Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
J Vis Exp ; (209)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39037258

RESUMO

The availability of a range of modified synthetic oligonucleotides from commercial vendors has allowed the development of sophisticated assays to characterize diverse properties of nucleic acid metabolizing enzymes that can be run in any standard molecular biology lab. The use of fluorescent labels has made these methods accessible to researchers with standard PAGE electrophoresis equipment and a fluorescent-enabled imager, without using radioactive materials or requiring a lab designed for the storage and preparation of radioactive materials, i.e., a Hot Lab. The optional addition of standard modifications such as phosphorylation can simplify assay setup, while the specific incorporation of modified nucleotides that mimic DNA damages or intermediates can be used to probe specific aspects of enzyme behavior. Here, the design and execution of assays to interrogate several aspects of DNA processing by enzymes using commercially available synthetic oligonucleotides are demonstrated. These include the ability of ligases to join or nucleases to degrade different DNA and RNA hybrid structures, differential cofactor usage by the DNA ligase, and evaluation of the DNA-binding capacity of enzymes. Factors to consider when designing synthetic nucleotide substrates are discussed, and a basic set of oligonucleotides that can be used for a range of nucleic acid ligase, polymerase, and nuclease enzyme assays are provided.


Assuntos
Oligonucleotídeos , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , DNA/química , DNA/metabolismo , DNA Ligases/metabolismo , DNA Ligases/química , RNA/química , RNA/análise , RNA/metabolismo
2.
Anal Chem ; 96(32): 13285-13290, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39078708

RESUMO

Accurate detection of site-specific 5-hydroxymethylcytosine (5hmC) in genomic DNA is of great significance, but it is technically challenging to directly distinguish very low levels of 5hmC from their abundant cytosine/5-methylcytosine (C/5mC) analogues. Herein, we wish to propose a selective ligase-mediated mechanism (SLim) that can directly discriminate 5hmC from C/5mC with a high specificity without the use of any sample processing protocol. In this new design, we discovered that HiFi Taq DNA Ligase can well tolerate the mismatched 5hmC/A base-pairing and then effectively ligate the associated nicking site while the mismatched 5mC/A or C/A pairs cannot be recognized by HiFi Taq DNA Ligase, providing a new way for direct and selective discriminating 5hmC from its similar analogues. Ultrasensitive and selective quantification of site-specific 5hmC is realized by coupling the SLim with polymerase chain reaction (PCR) or loop-mediated isothermal amplification (LAMP).


Assuntos
5-Metilcitosina , DNA Ligases , DNA , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/análise , 5-Metilcitosina/química , DNA/química , DNA/análise , DNA Ligases/metabolismo , Técnicas de Amplificação de Ácido Nucleico/métodos , Humanos , Reação em Cadeia da Polimerase
3.
Org Biomol Chem ; 22(27): 5629-5635, 2024 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-38912549

RESUMO

8-oxoguanine (o8G), a prevalent oxidative modification in RNA induced by reactive oxygen species (ROS), plays a pivotal role in regulating RNA functions. Accurate detection and quantification of o8G modifications is critical to understanding their biological significance and potential as disease biomarkers, but effective detection methods remain limited. Here, we have developed a highly specific T3 DNA ligase-dependent qPCR assay that exploits the enzyme's ability to discriminate o8G from guanine (G) with single-nucleotide resolution. This method can detect o8G in RNA at levels as low as 500 fM, with an up to 18-fold higher selectivity for discriminating o8G from G. By simulating oxidative stress conditions in SH-SY5Y and HS683 cell lines treated with rotenone, we successfully identified site-specific o8G modifications in key miRNAs associated with neuroprotective responses, including miR-124, let-7a and miR-29a. The developed assay holds significant promise for the practical identification of o8G, facilitating its potential for detailed studies of o8G dynamics in various biological contexts and diseases.


Assuntos
Guanina , Guanina/análogos & derivados , Guanina/química , Guanina/metabolismo , Humanos , RNA/metabolismo , RNA/análise , MicroRNAs/análise , MicroRNAs/metabolismo , DNA Ligases/metabolismo , Linhagem Celular Tumoral , Estresse Oxidativo , Reação em Cadeia da Polimerase em Tempo Real
4.
Environ Mol Mutagen ; 65(3-4): 106-115, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38767089

RESUMO

As final process of every DNA repair pathway, DNA ligation is crucial for maintaining genomic stability and preventing DNA strand breaks to accumulate. Therefore, a method reliably assessing DNA ligation capacity in protein extracts from murine tissues was aimed to establish. To optimize applicability, the use of radioactively labeled substrates was avoided and replaced by fluorescently labeled oligonucleotides. Briefly, tissue extracts were incubated with those complementary oligonucleotides so that in an ensuing gel electrophoresis ligated strands could be separated from unconnected molecules. Originally, the method was intended for use in cerebellum tissue to further elucidate possible mechanisms of neurodegenerative diseases. However, due to its inhomogeneous anatomy, DNA ligation efficiency varied strongly between different cerebellar areas, illuminating the established assay to be suitable only for homogenous organs. Thus, for murine liver tissue sufficient intra- and interday repeatability was shown during validation. In further experiments, the established assay was applied to an animal study comprising young and old (24 and 110 weeks) mice which showed that DNA ligation efficiency was affected by neither sex nor age. Finally, the impact of in vitro addition of the trace elements copper, iron, and zinc on DNA ligation in tissue extracts was investigated. While all three metals inhibited DNA ligation, variations in their potency became evident. In conclusion, the established method can be reliably used for investigation of DNA ligation efficiency in homogenous murine tissues.


Assuntos
DNA , Animais , Camundongos , Masculino , Feminino , Fígado/metabolismo , Fígado/efeitos dos fármacos , Cerebelo/metabolismo , Camundongos Endogâmicos C57BL , DNA Ligases/metabolismo , Reparo do DNA
5.
Acta Biochim Biophys Sin (Shanghai) ; 56(6): 937-944, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38761011

RESUMO

Bacteriophages have been used across various fields, and the utilization of CRISPR/Cas-based genome editing technology can accelerate the research and applications of bacteriophages. However, some bacteriophages can escape from the cleavage of Cas protein, such as Cas9, and decrease the efficiency of genome editing. This study focuses on the bacteriophage T7, which is widely utilized but whose mechanism of evading the cleavage of CRISPR/Cas9 has not been elucidated. First, we test the escape rates of T7 phage at different cleavage sites, ranging from 10 -2 to 10 -5. The sequencing results show that DNA point mutations and microhomology-mediated end joining (MMEJ) at the target sites are the main causes. Next, we indicate the existence of the hotspot DNA region of MMEJ and successfully reduce MMEJ events by designing targeted sites that bypass the hotspot DNA region. Moreover, we also knock out the ATP-dependent DNA ligase 1. 3 gene, which may be involved in the MMEJ event, and the frequency of MMEJ at 4. 3 is reduced from 83% to 18%. Finally, the genome editing efficiency in T7 Δ 1. 3 increases from 20% to 100%. This study reveals the mechanism of T7 phage evasion from the cleavage of CRISPR/Cas9 and demonstrates that the special design of editing sites or the deletion of key gene 1. 3 can reduce MMEJ events and enhance gene editing efficiency. These findings will contribute to advancing CRISPR/Cas-based tools for efficient genome editing in phages and provide a theoretical foundation for the broader application of phages.


Assuntos
Bacteriófago T7 , Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , Bacteriófago T7/genética , DNA Ligases/genética , DNA Ligases/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Genoma Viral
6.
Adv Sci (Weinh) ; 11(25): e2401150, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38582512

RESUMO

The structural diversity of biological macromolecules in different environments contributes complexity to enzymological processes vital for cellular functions. Fluorescence resonance energy transfer and electron microscopy are used to investigate the enzymatic reaction of T4 DNA ligase catalyzing the ligation of nicked DNA. The data show that both the ligase-AMP complex and the ligase-AMP-DNA complex can have four conformations. This finding suggests the parallel occurrence of four ligation reaction pathways, each characterized by specific conformations of the ligase-AMP complex that persist in the ligase-AMP-DNA complex. Notably, these complexes have DNA bending angles of ≈0°, 20°, 60°, or 100°. The mechanism of parallel reactions challenges the conventional notion of simple sequential reaction steps occurring among multiple conformations. The results provide insights into the dynamic conformational changes and the versatile attributes of T4 DNA ligase and suggest that the parallel multiple reaction pathways may correspond to diverse T4 DNA ligase functions. This mechanism may potentially have evolved as an adaptive strategy across evolutionary history to navigate complex environments.


Assuntos
DNA Ligases , DNA , DNA Ligases/metabolismo , DNA/metabolismo , DNA/genética , DNA/química , Reparo do DNA , Transferência Ressonante de Energia de Fluorescência/métodos , Conformação de Ácido Nucleico , Bacteriófago T4/enzimologia , Bacteriófago T4/genética , Bacteriófago T4/metabolismo , Microscopia Eletrônica/métodos
7.
Biomol NMR Assign ; 18(1): 105-109, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38689205

RESUMO

The BRCA1 carboxyl-terminal (BRCT) domain, an evolutionarily conserved structural motif, is ubiquitous in a multitude of proteins spanning prokaryotic and eukaryotic organisms. In Mycobacterium tuberculosis (Mtb), BRCT domain plays a pivotal role in the catalytic activity of the NAD+-dependent DNA ligase (LigA). LigA is pivotal in DNA replication, catalyzing the formation of phosphodiester bonds in Okazaki fragments and repairing single-strand breaks in damaged DNA, essential for the survival of Mtb. Structural and functional aspects of LigA unveil its character as a highly modular protein, undergoing substantial conformational changes during its catalytic cycle. Although the BRCT domain of Mtb LigA plays an essential role in DNA binding and protein-protein interactions, the precise mechanism of action remains poorly understood. Unravelling the structure of the BRCT domain holds the promise of advancing our understanding of this pivotal domain. Additionally, it will facilitate further exploration of the protein-protein interactions and enhance our understanding of inter domain interactions within LigA, specifically between BRCT and the Adenylation domain. In this study, we demonstrate the overexpression of the BRCT domain of Mtb LigA and conduct its analysis using solution NMR spectroscopy, revealing a well-folded structure and we present the nearly complete chemical shift assignments of both backbone and sidechains. In addition, a secondary structure prediction by TALOS N predicts BRCT consisting of 3 α-helices and 4 ß-sheets, closely resembling the typical structural topology of most BRCT domains.


Assuntos
Mycobacterium tuberculosis , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Estrutura Secundária de Proteína , DNA Ligase Dependente de ATP/química , DNA Ligase Dependente de ATP/metabolismo , DNA Ligases/química , DNA Ligases/metabolismo
8.
Biotechnol J ; 19(3): e2300711, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38528369

RESUMO

DNA ligases catalyze bond formation in the backbone of nucleic acids via the formation of a phosphodiester bond between adjacent 5' phosphates and 3' hydroxyl groups on one strand of the duplex. While DNA ligases preferentially ligate single breaks in double-stranded DNA (dsDNA), they are capable of ligating a multitude of other nucleic acid substrates like blunt-ended dsDNA, TA overhangs, short overhangs and various DNA-RNA hybrids. Here we report a novel DNA ligase from Cronobacter phage CR 9 (R2D Ligase) with an unexpected DNA-to-RNA ligation activity. The R2D ligase shows excellent efficiency when ligating DNA to either end of RNA molecules using a DNA template. Furthermore, we show that DNA can be ligated simultaneously to both the 5' and 3' ends of microRNA-like molecules in a single reaction mixture. Abortive adenylated side product formation is suppressed at lower ATP concentrations and the ligase reaction reaches near completion when ligating RNA-to-DNA or DNA-to-RNA. The ligation of a DNA strand to the 5'-PO4 2- end of RNA is unique among the commercially available ligases and may facilitate novel workflows in microRNA analysis, RNA sequencing and the preparation of chimeric guide DNA-RNA for gene editing applications.


Assuntos
DNA Ligases , MicroRNAs , DNA Ligases/química , DNA Ligases/metabolismo , Ligases , DNA/genética , Sequência de Bases
9.
Chem Commun (Camb) ; 60(21): 2942-2945, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38374791

RESUMO

By forming a nick at the adenylation site instantaneously, nucleic acids are efficiently adenylated by T4 DNA ligase. The subsequent ligation is successfully suppressed in terms of rapid conversion of the instantaneous nick to a more stable gap. It is helpful to understand enzymatic ligation dynamics, and the adenylated products can be used for various practical applications.


Assuntos
Ligases , Oligonucleotídeos , Monofosfato de Adenosina , DNA Ligases
10.
Nucleic Acids Res ; 52(7): 3810-3822, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38366780

RESUMO

Base excision repair (BER) involves the tightly coordinated function of DNA polymerase ß (polß) and DNA ligase I (LIG1) at the downstream steps. Our previous studies emphasize that defective substrate-product channeling, from gap filling by polß to nick sealing by LIG1, can lead to interruptions in repair pathway coordination. Yet, the molecular determinants that dictate accurate BER remains largely unknown. Here, we demonstrate that a lack of gap filling by polß leads to faulty repair events and the formation of deleterious DNA intermediates. We dissect how ribonucleotide challenge and cancer-associated mutations could adversely impact the ability of polß to efficiently fill the one nucleotide gap repair intermediate which subsequently results in gap ligation by LIG1, leading to the formation of single-nucleotide deletion products. Moreover, we demonstrate that LIG1 is not capable of discriminating against nick DNA containing a 3'-ribonucleotide, regardless of base-pairing potential or damage. Finally, AP-Endonuclease 1 (APE1) shows distinct substrate specificity for the exonuclease removal of 3'-mismatched bases and ribonucleotides from nick repair intermediate. Overall, our results reveal that unfilled gaps result in impaired coordination between polß and LIG1, defining a possible type of mutagenic event at the downstream steps where APE1 could provide a proofreading role to maintain BER efficiency.


Assuntos
DNA Ligase Dependente de ATP , DNA Polimerase beta , Reparo do DNA , DNA Polimerase beta/metabolismo , DNA Polimerase beta/genética , DNA Ligase Dependente de ATP/metabolismo , DNA Ligase Dependente de ATP/genética , Humanos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA/metabolismo , DNA/genética , Dano ao DNA , DNA Ligases/metabolismo , DNA Ligases/genética , Reparo por Excisão
11.
Nat Commun ; 15(1): 1250, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341432

RESUMO

Nonhomologous end joining (NHEJ), the primary pathway of vertebrate DNA double-strand-break (DSB) repair, directly re-ligates broken DNA ends. Damaged DSB ends that cannot be immediately re-ligated are modified by NHEJ processing enzymes, including error-prone polymerases and nucleases, to enable ligation. However, DSB ends that are initially compatible for re-ligation are typically joined without end processing. As both ligation and end processing occur in the short-range (SR) synaptic complex that closely aligns DNA ends, it remains unclear how ligation of compatible ends is prioritized over end processing. In this study, we identify structural interactions of the NHEJ-specific DNA Ligase IV (Lig4) within the SR complex that prioritize ligation and promote NHEJ fidelity. Mutational analysis demonstrates that Lig4 must bind DNA ends to form the SR complex. Furthermore, single-molecule experiments show that a single Lig4 binds both DNA ends at the instant of SR synapsis. Thus, Lig4 is poised to ligate compatible ends upon initial formation of the SR complex before error-prone processing. Our results provide a molecular basis for the fidelity of NHEJ.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , DNA Ligase Dependente de ATP/metabolismo , Reparo do DNA , DNA Ligases/metabolismo , DNA/genética , DNA/metabolismo
12.
Analyst ; 149(4): 1050-1054, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38231135

RESUMO

We propose a mutant detection approach based on endonuclease IV and DNA ligase in combination with qPCR. The enzymes functioned cooperatively to facilitate PCR for low abundance DNA detection. We demonstrate that our approach can distinguish mutations as low as 0.01%, indicating the potential application of this strategy in early cancer diagnosis.


Assuntos
DNA , Ligases , Desoxirribonuclease IV (Fago T4-Induzido) , Mutação , DNA/genética , DNA/análise , DNA Ligases
13.
BMC Microbiol ; 24(1): 29, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245708

RESUMO

BACKGROUND: The ATP-dependent DNA ligase Lig E is present as an accessory DNA ligase in numerous proteobacterial genomes, including many disease-causing species. Here we have constructed a genomic Lig E knock-out in the obligate human pathogen Neisseria gonorrhoeae and characterised its growth and infection phenotype. RESULTS: This demonstrates that N. gonorrhoeae Lig E is a non-essential gene and its deletion does not cause defects in replication or survival of DNA-damaging stressors. Knock-out strains were partially defective in biofilm formation on an artificial surface as well as adhesion to epithelial cells. In addition to in vivo characterisation, we have recombinantly expressed and assayed N. gonorrhoeae Lig E and determined the crystal structure of the enzyme-adenylate engaged with DNA substrate in an open non-catalytic conformation. CONCLUSIONS: These findings, coupled with the predicted extracellular/ periplasmic location of Lig E indicates a role in extracellular DNA joining as well as providing insight into the binding dynamics of these minimal DNA ligases.


Assuntos
DNA Ligases , Neisseria gonorrhoeae , Humanos , DNA Ligase Dependente de ATP/genética , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/metabolismo , DNA Ligases/genética , DNA Ligases/química , DNA Ligases/metabolismo , DNA , Biofilmes
14.
Genet. mol. res. (Online) ; 2(4): 383-393, Dec. 2003.
Artigo em Inglês | LILACS | ID: lil-417591

RESUMO

Most organisms grow at temperatures from 20 to 50 degrees C, but some prokaryotes, including Archaea and Bacteria, are capable of withstanding higher temperatures, from 60 to >100 degrees C. Their biomolecules, especially proteins, must be sufficiently stable to function under these extreme conditions; however, the basis for thermostability remains elusive. We investigated the preferential usage of certain groupings of amino acids and codons in thermally adapted organisms, by comparative proteome analysis, using 28 complete genomes from 18 mesophiles (M), 4 thermophiles (T), and 6 hyperthermophiles (HT). Whenever the percent of glutamate (E) and lysine (K) increased in the HT proteomes, the percent of glutamine (Q) and histidine (H) decreased, so that the E + K/Q + H ratio was >4.5; it was <2.5 in the M proteomes, and 3.2 to 4.6 in T. The E + K/Q + H ratios for chaperonins, potentially thermostable proteins, were higher than their proteome ratios, whereas for DNA ligases, which are not necessarily thermostable, they followed the proteome ratios. Analysis of codon usage revealed that HT had more AGR codons for Arg than they did CGN codons, which were more common in mesophiles. The E + K/Q + H ratio may provide a useful marker for distinguishing HT, T and M prokaryotes, and the high percentage of the amino acid couple E + K, consistently associated with a low percentage of the pair Q + H, could contribute to protein thermostability. The preponderance of AGR codons for Arg is a signature of all HT so far analyzed. The E + K/Q + H ratio and the codon bias for Arg are apparently not related to phylogeny. HT members of the Bacteria show the same values as the HT members of the Archaea; the values for T organisms are related to their lifestyle (intermediate temperature) and not to their domain (Archaea) and the values for M are similar in Eukarya, Bacteria and Archaea


Assuntos
Aminoácidos/genética , Archaea/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento , Temperatura Alta , Adaptação Biológica , Archaea/química , Archaea/genética , Bactérias/química , Bactérias/genética , DNA Ligases/análise , DNA Ligases/genética , Proteínas de Bactérias/genética , Proteoma/análise , Proteoma/genética
16.
Biotecnol. apl ; 7(2): 204-12, mayo-ago. 1990. tab
Artigo em Espanhol | LILACS | ID: lil-97067

RESUMO

El procedimiento reportado por Davis et al., 1980. para purificar T4 ADN ligasa, ha sido modificado con el objetivo de obtener una preparación de la enzima virtualmente libre de exonucleasas. Se modificaron las condiciones de elución de las columnas de P11 e hidroxilapatita: en vez de eludir en un paso, en ambos se aplicó un gradiente lineal, de 300 a 800 mM de cloruro de sodio en la columna de P11 y de 0 a 800 mM en la de hidroxilapatita. Este procedimiento permitió la eliminación de nucleasas y la obtención de una preparación enzimática de gran calidad


Assuntos
DNA Ligases/isolamento & purificação , Exonucleases
17.
Rev. microbiol ; 13(2): 101-9, 1982.
Artigo em Inglês | LILACS | ID: lil-9900

RESUMO

Sistemas de reparo do DNA tem merecido atencao, principalmente devido ao papel que exercem em mutagenese e carcinogenese. Sao revistos fatos ja estabelecidos e avancos recentes, no assunto, com enfase nos eventos enzimaticos, envolvidos nas celulas bacterianas


Assuntos
DNA Ligases , Dímeros de Pirimidina , Reparo do DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA