Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.844
Filtrar
1.
Breast Cancer ; 31(3): 417-425, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561479

RESUMO

BACKGROUND: Patients with breast cancer (BC) at advanced stages have poor outcomes because of high rate of recurrence and metastasis. Biomarkers for predicting prognosis remain to be explored. This study aimed to evaluate the relationships between circulating tumor cells (CTCs) and outcomes of BC patients. PATIENTS AND METHODS: A total of 50 female were enrolled in this study. Their diagnoses were determined by clinical characteristics, image data, and clinical pathology. CTC subtypes and TOP2A gene expression on CTCs were detected by CanPatrol™ technology and triple color in situ RNA hybridization (RNA-ISH), which divided into epithelial CTCs (eCTCs), mesenchymal CTCs (MCTCs), and hybrid CTCs (HCTCs) based on their surface markers. Hormone receptor, including estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2) expression, was measured by immunohistochemistry (IHC) method before treatment. The risk factors for predicting recurrence and metastasis were calculated by COX risk regression model. The progression-free survival (PFS) of patients was determined using Kaplan-Meier survival curve. RESULTS: The patients with a large tumor size (≥ 3 cm) and advanced tumor node metastasis (TNM) stages had high total CTCs (TCTCs) (P < 0.05). These patients also had high TOP2A expression level. COX risk regression analysis indicated that TOP2A expression levels in TCTCs, ER + , HER-2 + , and TNM stages were critical risk factors for recurrence and metastasis of patients (P < 0.05). The PFS of patients with ≥ 5 TCTCs, ≥ 3 HCTCs, and positive TOP2A expression in ≥ 3 TCTCs was significantly longer than that in patient with < 5 TCTCs, < 3 HCTCs, and TOP2A expression in < 3 TCTCs (P < 0.05). In contrast, the PFS of patients with positive hormone receptors (ER + , PR + , HER-2 +) also was dramatically lived longer than that in patients with negative hormone receptor expression. CONCLUSIONS: High TCTC, HCTCs, and positive TOP2A gene expression on CTCs were critical biomarkers for predicting outcomes of BC patients. Positive hormone receptor expression in BC patients has significant favor PFS.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , DNA Topoisomerases Tipo II , Resistencia a Medicamentos Antineoplásicos , Células Neoplásicas Circulantes , Humanos , Feminino , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Pessoa de Meia-Idade , Resistencia a Medicamentos Antineoplásicos/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Adulto , Idoso , Receptor ErbB-2/metabolismo , Prognóstico , Receptores de Estrogênio/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/genética , Receptores de Progesterona/metabolismo , Regulação Neoplásica da Expressão Gênica , Intervalo Livre de Progressão , Estimativa de Kaplan-Meier
2.
Sci Rep ; 14(1): 9150, 2024 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644364

RESUMO

Oral malignancies continue to have severe morbidity with less than 50% long-term survival despite the advancement in the available therapies. There is a persisting demand for new approaches to establish more efficient strategies for their treatment. In this regard, the human topoisomerase II (topoII) enzyme is a validated chemotherapeutics target, as topoII regulates vital cellular processes such as DNA replication, transcription, recombination, and chromosome segregation in cells. TopoII inhibitors are currently used to treat some neoplasms such as breast and small cells lung carcinomas. Additionally, topoII inhibitors are under investigation for the treatment of other cancer types, including oral cancer. Here, we report the therapeutic effect of a tetrahydroquinazoline derivative (named ARN21934) that preferentially inhibits the alpha isoform of human topoII. The treatment efficacy of ARN21934 has been evaluated in 2D cell cultures, 3D in vitro systems, and in chick chorioallantoic membrane cancer models. Overall, this work paves the way for further preclinical developments of ARN21934 and possibly other topoII alpha inhibitors of this promising chemical class as a new chemotherapeutic approach for the treatment of oral neoplasms.


Assuntos
DNA Topoisomerases Tipo II , Carcinoma de Células Escamosas de Cabeça e Pescoço , Inibidores da Topoisomerase II , Humanos , DNA Topoisomerases Tipo II/metabolismo , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/uso terapêutico , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Linhagem Celular Tumoral , Animais , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Embrião de Galinha
3.
Immun Inflamm Dis ; 12(4): e1207, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38661103

RESUMO

BACKGROUND: Ulcerative colitis (UC) is a chronic inflammatory disease of the colonic mucosa, with a gradually increasing incidence. Therefore, it is necessary to actively seek targets for the treatment of UC. METHODS: Common differentially expressed genes (DEGs) were screened from two microarray data sets related to UC. Protein-protein interaction network was constructed to find the hub genes. The UC mouse model and cell model were induced by dextran sulfate sodium (DSS). The pathological changes of colon tissue were observed by hematoxylin-eosin staining. Immunohistochemistry and immunofluorescence were performed to detect the expressions of Ki67 and Claudin-1. The performance of mice was observed by disease activity index (DAI). The effect of TOP2A on proliferation, inflammation, oxidative stress, and interleukin-17 (IL-17) signaling pathway in UC model was measured by cell counting kit-8, enzyme-linked immunosorbent assay, and western blot. RESULTS: Through bioinformatics analysis, 295 common DEGs were screened, and the hub gene TOP2A was selected. In UC model, there was obvious inflammatory cell infiltration in the colon and less goblet cells, while si-TOP2A lessened it. More Ki67 positive cells and less Claudin-1 positive cells were observed in UC model mice. Furthermore, knockdown of TOP2A increased the body weight and colon length of UC mice, while the DAI was decreased. Through in vivo and in vitro experiments, knockdown of TOP2A also inhibited inflammation and IL-17 signaling pathway, and promoted proliferation in DSS-induced NCM460 cells. CONCLUSION: Knockdown of TOP2A alleviated the progression of UC by suppressing inflammation and inhibited IL-17 signaling pathway.


Assuntos
Colite Ulcerativa , DNA Topoisomerases Tipo II , Modelos Animais de Doenças , Progressão da Doença , Interleucina-17 , Proteínas de Ligação a Poli-ADP-Ribose , Transdução de Sinais , Colite Ulcerativa/patologia , Colite Ulcerativa/imunologia , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Colite Ulcerativa/induzido quimicamente , Animais , Interleucina-17/metabolismo , Interleucina-17/genética , Camundongos , DNA Topoisomerases Tipo II/metabolismo , DNA Topoisomerases Tipo II/genética , Humanos , Técnicas de Silenciamento de Genes , Sulfato de Dextrana/toxicidade , Mapas de Interação de Proteínas , Masculino
4.
Carbohydr Res ; 539: 109105, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583285

RESUMO

Herein, we report the development of a diastereoselective and efficient route to construct sugar-derived pyrano[3,2-c]quinolones utilizing 1-C-formyl glycal and 4-hydroxy quinolone annulation. This methodology will open a route to synthesize nature inspired pyrano[3,2-c]quinolones. This is the first report for the stereoselective synthesis of sugar-derived pyrano[3,2-c]quinolones, where 100% stereoselectivity was observed. A total of sixteen compounds have been synthesized in excellent yields with 100% stereoselectivity. The molecular docking of the synthesized novel natural product analogues demonstrated their binding modes within the active site of type II topoisomerase. The results of the in-silico studies displayed more negative binding energies for the all the synthesized compounds in comparison to the natural product huajiosimuline A, indicating their affinity for the active pocket. Ten out of the sixteen novel synthesized compounds were found to have comparative or relatively more negative binding energy in comparison to the standard anti-cancer drug, doxorubicin. Additionally, the scalability and viability of this protocol was illustrated by the gram scale synthesis.


Assuntos
Produtos Biológicos , Simulação de Acoplamento Molecular , Quinolonas , Produtos Biológicos/química , Produtos Biológicos/síntese química , Estereoisomerismo , Quinolonas/química , Quinolonas/síntese química , DNA Topoisomerases Tipo II/metabolismo , DNA Topoisomerases Tipo II/química
5.
J Clin Invest ; 134(10)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451729

RESUMO

Development of effective strategies to manage the inevitable acquired resistance to osimertinib, a third-generation EGFR inhibitor for the treatment of EGFR-mutant (EGFRm) non-small cell lung cancer (NSCLC), is urgently needed. This study reports that DNA topoisomerase II (Topo II) inhibitors, doxorubicin and etoposide, synergistically decreased cell survival, with enhanced induction of DNA damage and apoptosis in osimertinib-resistant cells; suppressed the growth of osimertinib-resistant tumors; and delayed the emergence of osimertinib-acquired resistance. Mechanistically, osimertinib decreased Topo IIα levels in EGFRm NSCLC cells by facilitating FBXW7-mediated proteasomal degradation, resulting in induction of DNA damage; these effects were lost in osimertinib-resistant cell lines that possess elevated levels of Topo IIα. Increased Topo IIα levels were also detected in the majority of tissue samples from patients with NSCLC after relapse from EGFR tyrosine kinase inhibitor treatment. Enforced expression of an ectopic TOP2A gene in sensitive EGFRm NSCLC cells conferred resistance to osimertinib, whereas knockdown of TOP2A in osimertinib-resistant cell lines restored their susceptibility to osimertinib-induced DNA damage and apoptosis. Together, these results reveal an essential role of Topo IIα inhibition in mediating the therapeutic efficacy of osimertinib against EGFRm NSCLC, providing scientific rationale for targeting Topo II to manage acquired resistance to osimertinib.


Assuntos
Acrilamidas , Compostos de Anilina , Carcinoma Pulmonar de Células não Pequenas , DNA Topoisomerases Tipo II , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB , Neoplasias Pulmonares , Inibidores da Topoisomerase II , Humanos , Acrilamidas/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Compostos de Anilina/farmacologia , Receptores ErbB/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/metabolismo , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Linhagem Celular Tumoral , Inibidores da Topoisomerase II/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Animais , Camundongos , Mutação , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores , Sinergismo Farmacológico , Dano ao DNA , Piperazinas/farmacologia , Etoposídeo/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Nucleic Acids Res ; 52(8): 4541-4555, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38499490

RESUMO

Formation of programmed DNA double-strand breaks is essential for initiating meiotic recombination. Genetic studies on Arabidopsis thaliana and Mus musculus have revealed that assembly of a type IIB topoisomerase VI (Topo VI)-like complex, composed of SPO11 and MTOPVIB, is a prerequisite for generating DNA breaks. However, it remains enigmatic if MTOPVIB resembles its Topo VI subunit B (VIB) ortholog in possessing robust ATPase activity, ability to undergo ATP-dependent dimerization, and activation of SPO11-mediated DNA cleavage. Here, we successfully prepared highly pure A. thaliana MTOPVIB and MTOPVIB-SPO11 complex. Contrary to expectations, our findings highlight that MTOPVIB differs from orthologous Topo VIB by lacking ATP-binding activity and independently forming dimers without ATP. Most significantly, our study reveals that while MTOPVIB lacks the capability to stimulate SPO11-mediated DNA cleavage, it functions as a bona fide DNA-binding protein and plays a substantial role in facilitating the dsDNA binding capacity of the MOTOVIB-SPO11 complex. Thus, we illustrate mechanistic divergence between the MTOPVIB-SPO11 complex and classical type IIB topoisomerases.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , DNA Topoisomerases Tipo II , Meiose , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Meiose/genética , DNA Topoisomerases Tipo II/metabolismo , Quebras de DNA de Cadeia Dupla , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Trifosfato de Adenosina/metabolismo , DNA Topoisomerases/metabolismo , DNA Topoisomerases/genética , Evolução Molecular , Multimerização Proteica , Proteínas Arqueais
7.
Nucleic Acids Res ; 52(7): 3837-3855, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38452213

RESUMO

CCCTC-binding factor (CTCF) binding sites are hotspots of genome instability. Although many factors have been associated with CTCF binding site fragility, no study has integrated all fragility-related factors to understand the mechanism(s) of how they work together. Using an unbiased, genome-wide approach, we found that DNA double-strand breaks (DSBs) are enriched at strong, but not weak, CTCF binding sites in five human cell types. Energetically favorable alternative DNA secondary structures underlie strong CTCF binding sites. These structures coincided with the location of topoisomerase II (TOP2) cleavage complex, suggesting that DNA secondary structure acts as a recognition sequence for TOP2 binding and cleavage at CTCF binding sites. Furthermore, CTCF knockdown significantly increased DSBs at strong CTCF binding sites and at CTCF sites that are located at topologically associated domain (TAD) boundaries. TAD boundary-associated CTCF sites that lost CTCF upon knockdown displayed increased DSBs when compared to the gained sites, and those lost sites are overrepresented with G-quadruplexes, suggesting that the structures act as boundary insulators in the absence of CTCF, and contribute to increased DSBs. These results model how alternative DNA secondary structures facilitate recruitment of TOP2 to CTCF binding sites, providing mechanistic insight into DNA fragility at CTCF binding sites.


Assuntos
Fator de Ligação a CCCTC , Quebras de DNA de Cadeia Dupla , DNA Topoisomerases Tipo II , DNA , Conformação de Ácido Nucleico , DNA Topoisomerases Tipo II/metabolismo , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/química , Humanos , Fator de Ligação a CCCTC/metabolismo , Fator de Ligação a CCCTC/genética , Sítios de Ligação , DNA/metabolismo , DNA/química , DNA/genética , Ligação Proteica , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/química , Linhagem Celular
8.
Sci Rep ; 14(1): 6175, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485748

RESUMO

Our main goal was to design and synthesize novel lomefloxacin derivatives that inhibit the topoisomerase II enzyme, leading to potent anticancer activity. Lomefloxacin derivatives substituted at position 3 and 7 were synthesized and screened for cytotoxic activity utilizing 60 different human cancer cell lines. Furthermore, compounds 3a,b,c,e that revealed potent broad-spectrum anticancer activity (with mean percent GI more than 47%) were further evaluated using five dose concentrations and calculating the GI50. Compound 3e was then evaluated for cell cycle analysis and demonstrated cell cycle arrest at the G2-M phase. Moreover, the mechanism of action was determined by determining the topoisomerase inhibitory activity and the molecular modeling study. Compounds 3a,b,c,e showed broad spectrum anticancer activity. Lomefloxacin derivative 5f showed selective cytotoxic activity against melanoma SK-MEL-5 cell line. Compound 3e demonstrated comparable topoisomerase II inhibition to doxorubicin with IC50 of 0.98 µM.


Assuntos
Antineoplásicos , Fluoroquinolonas , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , DNA Topoisomerases Tipo II/metabolismo , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Relação Dose-Resposta a Droga
9.
J Enzyme Inhib Med Chem ; 39(1): 2311818, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38488131

RESUMO

In this article, a new series of 2-((3,5-disubstituted-2-thioxo-imidazol-1-yl)imino)acenaphthylen-1(2H)-ones were synthesized. Imidazole-2-thione with acenaphthylen-one gave a hybrid scaffold that integrated key structural elements essential for DNA damage via direct DNA intercalation and inhibition of the topoisomerase II enzyme. All the synthesized compounds were screened to detect their DNA damage using a terbium fluorescent probe. Results demonstrated that 4-phenyl-imidazoles 5b and 5e in addition to 4-(4-chlorophenyl)imidazoles 5h and 5j would induce detectable potent damage in ctDNA. The four most potent compounds as DNA intercalators were further evaluated for their antiproliferative activity against HepG2, MCF-7 and HCT-116 utilizing the MTT assay. The highest anticancer activity was recorded with compounds 5b and 5h against the breast cancer cell line MCF-7 which were 1.5- and 3- folds more active than doxorubicin, respectively. Therefore, imidazole-2-thione tethered acenaphthylenone derivatives can be considered as promising scaffold for the development of effective dual DNA intercalators and topoisomerase II inhibitors.


Assuntos
Antineoplásicos , Inibidores da Topoisomerase II , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/química , Relação Estrutura-Atividade , Substâncias Intercalantes/farmacologia , Tionas/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Imidazóis/farmacologia , DNA , Apoptose , Simulação de Acoplamento Molecular , DNA Topoisomerases Tipo II/metabolismo , Proliferação de Células
10.
Br J Cancer ; 130(9): 1493-1504, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38448751

RESUMO

BACKGROUND: Paired related-homeobox 1 (PRRX1) is a transcription factor in the regulation of developmental morphogenetic processes. There is growing evidence that PRRX1 is highly expressed in certain cancers and is critically involved in human survival prognosis. However, the molecular mechanism of PRRX1 in cancer malignancy remains to be elucidated. METHODS: PRRX1 expression in human Malignant peripheral nerve sheath tumours (MPNSTs) samples was detected immunohistochemically to evaluate survival prognosis. MPNST models with PRRX1 gene knockdown or overexpression were constructed in vitro and the phenotype of MPNST cells was evaluated. Bioinformatics analysis combined with co-immunoprecipitation, mass spectrometry, RNA-seq and structural prediction were used to identify proteins interacting with PRRX1. RESULTS: High expression of PRRX1 was associated with a poor prognosis for MPNST. PRRX1 knockdown suppressed the tumorigenic potential. PRRX1 overexpressed in MPNSTs directly interacts with topoisomerase 2 A (TOP2A) to cooperatively promote epithelial-mesenchymal transition and increase expression of tumour malignancy-related gene sets including mTORC1, KRAS and SRC signalling pathways. Etoposide, a TOP2A inhibitor used in the treatment of MPNST, may exhibit one of its anticancer effects by inhibiting the PRRX1-TOP2A interaction. CONCLUSION: Targeting the PRRX1-TOP2A interaction in malignant tumours with high PRRX1 expression might provide a novel tumour-selective therapeutic strategy.


Assuntos
DNA Topoisomerases Tipo II , Transição Epitelial-Mesenquimal , Proteínas de Homeodomínio , Proteínas de Ligação a Poli-ADP-Ribose , Humanos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Prognóstico , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Camundongos , Animais , Neoplasias de Bainha Neural/genética , Neoplasias de Bainha Neural/patologia , Neoplasias de Bainha Neural/metabolismo , Transdução de Sinais
11.
J Pharmacol Exp Ther ; 389(2): 186-196, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38508753

RESUMO

DNA topoisomerase IIß (TOP2ß/180; 180 kDa) is a nuclear enzyme that regulates DNA topology by generation of short-lived DNA double-strand breaks, primarily during transcription. TOP2ß/180 can be a target for DNA damage-stabilizing anticancer drugs, whose efficacy is often limited by chemoresistance. Our laboratory previously demonstrated reduced levels of TOP2ß/180 (and the paralog TOP2α/170) in an acquired etoposide-resistant human leukemia (K562) clonal cell line, K/VP.5, in part due to overexpression of microRNA-9-3p/5p impacting post-transcriptional events. To evaluate the effect on drug sensitivity upon reduction/elimination of TOP2ß/180, a premature stop codon was generated at the TOP2ß/180 gene exon 19/intron 19 boundary (AGAA//GTAA→ATAG//GTAA) in parental K562 cells (which contain four TOP2ß/180 alleles) by CRISPR/Cas9 editing with homology-directed repair to disrupt production of full-length TOP2ß/180. Gene-edited clones were identified and verified by quantitative polymerase chain reaction and Sanger sequencing, respectively. Characterization of TOP2ß/180 gene-edited clones, with one or all four TOP2ß/180 alleles mutated, revealed partial or complete loss of TOP2ß mRNA/protein, respectively. The loss of TOP2ß/180 protein correlated with decreased (2-{4-[(7-chloro-2-quinoxalinyl)oxy]phenoxy}propionic acid)-induced DNA damage and partial resistance in growth inhibition assays. Partial resistance to mitoxantrone was also noted in the gene-edited clone with all four TOP2ß/180 alleles modified. No cross-resistance to etoposide or mAMSA was noted in the gene-edited clones. Results demonstrated the role of TOP2ß/180 in drug sensitivity/resistance in K562 cells and revealed differential paralog activity of TOP2-targeted agents. SIGNIFICANCE STATEMENT: Data indicated that CRISPR/Cas9 editing of the exon 19/intron 19 boundary in the TOP2ß/180 gene to introduce a premature stop codon resulted in partial to complete disruption of TOP2ß/180 expression in human leukemia (K562) cells depending on the number of edited alleles. Edited clones were partially resistant to mitoxantrone and XK469, while lacking resistance to etoposide and mAMSA. Results demonstrated the import of TOP2ß/180 in drug sensitivity/resistance in K562 cells and revealed differential paralog activity of TOP2-targeted agents.


Assuntos
Antineoplásicos , Leucemia , Humanos , Etoposídeo/farmacologia , Células K562 , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Mitoxantrona , Sistemas CRISPR-Cas/genética , Códon sem Sentido , Antineoplásicos/farmacologia , DNA , Fenótipo
12.
Bioorg Chem ; 145: 107223, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387399

RESUMO

Herein, we envisioned the design and synthesis of novel pyrazolopyrimidines (confirmed by elemental analysis, 1H and 13C NMR, and mass spectra) as multitarget-directed drug candidates acting as EGFR/TOPO II inhibitors, DNA intercalators, and apoptosis inducers. The target diphenyl-tethered pyrazolopyrimidines were synthesized starting from the reaction of phenyl hydrazine and ethoxymethylenemalononitrile to give aminopyrazole-carbonitrile 2. The latter hydrolysis with NaOH and subsequent reaction with 4-chlorobenzaldhyde afforded the corresponding pyrazolo[3,4-d]pyrimidin-4-ol 4. Chlorination of 4 with POCl3 and sequential reaction with different amines afforded the target compounds in good yields (up to 73 %). The growth inhibition % of the new derivatives (6a-m) was investigated against different cancer and normal cells and the IC50 values of the most promising candidates were estimated for HNO97, MDA-MB-468, FaDu, and HeLa cancer cells. The frontier derivatives (6a, 6i, 6k, 6l, and 6m) were pursued for their EGFR inhibitory activity. Compound 6l decreased EGFR protein concentration by a 6.10-fold change, compared to imatinib as a reference standard. On the other side, compounds (6a, 6i, 6k, 6l, and 6m) underwent topoisomerase II (TOPO II) inhibitory assay. In particular, compounds 6a and 6l exhibited IC50s of 17.89 and 19.39 µM, respectively, surpassing etoposide with IC50 of 20.82 µM. Besides, the DNA fragmentation images described the great potential of both candidates 6a and 6l in inducing DNA degradation at lower concentrations compared to etoposide and doxorubicin. Moreover, compound 6l, with the most promising EGFR/TOPO II inhibition and DNA intercalation, was selected for further investigation for its apoptosis induction ability by measuring caspases 3, 7, 8, and 9, Bax, p53, MMP2, MMP9, and BCL-2 proteins. Additionally, molecular docking was used to explain the SAR results based on the differences in the molecular features of the investigated congeners and the target receptors' topology.


Assuntos
Antineoplásicos , Compostos de Bifenilo , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Antineoplásicos/química , Etoposídeo/farmacologia , DNA Topoisomerases Tipo II/metabolismo , Proliferação de Células , Inibidores da Topoisomerase II , Apoptose , Receptores ErbB/metabolismo , DNA , Ensaios de Seleção de Medicamentos Antitumorais
13.
Micron ; 179: 103596, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38359615

RESUMO

Topoisomerase II (TopoII) is an essential structural protein of the metaphase chromosome. It maintains the axial compaction of chromosomes during metaphase. It is localized at the axial region of chromosomes and accumulates at the centromeric region in metaphase chromosomes. However, little is known about TopoII localization and distribution in plant chromosomes, except for several publications. We used high voltage transmission electron microscopy (HVTEM) and ultra-high voltage transmission electron microscopy (UHVTEM) in conjunction with immunogold labeling and visualization techniques to detect TopoII and investigate its localization, alignment, and density on the barley chromosome at 1.4 nm scale. We found that HVTEM and UHVTEM combined with immunogold labeling is suitable for the detection of structural proteins, including a single molecule of TopoII. This is because the average size of the gold particles for TopoII visualization after silver enhancement is 8.9 ± 3.9 nm, which is well detected. We found that 31,005 TopoII molecules are distributed along the barley chromosomes in an unspecific pattern at the chromosome arms and accumulate specifically at the nucleolus organizer regions (NORs) and centromeric region. The TopoII density were 1.32-fold, 1.58-fold, and 1.36-fold at the terminal region, at the NORs, and the centromeric region, respectively. The findings of TopoII localization in this study support the multiple reported functions of TopoII in the barley metaphase chromosome.


Assuntos
Cromossomos de Plantas , DNA Topoisomerases Tipo II , Cromossomos de Plantas/genética , Cromossomos de Plantas/metabolismo , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Cromossomos , Centrômero/genética , Centrômero/metabolismo , Microscopia Eletrônica de Transmissão , Cromatina/genética
14.
Nucleic Acids Res ; 52(8): 4151-4166, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38340348

RESUMO

In cancer therapy, DNA intercalators are mainly known for their capacity to kill cells by inducing DNA damage. Recently, several DNA intercalators have attracted much interest given their ability to inhibit RNA Polymerase I transcription (BMH-21), evict histones (Aclarubicin) or induce chromatin trapping of FACT (Curaxin CBL0137). Interestingly, these DNA intercalators lack the capacity to induce DNA damage while still retaining cytotoxic effects and stabilize p53. Herein, we report that these DNA intercalators impact chromatin biology by interfering with the chromatin stability of RNA polymerases I, II and III. These three compounds have the capacity to induce degradation of RNA polymerase II and they simultaneously enable the trapping of Topoisomerases TOP2A and TOP2B on the chromatin. In addition, BMH-21 also acts as a catalytic inhibitor of Topoisomerase II, resembling Aclarubicin. Moreover, BMH-21 induces chromatin trapping of the histone chaperone FACT and propels accumulation of Z-DNA and histone eviction, similarly to Aclarubicin and CBL0137. These DNA intercalators have a cumulative impact on general transcription machinery by inducing accumulation of topological defects and impacting nuclear chromatin. Therefore, their cytotoxic capabilities may be the result of compounding deleterious effects on chromatin homeostasis.


Assuntos
Cromatina , DNA Topoisomerases Tipo II , Substâncias Intercalantes , Proteínas de Ligação a Poli-ADP-Ribose , RNA Polimerase II , Cromatina/metabolismo , Substâncias Intercalantes/farmacologia , Substâncias Intercalantes/química , DNA Topoisomerases Tipo II/metabolismo , RNA Polimerase II/metabolismo , Humanos , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas de Grupo de Alta Mobilidade/genética , Histonas/metabolismo , Inibidores da Topoisomerase II/farmacologia , Fatores de Elongação da Transcrição/metabolismo , Fatores de Elongação da Transcrição/genética , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/genética , Dano ao DNA , DNA/metabolismo , DNA/química , RNA Polimerase I/metabolismo , RNA Polimerase I/antagonistas & inibidores , RNA Polimerase III/metabolismo , Transcrição Gênica/efeitos dos fármacos , Carbazóis , Dicetopiperazinas
15.
Bioessays ; 46(5): e2400011, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38403725

RESUMO

How chromatin bridges are detected by the abscission checkpoint during mammalian cell division is unknown. Here, we discuss recent findings from our lab showing that the DNA topoisomerase IIα (Top2α) enzyme binds to catenated ("knotted") DNA next to the midbody and forms abortive Top2-DNA cleavage complexes (Top2ccs) on chromatin bridges. Top2ccs are then processed by the proteasome to promote localization of the DNA damage sensor protein Rad17 to Top2-generated double-strand DNA ends on DNA knots. In turn, Rad17 promotes local recruitment of the MRN protein complex and downstream ATM-Chk2-INCENP signaling to delay abscission and prevent chromatin bridge breakage in cytokinesis.


Assuntos
Cromatina , Citocinese , DNA Topoisomerases Tipo II , Proteínas de Ligação a DNA , Humanos , DNA Topoisomerases Tipo II/metabolismo , Citocinese/fisiologia , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , DNA/metabolismo , Transdução de Sinais
16.
Angew Chem Int Ed Engl ; 63(17): e202317187, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38231130

RESUMO

DNA topoisomerases are attractive targets for anticancer agents. Dual topoisomerase I/II inhibitors are particularly appealing due to their reduced rates of resistance. A number of therapeutically relevant topoisomerase inhibitors are bacterial natural products. Mining the untapped chemical diversity encoded by soil microbiomes presents an opportunity to identify additional natural topoisomerase inhibitors. Here we couple metagenome mining, bioinformatic structure prediction algorithms, and chemical synthesis to produce the dual topoisomerase inhibitor tapcin. Tapcin is a mixed p-aminobenzoic acid (PABA)-thiazole with a rare tri-thiazole substructure and picomolar antiproliferative activity. Tapcin reduced colorectal adenocarcinoma HT-29 cell proliferation and tumor volume in mouse hollow fiber and xenograft models, respectively. In both studies it showed similar activity to the clinically used topoisomerase I inhibitor irinotecan. The study suggests that the interrogation of soil microbiomes using synthetic bioinformatic natural product methods has the potential to be a rewarding strategy for identifying potent, biomedically relevant, antiproliferative agents.


Assuntos
Antineoplásicos , Produtos Biológicos , Humanos , Camundongos , Animais , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologia , DNA Topoisomerases Tipo I/metabolismo , Produtos Biológicos/farmacologia , DNA Topoisomerases Tipo II/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Biologia Computacional , Solo , Tiazóis , Linhagem Celular Tumoral
17.
Int J Biol Macromol ; 261(Pt 1): 129728, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272423

RESUMO

The intracellular bacteria, Salmonella Typhi adapts to acidic conditions in the host cell by resetting the chromosomal DNA topology majorly controlled by DNA Gyrase, a Type II topoisomerase. DNA Gyrase forms a heterodimer A2B2 complex, which manages the DNA supercoiling and relaxation in the cell. DNA relaxation forms a part of the regulatory mechanism to activate the transcription of genes required to survive under hostile conditions. Acid-induced stress attenuates the supercoiling activity of the DNA Gyrase, resulting in DNA relaxation. Salmonella DNA becomes relaxed as the bacteria adapt to the acidified intracellular environment. Despite comprehensive studies on DNA Gyrase, the mechanism to control supercoiling activity needs to be better understood. A loss in supercoiling activity in E. coli was observed upon deletion of the non-conserved acidic C-tail of Gyrase A subunit. Salmonella Gyrase also contains an acidic tail at the C-terminus of Gyrase A, where its deletion resulted in reduced supercoiling activity compared to wild-type Gyrase. Interestingly, we also found that wild-type Gyrase compromises supercoiling activity at acidic pH 2-3, thereby causing DNA relaxation. The absence of a C-tail displayed DNA supercoiling to some extent between pH 2-9. Hence, the C-tail of Gyrase A might be one of the controlling factors that cause DNA relaxation in Salmonella at acidic pH conditions. We propose that the presence of the C-tail of GyraseA causes acid-mediated inhibition of the negative supercoiling activity of Gyrase, resulting in relaxed DNA that attracts DNA-binding proteins for controlling the transcriptional response.


Assuntos
DNA Girase , Salmonella typhi , DNA Girase/genética , Salmonella typhi/genética , Escherichia coli/genética , DNA , DNA Super-Helicoidal/genética , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo II/metabolismo
18.
Toxicol Sci ; 198(2): 288-302, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38290791

RESUMO

Anthracyclines, such as doxorubicin (adriamycin), daunorubicin, or epirubicin, rank among the most effective agents in classical anticancer chemotherapy. However, cardiotoxicity remains the main limitation of their clinical use. Topoisomerase IIß has recently been identified as a plausible target of anthracyclines in cardiomyocytes. We examined the putative topoisomerase IIß selective agent XK469 as a potential cardioprotective and designed several new analogs. In our experiments, XK469 inhibited both topoisomerase isoforms (α and ß) and did not induce topoisomerase II covalent complexes in isolated cardiomyocytes and HL-60, but induced proteasomal degradation of topoisomerase II in these cell types. The cardioprotective potential of XK469 was studied on rat neonatal cardiomyocytes, where dexrazoxane (ICRF-187), the only clinically approved cardioprotective, was effective. Initially, XK469 prevented daunorubicin-induced toxicity and p53 phosphorylation in cardiomyocytes. However, it only partially prevented the phosphorylation of H2AX and did not affect DNA damage measured by Comet Assay. It also did not compromise the daunorubicin antiproliferative effect in HL-60 leukemic cells. When administered to rabbits to evaluate its cardioprotective potential in vivo, XK469 failed to prevent the daunorubicin-induced cardiac toxicity in either acute or chronic settings. In the following in vitro analysis, we found that prolonged and continuous exposure of rat neonatal cardiomyocytes to XK469 led to significant toxicity. In conclusion, this study provides important evidence on the effects of XK469 and its combination with daunorubicin in clinically relevant doses in cardiomyocytes. Despite its promising characteristics, long-term treatments and in vivo experiments have not confirmed its cardioprotective potential.


Assuntos
Antraciclinas , Quinoxalinas , Inibidores da Topoisomerase II , Ratos , Animais , Coelhos , Inibidores da Topoisomerase II/toxicidade , Inibidores da Topoisomerase II/uso terapêutico , Antraciclinas/toxicidade , Antraciclinas/uso terapêutico , Cardiotoxicidade , Daunorrubicina/toxicidade , Daunorrubicina/uso terapêutico , Doxorrubicina/toxicidade , Antibióticos Antineoplásicos/toxicidade , DNA Topoisomerases Tipo II/metabolismo , DNA Topoisomerases Tipo II/uso terapêutico , Dano ao DNA
19.
J Cell Sci ; 137(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38240344

RESUMO

Anthracyclines, topoisomerase II enzyme poisons that cause DNA damage, are the mainstay of acute myeloid leukemia (AML) treatment. However, acquired resistance to anthracyclines leads to relapse, which currently lacks effective treatment and is the cause of poor survival in individuals with AML. Therefore, the identification of the mechanisms underlying anthracycline resistance remains an unmet clinical need. Here, using patient-derived primary cultures and clinically relevant cellular models that recapitulate acquired anthracycline resistance in AML, we have found that GCN5 (also known as KAT2A) mediates transcriptional upregulation of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) in AML relapse, independently of the DNA-damage response. We demonstrate that anthracyclines fail to induce DNA damage in resistant cells, owing to the loss of expression of their target enzyme, TOP2B; this was caused by DNA-PKcs directly binding to its promoter upstream region as a transcriptional repressor. Importantly, DNA-PKcs kinase activity inhibition re-sensitized AML relapse primary cultures and cells resistant to mitoxantrone, and abrogated their tumorigenic potential in a xenograft mouse model. Taken together, our findings identify a GCN5-DNA-PKcs-TOP2B transcriptional regulatory axis as the mechanism underlying anthracycline resistance, and demonstrate the therapeutic potential of DNA-PKcs inhibition to re-sensitize resistant AML relapse cells to anthracycline.


Assuntos
Proteína Quinase Ativada por DNA , Leucemia Mieloide Aguda , Humanos , Camundongos , Animais , Proteína Quinase Ativada por DNA/genética , Proteína Quinase Ativada por DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , DNA Topoisomerases Tipo II/uso terapêutico , Antraciclinas/farmacologia , Antraciclinas/uso terapêutico , Antibióticos Antineoplásicos , Recidiva , DNA , Proteínas de Ligação a Poli-ADP-Ribose
20.
Nat Commun ; 14(1): 8341, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097570

RESUMO

The function of the mitogen-activated protein kinase signaling pathway is required for the activation of immediate early genes (IEGs), including EGR1 and FOS, for cell growth and proliferation. Recent studies have identified topoisomerase II (TOP2) as one of the important regulators of the transcriptional activation of IEGs. However, the mechanism underlying transcriptional regulation involving TOP2 in IEG activation has remained unknown. Here, we demonstrate that ERK2, but not ERK1, is important for IEG transcriptional activation and report a critical ELK1 binding sequence for ERK2 function at the EGR1 gene. Our data indicate that both ERK1 and ERK2 extensively phosphorylate the C-terminal domain of TOP2B at mutual and distinctive residues. Although both ERK1 and ERK2 enhance the catalytic rate of TOP2B required to relax positive DNA supercoiling, ERK2 delays TOP2B catalysis of negative DNA supercoiling. In addition, ERK1 may relax DNA supercoiling by itself. ERK2 catalytic inhibition or knock-down interferes with transcription and deregulates TOP2B in IEGs. Furthermore, we present the first cryo-EM structure of the human cell-purified TOP2B and etoposide together with the EGR1 transcriptional start site (-30 to +20) that has the strongest affinity to TOP2B within -423 to +332. The structure shows TOP2B-mediated breakage and dramatic bending of the DNA. Transcription is activated by etoposide, while it is inhibited by ICRF193 at EGR1 and FOS, suggesting that TOP2B-mediated DNA break to favor transcriptional activation. Taken together, this study suggests that activated ERK2 phosphorylates TOP2B to regulate TOP2-DNA interactions and favor transcriptional activation in IEGs. We propose that TOP2B association, catalysis, and dissociation on its substrate DNA are important processes for regulating transcription and that ERK2-mediated TOP2B phosphorylation may be key for the catalysis and dissociation steps.


Assuntos
Genes Precoces , Proteína Quinase 1 Ativada por Mitógeno , Humanos , DNA/metabolismo , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Etoposídeo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Fosforilação , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA