP/genética , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/metabolismo , DNA Ligases/genética , DNA Ligases/química , DNA Ligases/metabolismo , DNA , Biofilmes
6.
J Mol Biol ; 436(1): 168276, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37714297

RESUMO

The joining of breaks in the DNA phosphodiester backbone is essential for genome integrity. Breaks are generated during normal processes such as DNA replication, cytosine demethylation during differentiation, gene rearrangement in the immune system and germ cell development. In addition, they are generated either directly by a DNA damaging agent or indirectly due to damage excision during repair. Breaks are joined by a DNA ligase that catalyzes phosphodiester bond formation at DNA nicks with 3' hydroxyl and 5' phosphate termini. Three human genes encode ATP-dependent DNA ligases. These enzymes have a conserved catalytic core consisting of three subdomains that encircle nicked duplex DNA during ligation. The DNA ligases are targeted to different nuclear DNA transactions by specific protein-protein interactions. Both DNA ligase IIIα and DNA ligase IV form stable complexes with DNA repair proteins, XRCC1 and XRCC4, respectively. There is functional redundancy between DNA ligase I and DNA ligase IIIα in DNA replication, excision repair and single-strand break repair. Although DNA ligase IV is a core component of the major double-strand break repair pathway, non-homologous end joining, the other enzymes participate in minor, alternative double-strand break repair pathways. In contrast to the nucleus, only DNA ligase IIIα is present in mitochondria and is essential for maintaining the mitochondrial genome. Human immunodeficiency syndromes caused by mutations in either LIG1 or LIG4 have been described. Preclinical studies with DNA ligase inhibitors have identified potentially targetable abnormalities in cancer cells and evidence that DNA ligases are potential targets for cancer therapy.


Assuntos
DNA Ligases , Reparo do DNA , DNA , Animais , Humanos , DNA/genética , DNA/metabolismo , Dano ao DNA , DNA Ligase Dependente de ATP/genética , DNA Ligases/genética , DNA Ligases/metabolismo , Replicação do DNA , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo
7.
Nat Commun ; 14(1): 7638, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993452

RESUMO

Bdelloid rotifers are part of the restricted circle of multicellular animals that can withstand a wide range of genotoxic stresses at any stage of their life cycle. In this study, bdelloid rotifer Adineta vaga is used as a model to decipher the molecular basis of their extreme tolerance. Proteomic analysis shows that a specific DNA ligase, different from those usually involved in DNA repair in eukaryotes, is strongly over-represented upon ionizing radiation. A phylogenetic analysis reveals its orthology to prokaryotic DNA ligase E, and its horizontal acquisition by bdelloid rotifers and plausibly other eukaryotes. The fungus Mortierella verticillata, having a single copy of this DNA Ligase E homolog, also exhibits an increased radiation tolerance with an over-expression of this DNA ligase E following X-ray exposure. We also provide evidence that A. vaga ligase E is a major contributor of DNA breaks ligation activity, which is a common step of all important DNA repair pathways. Consistently, its heterologous expression in human cell lines significantly improves their radio-tolerance. Overall, this study highlights the potential of horizontal gene transfers in eukaryotes, and their contribution to the adaptation to extreme conditions.


Assuntos
Eucariotos , Rotíferos , Animais , Humanos , Eucariotos/genética , Filogenia , DNA Ligases/genética , DNA Ligases/metabolismo , Ligases/metabolismo , Proteômica , Rotíferos/genética , Dano ao DNA , DNA Ligase Dependente de ATP/genética , DNA Ligase Dependente de ATP/metabolismo
8.
Genomics ; 115(6): 110731, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37871849

RESUMO

Ligase IV is a key enzyme involved during DNA double-strand breaks (DSBs) repair through nonhomologous end joining (NHEJ). However, in contrast to Ligase IV deficient mouse cells, which are embryonic lethal, Ligase IV deficient human cells, including pre-B cells, are viable. Using CRISPR-Cas9 mediated genome editing, we have generated six different LIG4 mutants in cervical cancer and normal kidney epithelial cell lines. While the LIG4 mutant cells showed a significant reduction in NHEJ, joining mediated through microhomology-mediated end joining (MMEJ) and homologous recombination (HR) were significantly high. The reduced NHEJ joining activity was restored by adding purified Ligase IV/XRCC4. Accumulation of DSBs and reduced cell viability were observed in LIG4 mutant cells. LIG4 mutant cells exhibited enhanced sensitivity towards DSB-inducing agents such as ionizing radiation (IR) and etoposide. More importantly, the LIG4 mutant of cervical cancer cells showed increased sensitivity towards FDA approved drugs such as Carboplatin, Cisplatin, Paclitaxel, Doxorubicin, and Bleomycin used for cervical cancer treatment. These drugs, in combination with IR showed enhanced cancer cell death in the background of LIG4 gene mutation. Thus, our study reveals that mutation in LIG4 results in compromised NHEJ, leading to sensitization of cervical cancer cells towards currently used cancer therapeutics.


Assuntos
DNA Ligase Dependente de ATP , Neoplasias do Colo do Útero , Animais , Feminino , Humanos , Camundongos , Dano ao DNA/genética , Reparo do DNA por Junção de Extremidades , DNA Ligase Dependente de ATP/genética , DNA Ligase Dependente de ATP/metabolismo , DNA Ligases/genética , DNA Ligases/metabolismo , Reparo do DNA/genética , Ligases/genética , Ligases/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo
9.
Anticancer Res ; 43(8): 3447-3453, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37500161

RESUMO

BACKGROUND/AIM: Impaired non-homologous end-joining DNA repair capacity may have a significant role in maintaining genome integrity and triggering carcinogenesis. However, the specific impact of DNA ligase 4 (Lig4) genotypes remains unclear. This study aimed to assess the contribution of Lig4 genotypes to the risk of developing lung cancer. MATERIALS AND METHODS: Polymerase chain reaction-restriction fragment length polymorphism analysis was used to examine the genotypes of Lig4 rs1805388, and their association with lung cancer risk was evaluated in a case-control study consisting of 358 lung cancer cases and 716 age- and sex-matched cancer-free control subjects. RESULTS: The distribution of CC, CT, and TT genotypes for Lig4 rs1805388 among the cases was 45.0%, 41.6%, and 13.4%, respectively, compared to 58.0%, 36.3%, and 5.7% among the controls (p for trend=1.98×10-6). Allelic analysis indicated that individuals carrying the T-allele for Lig4 rs1805388 had a 1.66-fold higher risk of developing lung cancer compared to those carrying the wild-type C-allele [95% confidence interval (CI)=1.36-2.02, p=4.04×10-7]. Moreover, a significant interaction was observed between the Lig4 rs1805388 genotype and smoking status (p=1.32×10-7). CONCLUSION: These findings suggest that the CT and TT variant genotypes of Lig4 rs1805388, combined with cigarette smoking, may contribute to a higher risk of developing lung cancer.


Assuntos
DNA Ligase Dependente de ATP , Predisposição Genética para Doença , Neoplasias Pulmonares , Humanos , Estudos de Casos e Controles , Genótipo , Neoplasias Pulmonares/genética , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Taiwan , DNA Ligase Dependente de ATP/genética
10.
Plant J ; 116(1): 58-68, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37340932

RESUMO

Non-homologous end joining (NHEJ) plays a major role in repairing DNA double-strand breaks and is key to genome stability and editing. The minimal core NHEJ proteins, namely Ku70, Ku80, DNA ligase IV and XRCC4, are conserved, but other factors vary in different eukaryote groups. In plants, the only known NHEJ proteins are the core factors, while the molecular mechanism of plant NHEJ remains unclear. Here, we report a previously unidentified plant ortholog of PAXX, the crystal structure of which showed a similar fold to human 'PAXX'. However, plant PAXX has similar molecular functions to human XLF, by directly interacting with Ku70/80 and XRCC4. This suggests that plant PAXX combines the roles of mammalian PAXX and XLF and that these functions merged into a single protein during evolution. This is consistent with a redundant function of PAXX and XLF in mammals.


Assuntos
Reparo do DNA por Junção de Extremidades , Enzimas Reparadoras do DNA , Animais , Humanos , DNA Ligase Dependente de ATP/genética , DNA Ligase Dependente de ATP/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , DNA , Mamíferos/genética , Mamíferos/metabolismo
12.
J Allergy Clin Immunol ; 152(2): 500-516, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37004747

RESUMO

BACKGROUND: Biallelic mutations in LIG4 encoding DNA-ligase 4 cause a rare immunodeficiency syndrome manifesting as infant-onset life-threatening and/or opportunistic infections, skeletal malformations, radiosensitivity and neoplasia. LIG4 is pivotal during DNA repair and during V(D)J recombination as it performs the final DNA-break sealing step. OBJECTIVES: This study explored whether monoallelic LIG4 missense mutations may underlie immunodeficiency and autoimmunity with autosomal dominant inheritance. METHODS: Extensive flow-cytometric immune-phenotyping was performed. Rare variants of immune system genes were analyzed by whole exome sequencing. DNA repair functionality and T-cell-intrinsic DNA damage tolerance was tested with an ensemble of in vitro and in silico tools. Antigen-receptor diversity and autoimmune features were characterized by high-throughput sequencing and autoantibody arrays. Reconstitution of wild-type versus mutant LIG4 were performed in LIG4 knockout Jurkat T cells, and DNA damage tolerance was subsequently assessed. RESULTS: A novel heterozygous LIG4 loss-of-function mutation (p.R580Q), associated with a dominantly inherited familial immune-dysregulation consisting of autoimmune cytopenias, and in the index patient with lymphoproliferation, agammaglobulinemia, and adaptive immune cell infiltration into nonlymphoid organs. Immunophenotyping revealed reduced naive CD4+ T cells and low TCR-Vα7.2+ T cells, while T-/B-cell receptor repertoires showed only mild alterations. Cohort screening identified 2 other nonrelated patients with the monoallelic LIG4 mutation p.A842D recapitulating clinical and immune-phenotypic dysregulations observed in the index family and displaying T-cell-intrinsic DNA damage intolerance. Reconstitution experiments and molecular dynamics simulations categorize both missense mutations as loss-of-function and haploinsufficient. CONCLUSIONS: This study provides evidence that certain monoallelic LIG4 mutations may cause human immune dysregulation via haploinsufficiency.


Assuntos
DNA Ligases , Síndromes de Imunodeficiência , Humanos , DNA Ligases/genética , Autoimunidade/genética , Haploinsuficiência , DNA Ligase Dependente de ATP/genética , Síndromes de Imunodeficiência/genética , Mutação , DNA
13.
Basic Clin Pharmacol Toxicol ; 132(6): 521-531, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36988399

RESUMO

Adverse effects are the major limiting factors in combinatorial chemotherapies. To identify genetic associations in ovarian cancer chemotherapy-induced toxicities and therapy outcomes, we examined a cohort of 101 patients receiving carboplatin-paclitaxel treatment with advanced high-grade serous ovarian cancers. Based on literature and database searches, we selected 19 candidate polymorphisms, designed a multiplex single nucleotide polymorphism-genotyping assay and applied Cox regression analysis, case-control association statistics and the log-rank Mantel-Cox test. In the Cox regression analysis, the SLCO1B3 rs1052536 AA-genotype was associated with a reduced risk of any severe toxicity (hazard ratio = 0.35, p = 0.023). In chi-square allelic test, the LIG3 rs1052536 T-allele was associated with an increased risk of neuropathy (odds ratio [OR] = 2.79, p = 0.031) and GSTP1 rs1695 G allele with a poorer response in the first-line chemotherapy (OR = 2.65, p = 0.026). In Kaplan-Meier survival analysis, ABCB1 rs2032582 TT-genotype was associated with shorter overall survival (uncorrected p = 0.025) and OPRM1 rs544093 GG and GT genotypes with shorter platinum-free interval (uncorrected p = 0.027) and progression-free survival (uncorrected p = 0.012). Results suggest that SLCO1B3 and LIG3 variants are associated with the risk of adverse effects in patients receiving carboplatin-paclitaxel treatment, the GSTP1 variant may affect the treatment response and ABCB1 and OPRM1 variants may influence the prognosis.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Carboplatina/efeitos adversos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Paclitaxel/efeitos adversos , Polimorfismo de Nucleotídeo Único , Genótipo , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Glutationa S-Transferase pi/genética , Receptores Opioides mu/genética , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/genética , DNA Ligase Dependente de ATP/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética
14.
Sci Rep ; 13(1): 4363, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36928068

RESUMO

DNA ligase I (LigI), the predominant enzyme that joins Okazaki fragments, interacts with PCNA and Pol δ. LigI also interacts with UHRF1, linking Okazaki fragment joining with DNA maintenance methylation. Okazaki fragments can also be joined by a relatively poorly characterized DNA ligase IIIα (LigIIIα)-dependent backup pathway. Here we examined the effect of LigI-deficiency on proteins at the replication fork. Notably, LigI-deficiency did not alter the kinetics of association of the PCNA clamp, the leading strand polymerase Pol ε, DNA maintenance methylation proteins and core histones with newly synthesized DNA. While the absence of major changes in replication and methylation proteins is consistent with the similar proliferation rate and DNA methylation levels of the LIG1 null cells compared with the parental cells, the increased levels of LigIIIα/XRCC1 and Pol δ at the replication fork and in bulk chromatin indicate that there are subtle replication defects in the absence of LigI. Interestingly, the non-replicative histone H1 variant, H1.0, is enriched in the chromatin of LigI-deficient mouse CH12F3 and human 46BR.1G1 cells. This alteration was not corrected by expression of wild type LigI, suggesting that it is a relatively stable epigenetic change that may contribute to the immunodeficiencies linked with inherited LigI-deficiency syndrome.


Assuntos
DNA Ligase Dependente de ATP , Replicação do DNA , Histonas , Antígeno Nuclear de Célula em Proliferação , Animais , Humanos , Camundongos , Cromatina/genética , DNA/metabolismo , DNA Ligase Dependente de ATP/genética , DNA Ligase Dependente de ATP/metabolismo , DNA Ligases/genética , DNA Ligases/metabolismo , DNA Polimerase III/genética , Histonas/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo
15.
Nucleic Acids Res ; 51(2): 796-805, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36625284

RESUMO

Double-strand DNA breaks (DSBs) are toxic to cells, and improper repair can cause chromosomal abnormalities that initiate and drive cancer progression. DNA ligases III and IV (LIG3, LIG4) have long been credited for repair of DSBs in mammals, but recent evidence suggests that DNA ligase I (LIG1) has intrinsic end-joining (EJ) activity that can compensate for their loss. To test this model, we employed in vitro biochemical assays to compare EJ by LIG1 and LIG3. The ligases join blunt-end and 3'-overhang-containing DNA substrates with similar catalytic efficiency, but LIG1 joins 5'-overhang-containing DNA substrates ∼20-fold less efficiently than LIG3 under optimal conditions. LIG1-catalyzed EJ is compromised at a physiological concentration of Mg2+, but its activity is restored by increased molecular crowding. In contrast to LIG1, LIG3 efficiently catalyzes EJ reactions at a physiological concentration of Mg2+ with or without molecular crowding. Under all tested conditions, LIG3 has greater affinity than LIG1 for DNA ends. Remarkably, LIG3 can ligate both strands of a DSB during a single binding encounter. The weaker DNA binding affinity of LIG1 causes significant abortive ligation that is sensitive to molecular crowding and DNA terminal structure. These results provide new insights into mechanisms of alternative nonhomologous EJ.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Ligase Dependente de ATP , Reparo do DNA , Animais , Humanos , Reparo do DNA por Junção de Extremidades , DNA Ligase Dependente de ATP/genética , DNA Ligase Dependente de ATP/metabolismo , Magnésio , Mamíferos/metabolismo
16.
Nat Commun ; 13(1): 7833, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539424

RESUMO

During lagging strand synthesis, DNA Ligase 1 (Lig1) cooperates with the sliding clamp PCNA to seal the nicks between Okazaki fragments generated by Pol δ and Flap endonuclease 1 (FEN1). We present several cryo-EM structures combined with functional assays, showing that human Lig1 recruits PCNA to nicked DNA using two PCNA-interacting motifs (PIPs) located at its disordered N-terminus (PIPN-term) and DNA binding domain (PIPDBD). Once Lig1 and PCNA assemble as two-stack rings encircling DNA, PIPN-term is released from PCNA and only PIPDBD is required for ligation to facilitate the substrate handoff from FEN1. Consistently, we observed that PCNA forms a defined complex with FEN1 and nicked DNA, and it recruits Lig1 to an unoccupied monomer creating a toolbelt that drives the transfer of DNA to Lig1. Collectively, our results provide a structural model on how PCNA regulates FEN1 and Lig1 during Okazaki fragments maturation.


Assuntos
DNA Polimerase III , Replicação do DNA , Humanos , Antígeno Nuclear de Célula em Proliferação/metabolismo , DNA Polimerase III/metabolismo , Ligases/metabolismo , DNA/metabolismo , Endonucleases Flap/metabolismo , DNA Ligase Dependente de ATP/genética , DNA Ligase Dependente de ATP/metabolismo
17.
Front Immunol ; 13: 1033338, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341401

RESUMO

DNA ligase I deficiency is an extremely rare primary immunodeficiency with only 6 patients reported in the literature. Most common manifestations include radiosensitivity, macrocytic anemia, lymphopenia with an increased percentage of gamma-delta T cells, and hypogammaglobulinemia requiring replacement therapy. Two-month-old girl with delayed development, T-B-NK+ SCID, and macrocytic anemia presented features of Omenn syndrome. Whole exome sequencing revealed two novel, heterozygous variants (c.2312 G>A, p.Arg771Gly and c.776+5G>T, p.Pro260*) in the LIG1 gene (NM_000234.1). Hematopoietic stem cell transplantation from a fully matched unrelated donor was performed at the age of 4 months using GEFA03 protocol. Mixed donor-recipient chimerism was observed, with 60-70% chimerism in the mononucleated cell compartment and over 90% in T-lymphocyte compartment, but autologous myeloid recovery. Stable CD4+ and CD8+ T-cell counts above 200/µL were achieved after 2 months, but the patient remained transfusion-dependent. Despite satisfactory immunological reconstitution, the second transplantation due to constitutional hemolytic defect has been considered. In light of possible re-transplantation, an issue of optimal conditioning protocol with sufficient myeloid engraftment is important. For the first time Omenn syndrome is described in a compound heterozygote carrying two the novel variants p.Arg771Gly and p.Pro260* in the LIG1 gene. Patients diagnosed with SCID and Omenn syndrome showing macrocytic anemia, should be screened for DNA ligase I deficiency.


Assuntos
Anemia Macrocítica , Transplante de Células-Tronco Hematopoéticas , Imunodeficiência Combinada Severa , Feminino , Humanos , Lactente , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , DNA Ligase Dependente de ATP/genética , Transplante de Células-Tronco Hematopoéticas/métodos , Quimerismo
18.
BMC Pediatr ; 22(1): 588, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36221079

RESUMO

BACKGROUND: Ligase IV (LIG4) dificiency is a very rare clinical syndrome with around 50 cases reported to date. This syndrome is caused by biallelic pathogenic variants in the LIG4 gene, which cause DNA damage repair disorders, mainly manifesting as severe immunodeficiency. CASE PRESENTATION: We report the case of a 15-month-old male child with pancytopenia, growth retardation, microcephaly, history of vaccine-related rubella, elevated immunoglobulin G, and decreased T- and B lymphocytes. Next-generation sequencing revealed LIG4 pathogenic genes and compound heterozygous mutations, namely the missense mutation c.833G > T (p.Arg278Leu) and deletion mutation c.1271_1275del (p.Lys424Argfs*20). CONCLUSION: This case suggests that LIG4 dificiency can manifest not only as immunodeficiency but also with increased serum IgG levels and pancytopenia, which constitutes an additional clinical phenotype. Furthermore, this case suggests that LIG4 deficiency should be considered upon differential diagnosis of myelodysplastic syndrome in children.


Assuntos
Síndromes de Imunodeficiência , Síndromes Mielodisplásicas , Pancitopenia , Vacinas , DNA Ligase Dependente de ATP/genética , DNA Ligases/genética , Humanos , Imunoglobulina G , Síndromes de Imunodeficiência/diagnóstico , Síndromes de Imunodeficiência/genética , Masculino , Mutação , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/genética , Pancitopenia/etiologia
19.
Nucleic Acids Res ; 50(19): 11058-11071, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36263813

RESUMO

DNA double strand breaks (DSBs) are induced by external genotoxic agents (ionizing radiation or genotoxins) or by internal processes (recombination intermediates in lymphocytes or by replication errors). The DNA ends induced by these genotoxic processes are often not ligatable, requiring potentially mutagenic end-processing to render ends compatible for ligation by non-homologous end-joining (NHEJ). Using single molecule approaches, Loparo et al. propose that NHEJ fidelity can be maintained by restricting end-processing to a ligation competent short-range NHEJ complex that 'maximizes the fidelity of DNA repair'. These in vitro studies show that although this short-range NHEJ complex requires DNA ligase IV (Lig4), its catalytic activity is dispensable. Here using cellular models, we show that inactive Lig4 robustly promotes DNA repair in living cells. Compared to repair products from wild-type cells, those isolated from cells with inactive Lig4 show a somewhat increased fraction that utilize micro-homology (MH) at the joining site consistent with alternative end-joining (a-EJ). But unlike a-EJ in the absence of NHEJ, a large percentage of joints isolated from cells with inactive Lig4 occur with no MH - thus, clearly distinct from a-EJ. Finally, biochemical assays demonstrate that the inactive Lig4 complex promotes the activity of DNA ligase III (Lig3).


Assuntos
Reparo do DNA por Junção de Extremidades , Reparo do DNA , DNA/genética , Quebras de DNA de Cadeia Dupla , DNA Ligase Dependente de ATP/genética , DNA Ligases/genética , DNA Ligases/metabolismo , Biocatálise
20.
Asian Pac J Cancer Prev ; 23(10): 3577-3585, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36308385

RESUMO

BACKGROUND: ATM; XRCC6 and LIG4 genes play an important role in repairing the double-strand DNA breaks and maintaining the genome stability. Single nucleotide polymorphisms (SNPs) in these genes could affect these genes expression and function. The aim of this study was to address the effect of SNP of the DNA repairing genes on corresponding  gene expression as well as AML patient's outcome. SUBJECTS AND METHODS: This is cross sectional study included 95 newly diagnosed AML patients. For all subjects included in our study SNPs  and expression of ATM (rs189037G>A), XRCC6 (rs2267437C>G) and LIG4 (rs1805388C>T) genes were evaluated by RFLP and real time PCR. RESULTS: The following SNPs in ATM (AA); XRCC6 (GG); and LIG4 (TT) are associated with down regulation of the corresponding genes (P<0.001). The lower expression of ATM and LIG4 genes are associated with shorter OS and DFS. Cox regression multivariate analysis revealed that lower expression of ATM HR : 2.02 (CI: 1.12-3.64; p=0.020. CONCLUSION: The following SNPs of ATM (AA); XRCC6 (GG); and LIG4 (TT) are associated with down regulation of corresponding genes expression. ATM and XRCC6 lower expression are predictors of OS while ATM is predictor of DFS and could be used for optimizing the AML therapy.


Assuntos
Leucemia Mieloide Aguda , Polimorfismo de Nucleotídeo Único , Humanos , DNA Ligase Dependente de ATP/genética , Estudos Transversais , Leucemia Mieloide Aguda/genética , Reparo do DNA/genética , Predisposição Genética para Doença , Genótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA