Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Bioconjug Chem ; 34(1): 238-247, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36516871

RESUMO

As a counterpart to antibody-drug conjugates (ADCs), aptamer-drug conjugates (ApDCs) have been considered a promising strategy for targeted therapy due to the various benefits of aptamers. However, an aptamer merely serves as a targeting ligand in ApDCs, whereas the antibody enables the unexpected therapeutic efficacy of ADCs through antibody-dependent cellular cytotoxicity (ADCC). In this study, we developed a tumor-specific aptamer with an effector function and used it to confirm the feasibility of more potent ApDCs. First, we designed a nucleolin (NCL)-binding G-quadruplex (GQ) library based on the ability of NCL to bind to telomeric sequences. We then identified a bifunctional GQ aptamer (BGA) inhibiting the catalytic activity of topoisomerase 1 (TOP1) by forming an irreversible cleavage complex. Our BGA specifically targeted NCL-positive MCF-7 cells, exhibiting antiproliferative activity, and this suggested that tumor-specific therapeutic aptamers can be developed by using a biased library to screen aptamer candidates for functional targets. Finally, we utilized DM1, which has a synergistic interaction with TOP1 inhibitors, as a conjugated drug. BGA-DM1 exerted an anticancer effect 20-fold stronger than free DM1 and even 10-fold stronger than AS1411 (NCL aptamer)-DM1, highlighting our approach to develop synergistic ApDCs. Therefore, we anticipate that our library might be utilized for the identification of aptamers with effector functions. Furthermore, by employing such aptamers and appropriate drugs, synergistic ApDCs can be developed for targeted cancer therapy in a manner distinct from how ADCs exhibit additional therapeutic efficacy.


Assuntos
Aptâmeros de Nucleotídeos , DNA Topoisomerases Tipo I , Proteínas de Ligação a RNA , Humanos , Aptâmeros de Nucleotídeos/farmacologia , Aptâmeros de Nucleotídeos/metabolismo , Células MCF-7 , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , DNA Topoisomerases Tipo I/efeitos dos fármacos , DNA Topoisomerases Tipo I/metabolismo , Sinergismo Farmacológico , Nucleolina
2.
Nat Commun ; 13(1): 842, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35149673

RESUMO

In natural product discovery programs, the power of synthetic chemistry is often leveraged for the total synthesis and diversification of characterized metabolites. The synthesis of structures that are bioinformatically predicted to arise from uncharacterized biosynthetic gene clusters (BGCs) provides a means for synthetic chemistry to enter this process at an early stage. The recent identification of non-ribosomal peptides (NRPs) containing multiple ρ-aminobenzoic acids (PABAs) led us to search soil metagenomes for BGCs that polymerize PABA. Here, we use PABA-specific adenylation-domain sequences to guide the cloning of the lap BGC directly from soil. This BGC was predicted to encode a unique N-acylated PABA and thiazole containing structure. Chemical synthesis of this structure gave lapcin, a dual topoisomerase I/II inhibitor with nM to pM IC50s against diverse cancer cell lines. The discovery of lapcin highlights the power of coupling metagenomics, bioinformatics and total chemical synthesis to unlock the biosynthetic potential contained in even complex uncharacterized BGCs.


Assuntos
Produtos Biológicos/farmacologia , DNA Topoisomerases Tipo II/efeitos dos fármacos , DNA Topoisomerases Tipo I/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Metagenoma , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Vias Biossintéticas/genética , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Biologia Computacional , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Humanos , Metagenoma/genética , Metagenômica , Família Multigênica , Solo
3.
J Med Chem ; 64(24): 17572-17600, 2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-34879200

RESUMO

The discovery that certain indenoisoquinolines inhibit the religation reaction of DNA in the topoisomerase I-DNA-indenoisoquinoline ternary complex led to a structure-based drug design research program which resulted in three representatives that entered Phase I clinical trials in cancer patients at the National Cancer Institute. This has stimulated a great deal of interest in the design and execution of new synthetic pathways for indenoisoquinoline production. More recently, modulation of the substitution pattern and chemical nature of substituents on the indenoisoquinoline scaffold has resulted in a widening scope of additional biological targets, including RXR, PARP-1, MYC promoter G-quadruplex, topoisomerase II, estrogen receptor, VEGFR-2, HIF-1α, and tyrosyl DNA phosphodiesterases 1 and 2. Furthermore, convincing evidence has been advanced supporting the potential use of indenoisoquinolines for the treatment of diseases other than cancer. The rapidly expanding indenoisoquinoline knowledge base has provided a firm foundation for further advancements in indenoisoquinoline chemistry, pharmacology, and therapeutics.


Assuntos
Antineoplásicos/farmacologia , DNA Topoisomerases Tipo I/efeitos dos fármacos , Desenho de Fármacos , Isoquinolinas/química , Isoquinolinas/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Isoquinolinas/síntese química
4.
Arch Toxicol ; 95(12): 3787-3802, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34635930

RESUMO

Nevadensin, an abundant polyphenol of basil, is reported to reduce alkenylbenzene DNA adduct formation. Furthermore, it has a wide spectrum of further pharmacological properties. The presented study focuses the impact of nevadensin on topoisomerases (TOPO) in vitro. Considering the DNA-intercalating properties of flavonoids, first, minor groove binding properties (IC50 = 31.63 µM), as well as DNA intercalation (IC50 = 296.91 µM) of nevadensin, was found. To determine potential in vitro effects on TOPO I and TOPO IIα, the relaxation and decatenation assay was performed in a concentration range of 1-500 µM nevadensin. A partial inhibition was detected for TOPO I at concentrations  ≥ 100 µM, whereas TOPO IIα activity is only inhibited at concentrations  ≥ 250 µM. To clarify the mode of action, the isolating in vivo complex of enzyme assay was carried out using human colon carcinoma HT29 cells. After 1 h of incubation, the amount of TOPO I linked to DNA was significantly increased by nevadensin (500 µM), why nevadensin was characterized as TOPO I poison. However, no effects on TOPO IIα were detected in the cellular test system. As a subsequent cellular response to TOPO I poisoning, a highly significant increase of DNA damage after 2 h and a decrease of cell viability after 48 h at the same concentration range were found. Furthermore, after 24 h of incubation a G2/M arrest was observed at concentrations ≥ 100 µM by flow cytometry. The analysis of cell death revealed that nevadensin induces the intrinsic apoptotic pathway via activation of caspase-9 and caspase-3. The results suggest that cell cycle disruption and apoptotic events play key roles in the cellular response to TOPO I poisoning caused by nevadensin in HT29 cells.


Assuntos
Apoptose/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , DNA Topoisomerases Tipo I/efeitos dos fármacos , Flavonas/intoxicação , Ciclo Celular/efeitos dos fármacos , Neoplasias do Colo/enzimologia , DNA Topoisomerases Tipo II/efeitos dos fármacos , Relação Dose-Resposta a Droga , Flavonas/administração & dosagem , Células HT29 , Humanos , Concentração Inibidora 50 , Proteínas de Ligação a Poli-ADP-Ribose/efeitos dos fármacos , Fatores de Tempo
5.
Cell Rep ; 36(10): 109666, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34496254

RESUMO

Although axonal damage induces rapid changes in gene expression in primary sensory neurons, it remains unclear how this process is initiated. The transcription factor ATF3, one of the earliest genes responding to nerve injury, regulates expression of downstream genes that enable axon regeneration. By exploiting ATF3 reporter systems, we identify topoisomerase inhibitors as ATF3 inducers, including camptothecin. Camptothecin increases ATF3 expression and promotes neurite outgrowth in sensory neurons in vitro and enhances axonal regeneration after sciatic nerve crush in vivo. Given the action of topoisomerases in producing DNA breaks, we determine that they do occur immediately after nerve damage at the ATF3 gene locus in injured sensory neurons and are further increased after camptothecin exposure. Formation of DNA breaks in injured sensory neurons and enhancement of it pharmacologically may contribute to the initiation of those transcriptional changes required for peripheral nerve regeneration.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Axônios/metabolismo , Quebras de DNA/efeitos dos fármacos , DNA Topoisomerases Tipo I/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , DNA Topoisomerases Tipo I/efeitos dos fármacos , Expressão Gênica/fisiologia , Camundongos Endogâmicos C57BL , Regeneração Nervosa/efeitos dos fármacos , Regeneração Nervosa/fisiologia , Crescimento Neuronal/fisiologia , Nervo Isquiático/metabolismo
6.
Biomed Pharmacother ; 139: 111628, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33940508

RESUMO

Pinus kesiya Royle ex Gordon (PK), widely found in Southeast Asia, has been traditionally used for the treatment of several illnesses. Our previous studies showed that PK was highly cytotoxicity against liver cancer cells. The detailed mechanism of anticancer action of 50% hydro-ethanolic extract of PK's twig was, therefore, investigated in hepatocellular carcinoma HepG2 cells. Cytotoxicity of PK was determined by using NR assay, followed by determination of the mode of cell death by flow cytometry. The apoptosis-inducing effect was determined based on caspases activity, mitochondria membrane potential change, and expression of proteins related to apoptosis by western blot. The biomolecular alteration in the PK-treated HepG2 cells was investigated by FTIR microspectroscopy. Inhibition of topoisomerase I enzyme was determined by using DNA relaxation assay. Results showed that PK displayed high selective cytotoxicity and induced apoptosis against HepG2. FTIR microspectroscopy indicated that PK altered major biomolecules in HepG2 different from melphalan (a positive control), indicating a different mechanism of anticancer action. PK induced apoptotic cell death through the intrinsic pathway by increasing caspases 9 and 3/7 activity, increasing Bax, and decreasing Bcl-2 expression leading to mitochondrial membrane potential changes. PK also inhibited Top I and PARP activity that triggered an intrinsic apoptotic pathway. The phytochemical test presented terpenoids (i.e., α-pinene confirmed by GC-MS), alkaloids, steroids, xanthone, reducing sugar, and saponin. α-Pinene exhibited low cytotoxicity against HepG2, therefore, several terpene derivatives may work synergistically for inducing apoptosis. Our data demonstrated that PK has the potential for further study with chemotherapeutic purposes.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , DNA Topoisomerases Tipo I/efeitos dos fármacos , Pinus/química , Extratos Vegetais/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Caspases/metabolismo , DNA Topoisomerases Tipo I/genética , Células Hep G2 , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Expert Opin Ther Pat ; 31(6): 473-508, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33475439

RESUMO

INTRODUCTION: Topoisomerases are important targets for therapeutic improvement in the treatment of some diseases, including cancer. Inhibitors and poisons of topoisomerase I can limit the activity of this enzyme in its enzymatic cycle. This fact implies an anticancer effect of these drugs, since most cancer cells are characterized by both a higher activity of topoisomerase I and a higher replication rate compared to non-cancerous cells. Clinically approved inhibitors include camptothecin (CPT) and its derivatives. However, their limitations have encouraged different research groups to prepare new compounds, proof of which are the numerous research works and patents, some of them in the last five years. AREAS COVERED: This review covers patent literature on topoisomerase I inhibitors and their application published between 2016-present. EXPERT OPINION: The highest contribution toward patent development has been obtained from academics or small biotechnology companies. The most important fields of innovation include the preparation of prodrugs or inhibitors combined with other agents, as biocompatible polymers or antibodies. A promising development of topoisomerase I inhibitors is expected in the next years, directed to the treatment of diverse diseases, specifically toward different types of cancer and infectious diseases, among others.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Inibidores da Topoisomerase I/farmacologia , Animais , DNA Topoisomerases Tipo I/efeitos dos fármacos , DNA Topoisomerases Tipo I/metabolismo , Desenho de Fármacos , Desenvolvimento de Medicamentos , Humanos , Neoplasias/patologia , Patentes como Assunto
8.
PLoS Genet ; 16(10): e1009085, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33125364

RESUMO

DNA supercoiling is essential for all living cells because it controls all processes involving DNA. In bacteria, global DNA supercoiling results from the opposing activities of topoisomerase I, which relaxes DNA, and DNA gyrase, which compacts DNA. These enzymes are widely conserved, sharing >91% amino acid identity between the closely related species Escherichia coli and Salmonella enterica serovar Typhimurium. Why, then, do E. coli and Salmonella exhibit different DNA supercoiling when experiencing the same conditions? We now report that this surprising difference reflects disparate activation of their DNA gyrases by the polyamine spermidine and its precursor putrescine. In vitro, Salmonella DNA gyrase activity was sensitive to changes in putrescine concentration within the physiological range, whereas activity of the E. coli enzyme was not. In vivo, putrescine activated the Salmonella DNA gyrase and spermidine the E. coli enzyme. High extracellular Mg2+ decreased DNA supercoiling exclusively in Salmonella by reducing the putrescine concentration. Our results establish the basis for the differences in global DNA supercoiling between E. coli and Salmonella, define a signal transduction pathway regulating DNA supercoiling, and identify potential targets for antibacterial agents.


Assuntos
DNA Girase/genética , DNA Topoisomerases Tipo I/genética , DNA Super-Helicoidal/genética , Escherichia coli/genética , Salmonella typhimurium/genética , DNA Girase/efeitos dos fármacos , DNA Topoisomerases Tipo I/efeitos dos fármacos , DNA Super-Helicoidal/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Magnésio/farmacologia , Putrescina/farmacologia , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/enzimologia , Espermidina/biossíntese
9.
Bioorg Chem ; 103: 104162, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32890988

RESUMO

In this work, 2'-alkoxymethyl substituted klavuzon derivatives were prepared starting from 2-methyl-1-naphthoic acid in eight steps. Anticancer potencies of the synthesized compounds were evaluated by performing MTT cell viability test over cancerous and healthy pancreatic cell lines, along with CRM1 inhibitory properties in HeLa cells by immunostaining and Topo I inhibition properties by supercoiled DNA relaxation assay. Their cytotoxic activities were also presented in hepatocellular carcinoma cells (HuH-7) derived 3D spheroids. Among the tested klavuzon derivatives, isobutoxymethyl substituted klavuzon showed the highest selectivity of cytotoxic activity against pancreatic cancer cell line. They showed potent Topo I inhibition while their CRM1 inhibitory properties somehow diminished compared to 4'-alkylsubstituted klavuzons. The most cytotoxic 2'-methoxymethyl derivative inhibited the growth of the spheroids derived from HuH-7 cell lines and PI staining exhibited time and concentration dependent cell death in 3D spheroids.


Assuntos
DNA Topoisomerases Tipo I/efeitos dos fármacos , Carioferinas/efeitos dos fármacos , Naftalenos/química , Naftalenos/uso terapêutico , Neoplasias/tratamento farmacológico , Piranos/química , Piranos/uso terapêutico , Receptores Citoplasmáticos e Nucleares/efeitos dos fármacos , Humanos , Naftalenos/farmacologia , Piranos/farmacologia , Relação Estrutura-Atividade , Proteína Exportina 1
10.
Bioorg Chem ; 94: 103409, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31732194

RESUMO

In the quest to ameliorate the camptothecin (CPT) downsides, we expedite to search for stable non-CPT analogues among 11 motifs of pyrazoloquinazolines reported. E-pharmacophore drug design approach helped filtering out pyrazolo[1,5-c]quinazolines as Topoisomerase I (TopoI) 'interfacial' inhibitors. Three compounds, 3c, 3e, and 3l were shown to be potent non-intercalating inhibitors of TopoI specifically and showed cancer cell-specific cytotoxicity in lung, breast and colon cancer cell lines. The compounds induced cell cycle arrest at S-phase, mitochondrial cell death pathway and modulated oxidative stress in cancer cells. Furthermore, a preliminary study was conducted to explore the feasibility of these compounds to be developed as dual TopoI-HDAC1 (histone deacetylase 1) inhibitors (4a) to combat resistance. Compound 4a was found to possess dual inhibitory capabilities in-vitro. Cytotoxic potential of 4a was found to be significantly higher than parent compound in 2D as well as 3D cancer cell models. Probable binding modes of 4a with TopoI and HDAC1 active sites were examined by molecular modelling.


Assuntos
DNA Topoisomerases Tipo I/efeitos dos fármacos , Inibidores Enzimáticos/uso terapêutico , Histona Desacetilases/efeitos dos fármacos , Quinazolinas/uso terapêutico , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Quinazolinas/química
11.
Biomed Res Int ; 2019: 2514524, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31815127

RESUMO

A- and D-ring-modified luotonin-inspired heterocycles have been synthesized and were evaluated for their activity against the viability of four cancer cell lines in vitro, namely, MCF7, HCT116, JURKAT, and NCI-H460. The analysis of results indicated that two of the synthesized derivatives displayed good inhibition against the growth of the human colon cancer HCT116 cell line, with potencies lower than but in the same order of magnitude as camptothecin (CPT). These two luotonin analogues also showed an activity similar to that of the highly potent alkaloid CPT as inhibitors of topoisomerase I and also inhibited topoisomerase II. These results show that complete planarity is not a strict requirement for topoisomerase inhibition by luotonin-related compounds, paving the way to the design of analogues with improved solubility.


Assuntos
Antineoplásicos/farmacologia , DNA Topoisomerases Tipo II/efeitos dos fármacos , DNA Topoisomerases Tipo I/efeitos dos fármacos , Proteínas de Ligação a Poli-ADP-Ribose/efeitos dos fármacos , Pirróis/síntese química , Pirróis/farmacologia , Quinonas/síntese química , Quinonas/farmacologia , Inibidores da Topoisomerase/farmacologia , Alcaloides/farmacologia , Camptotecina/análogos & derivados , Camptotecina/síntese química , Linhagem Celular Tumoral/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Simulação de Acoplamento Molecular , Solubilidade , Relação Estrutura-Atividade
12.
BMC Vet Res ; 15(1): 405, 2019 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-31706354

RESUMO

BACKGROUND: Canine leishmaniasis is a zoonotic disease caused by Leishmania infantum, being the dogs one of the major reservoirs of human visceral leishmaniasis. DNA topology is a consolidated target for drug discovery. In this regard, topoisomerase IB - one of the enzymes controlling DNA topology - has been poisoned by hundreds of compounds that increase DNA fragility and cell death. Aromathecins are novel molecules with a multiheterocyclic ring scaffold that have higher stability than camptothecins. RESULTS: Aromathecins showed strong activity against both forms of L. infantum parasites, free-living promastigotes and intra-macrophagic amastigotes harbored in ex vivo splenic explant cultures obtained from infected BALB/c mice. However, they prevented the relaxation activity of leishmanial topoisomerase IB weakly, which suggests that the inhibition of topoisomerase IB partially explains the antileishmanial effect of these compounds. The effect of aromathecins was also studied against a strain resistant to camptothecin, and results suggested that the trafficking of these compounds is not through the ABCG6 transporter. CONCLUSIONS: Aromathecins are promising novel compounds against canine leishmaniasis that can circumvent potential resistances based on drug efflux pumps.


Assuntos
Antiprotozoários/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Leishmania infantum/efeitos dos fármacos , Inibidores da Topoisomerase I/farmacologia , Animais , Técnicas de Cultura de Células , DNA Topoisomerases Tipo I/efeitos dos fármacos , DNA Topoisomerases Tipo I/metabolismo , Feminino , Leishmania infantum/enzimologia , Leishmania infantum/crescimento & desenvolvimento , Estágios do Ciclo de Vida/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Proteínas de Protozoários/antagonistas & inibidores , Baço/parasitologia
13.
Int J Mol Sci ; 20(21)2019 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-31717797

RESUMO

In the present study, a series of 4-acyloxy robustic acid derivatives were synthesized and characterized for evaluation of their anti-cancer activity. The structures of these derivatives were elucidated by mass spectra (MS) nuclear magnetic resonance spectra (NMR). The single-crystal X-ray diffraction structure of one of these compounds was obtained, for further validation of the target compound structures. The anticancer activities of the target products were evaluated against human leukemic cells HL-60, human non-small cell lung carcinoma cells A-549, human hepatic carcinoma cells SMMC-7721, human hepatocellular carcinoma cells HepG2, and human cervical carcinoma cells Hela. Three compounds among them exhibited potent in-vitro cytotoxicity and excellent DNA topoisomerase I inhibitory activity, even at 0.1 mM concentrations. The most noteworthy observation was the minor toxicity of two of these compounds to normal cells, with an activity similar to the positive control in cancerous cells. A Surflex-Dock docking study was performed to investigate the topoisomerase I activity of all compounds. Of all the other compounds, the most sensitive compound was selected for further investigation of its effect on apoptosis induction and cell cycle regulation in HL-60 cells. Our results suggest that the anticancer effects of these compounds can be attributed to their pharmacological effects on topoisomerase I, cell apoptosis, and cell cycle. These findings suggest that robustic acid derivatives could be used as potential antitumor drugs.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Isoflavonas/química , Piranocumarinas/síntese química , Piranocumarinas/farmacologia , Células A549 , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Células Cultivadas , DNA Topoisomerases Tipo I/efeitos dos fármacos , Dalbergia/química , Ensaios de Seleção de Medicamentos Antitumorais , Células HL-60 , Células HeLa , Células Hep G2 , Humanos , Concentração Inibidora 50 , Isoflavonas/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Piranocumarinas/química , Piranocumarinas/uso terapêutico , Inibidores da Topoisomerase I/síntese química , Inibidores da Topoisomerase I/química , Inibidores da Topoisomerase I/farmacologia
14.
Bioorg Med Chem Lett ; 29(23): 126714, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31635931

RESUMO

A series of novel N-phenylbenzamide-4-methylamine acridine derivatives were designed and synthesized based initially on the structure of amsacrine (m-AMSA). Molecular docking suggested that the representative compound 9a had affinity for binding DNA topoisomerase (Topo) II, which was comparable with that of m-AMSA, and furthermore that 9a could have preferential interactions with Topo I. After synthesis of 9a and analogues 9b-9f, these were all tested in vitro and the synthesized compounds displayed potent antiproliferative activity against three different cancer cell lines (K562, CCRF-CEM and U937). Among them, compounds 9b, 9c and 9d exhibiting the highest activity with IC50 value ranging from 0.82 to 0.91 µM against CCRF-CEM cells. In addition, 9b and 9d also showed high antiproliferative activity against U937 cells, with IC50 values of 0.33 and 0.23 µM, respectively. The pharmacological mechanistic studies of these compounds were evaluated by Topo I/II inhibition, western blot assay and cell apoptosis detection. In summary, 9b effectively inhibited the activity of Topo I/II and induced DNA damage in CCRF-CEM cells and, moreover, significantly induced cell apoptosis in a concentration-dependent manner. These observations provide new information and guidance for the structural optimization of more novel acridine derivatives.


Assuntos
Apoptose/efeitos dos fármacos , DNA Topoisomerases Tipo II/efeitos dos fármacos , DNA Topoisomerases Tipo I/efeitos dos fármacos , Metilaminas/síntese química , Simulação de Acoplamento Molecular/métodos , Humanos , Metilaminas/química , Estrutura Molecular , Relação Estrutura-Atividade
15.
J Mol Biol ; 431(18): 3427-3449, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31301408

RESUMO

Type II topoisomerases regulate DNA topology by making a double-stranded break in one DNA duplex, transporting another DNA segment through this break and then resealing it. Bacterial type IIA topoisomerase inhibitors, such as fluoroquinolones and novel bacterial topoisomerase inhibitors, can trap DNA cleavage complexes with double- or single-stranded cleaved DNA. To study the mode of action of such compounds, 21 crystal structures of a "gyraseCORE" fusion truncate of Staphyloccocus aureus DNA gyrase complexed with DNA and diverse inhibitors have been published, as well as 4 structures lacking inhibitors. These structures have the DNA in various cleavage states and appear to track trajectories along the catalytic paths of the DNA cleavage/religation steps. The various conformations sampled by these multiple "gyraseCORE" structures show rigid body movements of the catalytic GyrA WHD and GyrB TOPRIM domains across the dimer interface. Conformational changes common to all compound-bound structures suggest common mechanisms for DNA cleavage-stabilizing compounds. The structures suggest that S. aureus gyrase uses a single moving-metal ion for cleavage and that the central four base pairs need to be stretched between the two catalytic sites, in order for a scissile phosphate to attract a metal ion to the A-site to catalyze cleavage, after which it is "stored" in another coordination configuration (B-site) in the vicinity. We present a simplified model for the catalytic cycle in which capture of the transported DNA segment causes conformational changes in the ATPase domain that push the DNA gate open, resulting in stretching and cleaving the gate-DNA in two steps.


Assuntos
Antibacterianos/farmacologia , Clivagem do DNA/efeitos dos fármacos , DNA Topoisomerases Tipo I/efeitos dos fármacos , DNA/química , Inibidores da Topoisomerase/farmacologia , Domínio Catalítico , DNA/metabolismo , DNA Girase/química , DNA Girase/genética , DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo II/química , DNA Topoisomerases Tipo II/efeitos dos fármacos , Fluoroquinolonas/farmacologia , Metais , Modelos Moleculares , Conformação Proteica , Quinolonas , Staphylococcus aureus/enzimologia , Inibidores da Topoisomerase II/farmacologia
16.
Biochim Biophys Acta Gen Subj ; 1863(10): 1524-1535, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31145964

RESUMO

BACKGROUND: Topoisomerase is a well known target to develop effective antibacterial agents. In pursuance of searching novel antibacterial agents, we have established a novel bisbenzimidazole (PPEF) as potent E. coli topoisomerase IA poison inhibitor. METHODS: In order to gain insights into the mechanism of action of PPEF and understanding protein-ligand interactions, we have produced wild type EcTopo 67 N-terminal domain (catalytic domain) and its six mutant proteins at acidic triad (D111, D113, E115). The DDE motif is replaced by alanine (A) to create three single mutants: D111A, D113A, E115A and three double mutants: D111A-D113A, D113A-E115A and D111A-E115A. RESULTS: Calorimetric study of PPEF with single mutants showed 10 fold lower affinity than that of wild type EcTopo 67 (7.32 × 106 M-1for wild type, 0.89 × 106 M-1for D111A) and 100 fold lower binding with double mutant D113A-E115A (0.02 × 106 M-1) was observed. The mutated proteins showed different CD signature as compared to wild type protein. CD and fluorescence titrations were done to study the interaction between EcTopo 67 and ligands. Molecular docking study validated that PPEF has decreased binding affinity towards mutated enzymes as compared to wild type. CONCLUSION: The overall study reveals that PPEF binds to D113 and E115 of acidic triad of EcTopo 67. Point mutations decrease binding affinity of PPEF towards DDE motif of topoisomerase. GENERAL SIGNIFICANCE: This study concludes PPEF as poison inhibitor of E. coli Topoisomerase IA, which binds to acidic triad of topoisomerase IA, responsible for its function. PPEF can be considered as therapeutic agent against bacteria.


Assuntos
Antibacterianos/farmacologia , Bisbenzimidazol/farmacologia , Domínio Catalítico/efeitos dos fármacos , DNA Topoisomerases Tipo I/efeitos dos fármacos , Escherichia coli/enzimologia , Bisbenzimidazol/metabolismo , Clonagem Molecular , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Mutagênese Sítio-Dirigida , Termodinâmica
17.
Inorg Chem ; 58(10): 6804-6810, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31046253

RESUMO

The substitution-inert polynuclear platinum complexes (SI-PPCs) are now recognized as a distinct subclass of platinum anticancer drugs with high DNA binding affinity. Here, we investigate the effects of SI-PPCs containing dangling amine groups in place of NH3 as ligands to increase the length of the molecule and therefore overall charge and its distribution. The results obtained with the aid of biophysical techniques, such as total intensity light scattering, gel electrophoresis, and atomic force microscopy, show that addition of dangling amine groups considerably augments the ability of SI-PPCs to condense/aggregate nucleic acids. Moreover, this enhanced capability of SI-PPCs correlates with their heightened efficiency to inhibit DNA-related enzymatic activities, such as those connected with DNA transcription, catalysis of DNA relaxation by DNA topoisomerase I, and DNA synthesis catalyzed by Taq DNA polymerase. Thus, the addition of the dangling amine groups resulting in structures of SI-PPCs, which differ so markedly from the derivatives of cisplatin used in the clinic, appears to contribute to the overall biological activity of these molecules.


Assuntos
Aminas/química , Complexos de Coordenação/química , DNA Topoisomerases Tipo I/efeitos dos fármacos , DNA/química , Compostos de Platina/química , RNA/química , Taq Polimerase/antagonistas & inibidores , Antineoplásicos/química , Microscopia de Força Atômica , Inibidores da Topoisomerase I
18.
Anticancer Res ; 39(1): 135-144, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30591450

RESUMO

BACKGROUND/AIM: The identification of a series of oxadiazole-based compounds, as promising antiproliferative agents, has been previously reported. The aim of this study was to explore the SAR of newly-synthesized oxadiazole derivatives and identify their molecular targets. MATERIALS AND METHODS: A small library of 1,2,5-oxadiazole derivatives was synthetized and their antiproliferative activity was tested by the MTT assay. Their interaction with topoisomerase I was evaluated and a molecular docking study was performed. RESULTS: Several candidates showed cytotoxicity towards two human tumor cell lines, HCT-116 (colorectal carcinoma) and HeLa (cervix adenocarcinoma). Some derivatives exhibited inhibitory effects on the catalytic activity of topoisomerase I and this effect was supported by docking studies. CONCLUSION: The enzyme inhibition results, although not directly related to cytotoxicity, suggest that a properly modified 1,2,5 oxadiazole scaffold could be considered for the development of new anti-topoisomerase agents.


Assuntos
Proliferação de Células/efeitos dos fármacos , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Oxidiazóis/química , DNA Topoisomerases Tipo I/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Células HeLa , Humanos , Neoplasias/patologia , Oxidiazóis/síntese química , Oxidiazóis/farmacologia , Relação Estrutura-Atividade
19.
Eur J Med Chem ; 162: 18-31, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30408746

RESUMO

Heterocyclic compounds, such as hybrid tetrahydroquinoline and quinoline derivatives with phosphorated groups, have been prepared by multicomponent cycloaddition reaction between phosphorus-substituted anilines, aldehydes and styrenes. The antileishmanial activity of these compounds has been evaluated on both promastigotes and intramacrophagic amastigotes of Leishmania infantum. Good antileishmanial activity of functionalized tetrahydroquinolines 4a, 5a, 6b and quinoline 8b has been observed with similar activity than the standard drug amphotericin B and close selective index (SI between 43 and 57) towards L. infantum amastigotes to amphotericin B. Special interest shows tetrahydroquinolylphosphine sulfide 5a with an EC50 value (0.61 ±â€¯0.18 µM) similar to the standard drug amphotericin B (0.32 ±â€¯0.05 µM) and selective index (SI = 56.87). In addition, compound 4c shows remarkable inhibition on Leishmania topoisomerase IB. Parallel theoretical study of stereoelectronic properties, application of docking-based virtual screening methods, along with molecular electrostatic potential and predictive druggability analyses are also reported.


Assuntos
Antiprotozoários/química , DNA Topoisomerases Tipo I/efeitos dos fármacos , Leishmania infantum/efeitos dos fármacos , Fósforo/química , Quinolinas/química , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Quinolinas/farmacologia , Quinolinas/uso terapêutico
20.
mBio ; 8(5)2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28974621

RESUMO

Inflammatory responses, while essential for pathogen clearance, can also be deleterious to the host. Chemical inhibition of topoisomerase 1 (Top1) by low-dose camptothecin (CPT) can suppress transcriptional induction of antiviral and inflammatory genes and protect animals from excessive and damaging inflammatory responses. We describe the unexpected finding that minor DNA damage from topoisomerase 1 inhibition with low-dose CPT can trigger a strong antiviral immune response through cyclic GMP-AMP synthase (cGAS) detection of cytoplasmic DNA. This argues against CPT having only anti-inflammatory activity. Furthermore, expression of the simian virus 40 (SV40) large T antigen was paramount to the proinflammatory antiviral activity of CPT, as it potentiated cytoplasmic DNA leakage and subsequent cGAS recruitment in human and mouse cell lines. This work suggests that the capacity of Top1 inhibitors to blunt inflammatory responses can be counteracted by viral oncogenes and that this should be taken into account for their therapeutic development.IMPORTANCE Recent studies suggest that low-dose DNA-damaging compounds traditionally used in cancer therapy can have opposite effects on antiviral responses, either suppressing (with the example of CPT) or potentiating (with the example of doxorubicin) them. Our work demonstrates that the minor DNA damage promoted by low-dose CPT can also trigger strong antiviral responses, dependent on the presence of viral oncogenes. Taken together, these results call for caution in the therapeutic use of low-dose chemotherapy agents to modulate antiviral responses in humans.


Assuntos
DNA Topoisomerases Tipo I/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Nucleotídeos Cíclicos/metabolismo , Vírus 40 dos Símios/efeitos dos fármacos , Inibidores da Topoisomerase I/farmacologia , Animais , Antígenos Virais de Tumores/genética , Antígenos Virais de Tumores/imunologia , Antivirais/farmacologia , Camptotecina/farmacologia , Linhagem Celular , Técnicas de Cocultura , Dano ao DNA , DNA Topoisomerases Tipo I/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/virologia , Humanos , Inflamação , Camundongos , Vírus 40 dos Símios/imunologia , Vírus 40 dos Símios/fisiologia , Viroses/tratamento farmacológico , Viroses/imunologia , Viroses/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA