Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34769422

RESUMO

Methylcytosines in mammalian genomes are the main epigenetic molecular codes that switch off the repertoire of genes in cell-type and cell-stage dependent manners. DNA methyltransferases (DMT) are dedicated to managing the status of cytosine methylation. DNA methylation is not only critical in normal development, but it is also implicated in cancers, degeneration, and senescence. Thus, the chemicals to control DMT have been suggested as anticancer drugs by reprogramming the gene expression profile in malignant cells. Here, we report a new optical technique to characterize the activity of DMT and the effect of inhibitors, utilizing the methylation-sensitive B-Z transition of DNA without bisulfite conversion, methylation-sensing proteins, and polymerase chain reaction amplification. With the high sensitivity of single-molecule FRET, this method detects the event of DNA methylation in a single DNA molecule and circumvents the need for amplification steps, permitting direct interpretation. This method also responds to hemi-methylated DNA. Dispensing with methylation-sensitive nucleases, this method preserves the molecular integrity and methylation state of target molecules. Sparing methylation-sensing nucleases and antibodies helps to avoid errors introduced by the antibody's incomplete specificity or variable activity of nucleases. With this new method, we demonstrated the inhibitory effect of several natural bio-active compounds on DMT. All taken together, our method offers quantitative assays for DMT and DMT-related anticancer drugs.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1/química , Metilação de DNA , DNA de Forma B/química , DNA Forma Z/química , Ensaios Enzimáticos/métodos , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA de Forma B/metabolismo , DNA Forma Z/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos
2.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638964

RESUMO

G-quadruplex existence was proved in cells by using both antibodies and small molecule fluorescent probes. However, the G-quadruplex probes designed thus far are structure- but not conformation-specific. Recently, a core-extended naphthalene diimide (cex-NDI) was designed and found to provide fluorescent signals of markedly different intensities when bound to G-quadruplexes of different conformations or duplexes. Aiming at evaluating how the fluorescence behaviour of this compound is associated with specific binding modes to the different DNA targets, cex-NDI was here studied in its interaction with hybrid G-quadruplex, parallel G-quadruplex, and B-DNA duplex models by biophysical techniques, molecular docking, and biological assays. cex-NDI showed different binding modes associated with different amounts of stacking interactions with the three DNA targets. The preferential binding sites were the groove, outer quartet, or intercalative site of the hybrid G-quadruplex, parallel G-quadruplex, and B-DNA duplex, respectively. Interestingly, our data show that the fluorescence intensity of DNA-bound cex-NDI correlates with the amount of stacking interactions formed by the ligand with each DNA target, thus providing the rationale behind the conformation-sensitive properties of cex-NDI and supporting its use as a fluorescent probe of G-quadruplex structures. Notably, biological assays proved that cex-NDI mainly localizes in the G-quadruplex-rich nuclei of cancer cells.


Assuntos
Adenocarcinoma/metabolismo , Neoplasias da Mama/metabolismo , DNA de Forma B/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Quadruplex G , Imidas/química , Imidas/metabolismo , Substâncias Intercalantes/química , Substâncias Intercalantes/metabolismo , Conformação Molecular , Naftalenos/química , Naftalenos/metabolismo , Adenocarcinoma/patologia , Sítios de Ligação , Neoplasias da Mama/patologia , Sobrevivência Celular/efeitos dos fármacos , Feminino , Corantes Fluorescentes/farmacologia , Humanos , Imidas/farmacologia , Concentração Inibidora 50 , Substâncias Intercalantes/farmacologia , Ligantes , Células MCF-7 , Espectroscopia de Ressonância Magnética/métodos , Simulação de Acoplamento Molecular/métodos , Naftalenos/farmacologia
3.
Int J Mol Sci ; 22(7)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805331

RESUMO

Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion spectroscopy is commonly used for quantifying conformational changes of protein in µs-to-ms timescale transitions. To elucidate the dynamics and mechanism of protein binding, parameters implementing CPMG relaxation dispersion results must be appropriately determined. Building an analytical model for multi-state transitions is particularly complex. In this study, we developed a new global search algorithm that incorporates a random search approach combined with a field-dependent global parameterization method. The robust inter-dependence of the parameters carrying out the global search for individual residues (GSIR) or the global search for total residues (GSTR) provides information on the global minimum of the conformational transition process of the Zα domain of human ADAR1 (hZαADAR1)-DNA complex. The global search results indicated that a α-helical segment of hZαADAR1 provided the main contribution to the three-state conformational changes of a hZαADAR1-DNA complex with a slow B-Z exchange process. The two global exchange rate constants, kex and kZB, were found to be 844 and 9.8 s-1, respectively, in agreement with two regimes of residue-dependent chemical shift differences-the "dominant oscillatory regime" and "semi-oscillatory regime". We anticipate that our global search approach will lead to the development of quantification methods for conformational changes not only in Z-DNA binding protein (ZBP) binding interactions but also in various protein binding processes.


Assuntos
Adenosina Desaminase/química , DNA de Forma B/química , DNA Forma Z/química , Modelos Moleculares , Proteínas de Ligação a RNA/química , Adenosina Desaminase/metabolismo , Algoritmos , DNA de Forma B/metabolismo , DNA Forma Z/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Conformação Proteica , Proteínas de Ligação a RNA/metabolismo , Termodinâmica
4.
Biochim Biophys Acta Gene Regul Mech ; 1864(1): 194659, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271312

RESUMO

Transcription elongation by RNA polymerase II (Pol II) is constantly challenged by numerous types of obstacles that lead to transcriptional pausing or stalling. These obstacles include DNA lesions, DNA epigenetic modifications, DNA binding proteins, and non-B form DNA structures. In particular, lesion-induced prolonged transcriptional blockage or stalling leads to genome instability, cellular dysfunction, and cell death. Transcription-coupled nucleotide excision repair (TC-NER) pathway is the first line of defense that detects and repairs these transcription-blocking DNA lesions. In this review, we will first summarize the recent research progress toward understanding the molecular basis of transcriptional pausing and stalling by different kinds of obstacles. We will then discuss new insights into Pol II-mediated lesion recognition and the roles of CSB in TC-NER.


Assuntos
Dano ao DNA , Reparo do DNA , DNA de Forma B/metabolismo , Epigênese Genética , RNA Polimerase II/metabolismo , Transcrição Gênica , Humanos
5.
Biochem Biophys Res Commun ; 533(3): 417-423, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32972754

RESUMO

Structural transformation of the canonical right-handed helix, B-DNA, to the non-canonical left-handed helix, Z-DNA, can be induced by the Zα domain of the human RNA editing enzyme ADAR1 (hZαADAR1). To characterize the site-specific preferences of binding and structural changes in DNA containing the 2'-O-methyl guanosine derivative (mG), titration of the imino proton spectra and chemical shift perturbations were performed on hZαADAR1 upon binding to Z-DNA. The structural transition between B-Z conformation as the changing ratio between DNA and protein showed a binding affinity of the modified DNA onto the Z-DNA binding protein similar to wild-type DNA or RNA. The chemical shift perturbation results showed that the overall structure and environment of the modified DNA revealed DNA-like properties rather than RNA-like characteristics. Moreover, we found evidence for two distinct regimes, "Z-DNA Sensing" and "Modification Sensing", based on the site-specific chemical shift perturbation between the DNA (or RNA) binding complex and the modified DNA-hZαADAR1 complex. Thus, we propose that modification of the sugar backbone of DNA with 2'-O-methyl guanosine promotes the changes in the surrounding α3 helical structural segment as well as the non-perturbed feature of the ß-hairpin region.


Assuntos
Adenosina Desaminase/química , DNA de Forma B/química , DNA Forma Z/química , Proteínas de Ligação a RNA/química , Adenosina Desaminase/metabolismo , DNA/química , DNA de Forma B/metabolismo , DNA Forma Z/metabolismo , Guanosina/química , Humanos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Proteínas de Ligação a RNA/metabolismo
6.
J Inorg Biochem ; 210: 111156, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32645652

RESUMO

Reactions of 2,6-bis(benzimidazol-2-yl)pyridine (L1), 2,6-bis(benzoxazol-2-yl)pyridine (L2), and 2,6-bis(benzothiazol-2-yl)pyridine (L3) with [Pd(NCMe)2Cl2] in the presence of NaBF4 afforded the corresponding Pd(II) complexes, [Pd(L1)Cl]BF4, PdL1; [Pd(L2)Cl]BF4, PdL2; [Pd(L3)Cl]BF4, PdL3; respectively, while reaction of bis[(1H-benzimidazol-2-yl)methyl]amine (L4) with [Pd(NCMe)2Cl2] afforded complex [Pd(L4)Cl]Cl, PdL4. Characterisation of the complexes was accomplished using NMR, IR, MS, elemental analyses and single crystal X-ray crystallography. Ligand substitution kinetics of these complexes by biological nucleophiles thiourea (Tu), L-methionine (L-Met) and guanosine 5'-diphosphate disodium salt (5-GMP) were examined under pseudo-first order conditions. The reactivity of the complexes decreased in the order: PdL1 > PdL2 > PdL3 > PdL4, ascribed to electronic effects. Density functional theory (DFT) supported this trend. Studies of interaction of the Pd(II) complexes with calf thymus DNA (CT-DNA) revealed strong binding affinities via intercalative binding mode. Molecular docking studies established associative non-covalent interactions between the Pd complexes and DNA. The in vitro cytotoxic activities of PdL1-PdL4 were assessed in cancer cell lines HeLa and MRC5-SV2 and a normal cell line MRC-5, using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. PdL1 exhibited cytotoxic potency and selectivity against HeLa cell that was comparable to cisplatin's. Complex PdL1, unlike cisplatin, did not significantly induce caspase-dependent apoptosis.


Assuntos
Antineoplásicos/farmacologia , Azóis/farmacologia , Complexos de Coordenação/farmacologia , DNA de Forma B/metabolismo , Substâncias Intercalantes/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Azóis/síntese química , Azóis/metabolismo , Bovinos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Complexos de Coordenação/metabolismo , DNA/metabolismo , Teoria da Densidade Funcional , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Substâncias Intercalantes/síntese química , Substâncias Intercalantes/metabolismo , Ligantes , Modelos Químicos , Simulação de Acoplamento Molecular , Paládio/química , Espécies Reativas de Oxigênio/metabolismo
7.
J Biol Chem ; 295(20): 7138-7153, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32277049

RESUMO

The double-helical structure of genomic DNA is both elegant and functional in that it serves both to protect vulnerable DNA bases and to facilitate DNA replication and compaction. However, these design advantages come at the cost of having to evolve and maintain a cellular machinery that can manipulate a long polymeric molecule that readily becomes topologically entangled whenever it has to be opened for translation, replication, or repair. If such a machinery fails to eliminate detrimental topological entanglements, utilization of the information stored in the DNA double helix is compromised. As a consequence, the use of B-form DNA as the carrier of genetic information must have co-evolved with a means to manipulate its complex topology. This duty is performed by DNA topoisomerases, which therefore are, unsurprisingly, ubiquitous in all kingdoms of life. In this review, we focus on how DNA topoisomerases catalyze their impressive range of DNA-conjuring tricks, with a particular emphasis on DNA topoisomerase III (TOP3). Once thought to be the most unremarkable of topoisomerases, the many lives of these type IA topoisomerases are now being progressively revealed. This research interest is driven by a realization that their substrate versatility and their ability to engage in intimate collaborations with translocases and other DNA-processing enzymes are far more extensive and impressive than was thought hitherto. This, coupled with the recent associations of TOP3s with developmental and neurological pathologies in humans, is clearly making us reconsider their undeserved reputation as being unexceptional enzymes.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , DNA de Forma B/metabolismo , Doenças do Sistema Nervoso/enzimologia , DNA Topoisomerases Tipo I/genética , DNA de Forma B/genética , Humanos , Doenças do Sistema Nervoso/genética
8.
Sci Rep ; 9(1): 16679, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31723182

RESUMO

GapR is a nucleoid-associated protein required for the cell cycle of Caulobacter cresentus. We have determined new crystal structures of GapR to high resolution. As in a recently published structure, a GapR monomer folds into one long N-terminal α helix and two shorter α helices, and assembles into a tetrameric ring with a closed, positively charged, central channel. In contrast to the conclusions drawn from the published structures, we observe that the central channel of the tetramer presented here could freely accommodate B-DNA. Mutation of six conserved lysine residues lining the cavity and electrophoretic mobility gel shift experiments confirmed their role in DNA binding and the channel as the site of DNA binding. Although present in our crystals, DNA could not be observed in the electron density maps, suggesting that DNA binding is non-specific, which could be important for tetramer-ring translocation along the chromosome. In conjunction with previous GapR structures we propose a model for DNA binding and translocation that explains key published observations on GapR and its biological functions.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Caulobacter crescentus/metabolismo , DNA de Forma B/metabolismo , DNA Bacteriano/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , DNA de Forma B/química , DNA Bacteriano/química , Modelos Moleculares
9.
J Mol Biol ; 431(19): 3845-3859, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31325439

RESUMO

The rules governing sequence-specific DNA-protein recognition are under a long-standing debate regarding the prevalence of base versus shape readout mechanisms to explain sequence specificity and of the conformational selection versus induced fit binding paradigms to explain binding-related conformational changes in DNA. Using a combination of atomistic simulations on a subset of representative sequences and mesoscopic simulations at the protein-DNA interactome level, we demonstrate the prevalence of the shape readout model in determining sequence-specificity and of the conformational selection paradigm in defining the general mechanism for binding-related conformational changes in DNA. Our results suggest that the DNA uses a double mechanism to adapt its structure to the protein: it moves along the easiest deformation modes to approach the bioactive conformation, while final adjustments require localized rearrangements at the base-pair step and backbone level. Our study highlights the large impact of B-DNA dynamics in modulating DNA-protein binding.


Assuntos
DNA de Forma B/química , DNA de Forma B/metabolismo , Proteínas de Ligação a DNA/metabolismo , Pareamento de Bases , Sequência de Bases , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Termodinâmica
10.
Biochem Biophys Res Commun ; 514(3): 979-984, 2019 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-31092333

RESUMO

Protein-DNA interactions are of great biological importance. The specificity and strength of these intimate contacts are crucial in the proper functioning of a cell, wherein the role of DNA dynamic bendability has been a matter of discussion. We relate DNA bendability to protein binding by introducing some simple modifications in the DNA structure. We removed C5' carbon in first modified structure and the second has an additional carbon between C3' and 3'-OH, hereby pronounced as C(-) and C(+) nucleic acids respectively. We observed that C(+) nucleic acid retains B-DNA duplex as seen by means of 500 ns long molecular dynamics (MD) simulations, structural and energetic calculations, while C(-) nucleic acid attains a highly bend structure. We transferred these observations to a protein-DNA system in order to monitor as to what extent the bendability enhances the protein binding. The energetics of binding is explored by performing 100 ns long MD simulations on control and modified DNA-protein complexes followed by running MM-PBSA/GBSA calculations on the resultant structures. It is observed that C(+) nucleic acid has protein binding in close correspondence to the control system (∼-14 kcal/mol) due to their relatable structure, while the C(-) nucleic acid displayed high binding to the protein (∼-18 kcal/mol). DelPhi based calculations reveal that the high binding could be the result of enhanced electrostatic interactions caused by exposed bases in the bend structure for protein recognition. Such modified oligonucleotides, due to their improved binding to protein and resistance to nuclease degradation, have a great therapeutic value.


Assuntos
DNA/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , DNA/química , DNA de Forma B/química , DNA de Forma B/metabolismo , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Ligação Proteica , Eletricidade Estática , Proteína de Ligação a TATA-Box/metabolismo , Termodinâmica
11.
Bioorg Med Chem ; 27(11): 2167-2171, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31000407

RESUMO

Hairpin pyrrole-imidazole (Py-Im) polyamides are promising medium-sized molecules that bind sequence-specifically to the minor groove of B-form DNA. Here, we synthesized a series of hairpin Py-Im polyamides and explored their binding affinities and orientation preferences to methylated DNA with the mCGG target sequence. Thermal denaturation assays revealed that the five hairpin Py-Im polyamides, which were anticipated to recognize mCGG in a forward orientation, bind to nontarget DNA, GGmC, in a reverse orientation. Therefore, we designed five Py-Im polyamides that could recognize mCGG in a reverse orientation. We found that the two Py-Im polyamides containing Im/ß pairs preferentially bound to mCGG in a reverse orientation. The reverse binding Py-Im polyamide successfully inhibited TET1 binding on the methylated DNA. Taken together, this study illustrated the importance of designing reverse binding Py-Im polyamides for the target sequence, mCGG, which paved the way for Py-Im polyamides that can be used with otherwise difficult to access DNA with CG sequences.


Assuntos
DNA de Forma B/metabolismo , Imidazóis/metabolismo , Nylons/metabolismo , Pirróis/metabolismo , Metilação de DNA , DNA de Forma B/química , Imidazóis/química , Conformação de Ácido Nucleico/efeitos dos fármacos , Nylons/química , Transição de Fase , Pirróis/química , Ressonância de Plasmônio de Superfície , Temperatura de Transição
12.
Luminescence ; 34(1): 113-124, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30604519

RESUMO

Novel palladium(II) complexes (7a-7e) of substituted quinoline derivatives were synthesized. The complexes were characterized using various techniques such as thermogravimetric analysis (TGA), elemental analysis, conductance measurement, mass, absorption, infra-red (IR), 1 H NMR, 13 C NMR and energy-dispersive X-ray spectroscopy (EDX). Complexes for herring sperm DNA (HS DNA) binding were explored and absorption titration and the binding constant (Kb ) as well as Gibb's free energy were evaluated. Complex 7d exhibited the highest binding constant, therefore the thermodynamic parameters of 7d at different temperatures were evaluated. To support the results of the absorption titration, fluorescence titration, viscosity measurement and molecular docking studies were performed. The fluorescence quenching data as evaluated from Stern-Volmer equation were used to calculate KSV , Kf and the number of binding sites. The results of all these studies were in good agreement with the absorption study. DNA electrophoretic mobility was performed to explore the possible application of metal complexes as artificial metallonucleases. The antibacterial activity of the complexes was accessed against different pathogenic bacteria and cytotoxicity was measured using brine shrimp and S. pombe.


Assuntos
Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , DNA de Forma B/química , Paládio/química , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Artemia/efeitos dos fármacos , Sítios de Ligação , Complexos de Coordenação/síntese química , DNA de Forma B/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Eletroforese/métodos , Ensaio de Desvio de Mobilidade Eletroforética , Ligantes , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Quinolinas/química , Schizosaccharomyces/efeitos dos fármacos , Espectrometria de Fluorescência , Espectrometria por Raios X , Termodinâmica
13.
Nucleic Acids Res ; 46(19): 10504-10513, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30184200

RESUMO

BZ junctions, which connect B-DNA to Z-DNA, are necessary for local transformation of B-DNA to Z-DNA in the genome. However, the limited information on the junction-forming sequences and junction structures has led to a lack of understanding of the structural diversity and sequence preferences of BZ junctions. We determined three crystal structures of BZ junctions with diverse sequences followed by spectroscopic validation of DNA conformation. The structural features of the BZ junctions were well conserved regardless of sequences via the continuous base stacking through B-to-Z DNA with A-T base extrusion. However, the sequence-dependent structural heterogeneity of the junctions was also observed in base step parameters that are correlated with steric constraints imposed during Z-DNA formation. Further, circular dichroism and fluorescence-based analysis of BZ junctions revealed that a base extrusion was only found at the A-T base pair present next to a stable dinucleotide Z-DNA unit. Our findings suggest that Z-DNA formation in the genome is influenced by the sequence preference for BZ junctions.


Assuntos
Adenosina Desaminase/química , DNA de Forma B/química , DNA Forma Z/química , DNA/química , Conformação de Ácido Nucleico , Domínios Proteicos , Proteínas de Ligação a RNA/química , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Pareamento de Bases , Sequência de Bases , Dicroísmo Circular , Cristalografia por Raios X , DNA/genética , DNA/metabolismo , DNA de Forma B/genética , DNA de Forma B/metabolismo , DNA Forma Z/genética , DNA Forma Z/metabolismo , Humanos , Modelos Moleculares , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
14.
Biophys J ; 115(7): 1180-1189, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30172386

RESUMO

With almost no consensus promoter sequence in prokaryotes, recruitment of RNA polymerase (RNAP) to precise transcriptional start sites (TSSs) has remained an unsolved puzzle. Uncovering the underlying mechanism is critical for understanding the principle of gene regulation. We attempted to search the hidden code in ∼16,500 promoters of 12 prokaryotes representing two kingdoms in their structure and energetics. Twenty-eight fundamental parameters of DNA structure including backbone angles, basepair axis, and interbasepair and intrabasepair parameters were used, and information was extracted from x-ray crystallography data. Three parameters (solvation energy, hydrogen-bond energy, and stacking energy) were selected for creating energetics profiles using in-house programs. DNA of promoter regions was found to be inherently designed to undergo a change in every parameter undertaken for the study, in all prokaryotes. The change starts from some distance upstream of TSSs and continues past some distance from TSS, hence giving a signature state to promoter regions. These signature states might be the universal hidden codes recognized by RNAP. This observation was reiterated when randomly selected promoter sequences (with little sequence conservation) were subjected to structure generation; all developed into very similar three-dimensional structures quite distinct from those of conventional B-DNA and coding sequences. Fine structural details at important motifs (viz. -11, -35, and -75 positions relative to TSS) of promoters reveal novel to our knowledge and pointed insights for RNAP interaction at these locations; it could be correlated with how some particular structural changes at the -11 region may allow insertion of RNAP amino acids in interbasepair space as well as facilitate the flipping out of bases from the DNA duplex.


Assuntos
Modelos Genéticos , Células Procarióticas/metabolismo , Regiões Promotoras Genéticas/genética , DNA de Forma B/química , DNA de Forma B/genética , DNA de Forma B/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Termodinâmica , Sítio de Iniciação de Transcrição
15.
Int J Mol Sci ; 19(4)2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29617273

RESUMO

Recognition of unusual left-handed Z-DNA by specific binding of small molecules is crucial for understanding biological functions in which this particular structure participates. Recent investigations indicate that zinc cationic porphyrin (ZnTMPyP4) is promising as a probe for recognizing Z-DNA due to its characteristic chiroptical properties upon binding with Z-DNA. However, binding mechanisms of the ZnTMPyP4/Z-DNA complex remain unclear. By employing time-resolved UV-visible absorption spectroscopy in conjunction with induced circular dichroism (ICD), UV-vis, and fluorescence measurements, we examined the binding interactions of ZnTMPyP4 towards B-DNA and Z-DNA. For the ZnTMPyP4/Z-DNA complex, two coexisting binding modes were identified as the electrostatic interaction between pyridyl groups and phosphate backbones, and the major groove binding by zinc(II) coordinating with the exposed guanine N7. The respective contribution of each mode is assessed, allowing a complete scenario of binding modes revealed for the ZnTMPyP4/Z-DNA. These interaction modes are quite different from those (intercalation and partial intercalation modes) for the ZnTMPyP4/B-DNA complex, thereby resulting in explicit differentiation between B-DNA and Z-DNA. Additionally, the binding interactions of planar TMPyP4 to DNA were also investigated as a comparison. It is shown that without available virtual orbitals to coordinate, TMPyP4 binds with Z-DNA solely in the intercalation mode, as with B-DNA, and the intercalation results in a structural transition from Z-DNA to B-ZNA. These results provide mechanistic insights for understanding ZnTMPyP4 as a probe of recognizing Z-DNA and afford a possible strategy for designing new porphyrin derivatives with available virtual orbitals for the discrimination of B-DNA and Z-DNA.


Assuntos
DNA/química , Metaloporfirinas/química , Conformação de Ácido Nucleico , DNA/metabolismo , DNA de Forma B/química , DNA de Forma B/metabolismo , DNA Forma Z/química , DNA Forma Z/metabolismo , Metaloporfirinas/metabolismo , Porfirinas/química , Porfirinas/metabolismo , Ligação Proteica , Análise Espectral
16.
J Phys Chem B ; 122(21): 5466-5486, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29649876

RESUMO

Biomolecular simulations are typically performed in an aqueous environment where the number of ions remains fixed for the duration of the simulation, generally with either a minimally neutralizing ion environment or a number of salt pairs intended to match the macroscopic salt concentration. In contrast, real biomolecules experience local ion environments where the salt concentration is dynamic and may differ from bulk. The degree of salt concentration variability and average deviation from the macroscopic concentration remains, as yet, unknown. Here, we describe the theory and implementation of a Monte Carlo osmostat that can be added to explicit solvent molecular dynamics or Monte Carlo simulations to sample from a semigrand canonical ensemble in which the number of salt pairs fluctuates dynamically during the simulation. The osmostat reproduces the correct equilibrium statistics for a simulation volume that can exchange ions with a large reservoir at a defined macroscopic salt concentration. To achieve useful Monte Carlo acceptance rates, the method makes use of nonequilibrium candidate Monte Carlo (NCMC) moves in which monovalent ions and water molecules are alchemically transmuted using short nonequilibrium trajectories, with a modified Metropolis-Hastings criterion ensuring correct equilibrium statistics for an ( Δµ, N, p, T) ensemble to achieve a ∼1046× boost in acceptance rates. We demonstrate how typical protein (DHFR and the tyrosine kinase Src) and nucleic acid (Drew-Dickerson B-DNA dodecamer) systems exhibit salt concentration distributions that significantly differ from fixed-salt bulk simulations and display fluctuations that are on the same order of magnitude as the average.


Assuntos
DNA de Forma B/química , Sais/química , Tetra-Hidrofolato Desidrogenase/química , Quinases da Família src/química , DNA de Forma B/metabolismo , Íons/química , Simulação de Dinâmica Molecular , Método de Monte Carlo , Concentração Osmolar , Eletricidade Estática , Tetra-Hidrofolato Desidrogenase/metabolismo , Água/química , Quinases da Família src/metabolismo
17.
Nucleic Acids Res ; 46(8): 4129-4137, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29584891

RESUMO

Left-handed Z-DNA is an extraordinary conformation of DNA, which can form by special sequences under specific biological, chemical or physical conditions. Human ADAR1, prototypic Z-DNA binding protein (ZBP), binds to Z-DNA with high affinity. Utilizing single-molecule FRET assays for Z-DNA forming sequences embedded in a long inactive DNA, we measure thermodynamic populations of ADAR1-bound DNA conformations in both GC and TG repeat sequences. Based on a statistical physics model, we determined quantitatively the affinities of ADAR1 to both Z-form and B-form of these sequences. We also reported what pathways it takes to induce the B-Z transition in those sequences. Due to the high junction energy, an intermediate B* state has to accumulate prior to the B-Z transition. Our study showing the stable B* state supports the active picture for the protein-induced B-Z transition that occurs under a physiological setting.


Assuntos
Adenosina Desaminase/metabolismo , DNA de Forma B/química , DNA Forma Z/química , Proteínas de Ligação a RNA/metabolismo , DNA de Forma B/metabolismo , DNA Forma Z/metabolismo , Transferência Ressonante de Energia de Fluorescência , Modelos Estatísticos
18.
J Phys Chem B ; 122(21): 5630-5639, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29382197

RESUMO

We present a method to calculate the fully anisotropic rotational diffusion tensor from molecular dynamics simulations. Our approach is based on fitting the time-dependent covariance matrix of the quaternions that describe the rigid-body rotational dynamics. Explicit analytical expressions have been derived for the covariances by Favro, which are valid irrespective of the degree of anisotropy. We use these expressions to determine an optimal rotational diffusion tensor from trajectory data. The molecular structures are aligned against a reference by optimal rigid-body superposition. The quaternion covariances can then be obtained directly from the rotation matrices used in the alignment. The rotational diffusion tensor is determined by a fit to the time-dependent quaternion covariances, or directly by Laplace transformation and matrix diagonalization. To quantify uncertainties in the fit, we derive analytical expressions and compare them with the results of Brownian dynamics simulations of anisotropic rotational diffusion. We apply the method to microsecond long trajectories of the Dickerson-Drew B-DNA dodecamer and of horse heart myoglobin. The anisotropic rotational diffusion tensors calculated from simulations agree well with predictions from hydrodynamics.


Assuntos
DNA de Forma B/química , Simulação de Dinâmica Molecular , Mioglobina/química , Algoritmos , Animais , DNA de Forma B/metabolismo , Difusão , Cavalos , Hidrodinâmica , Miocárdio/metabolismo , Mioglobina/metabolismo
19.
Eur Biophys J ; 47(4): 325-332, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29404661

RESUMO

Because of open problems in the relation between results obtained by relaxation experiments and molecular dynamics simulations on the B-A transition of DNA, relaxation measurements of the B-A dynamics have been extended to a wider range of conditions. Field-induced reaction effects are measured selectively by the magic angle technique using a novel cell construction preventing perturbations from cell window anisotropy. The kinetics was recorded for the case of poly[d(AT)] up to the salt concentration limit of 4.4 mM, where aggregation does not yet interfere. Now experimental data on the B-A dynamics are available for poly[d(AT)] at salt concentrations of 0.18, 0.73, 2.44 and 4.4 mM. In all cases, a spectrum of time constants is found, ranging from ~ 10 µs up to components approaching ~ 1 ms. The relatively small dependence of these data on the salt concentration indicates that electrostatic effects on the kinetics are not as strong as may be expected. The ethanol content at the transition center is a linear function of the logarithm of the salt concentration, and the slope is close to that expected from polyelectrolyte theory. The B-A transition dynamics was also measured in D2O at a salt concentration of 2.4 mM: the center of the transition is found at 20.0 mol/l H2O and at 20.1 mol/l D2O with an estimated accuracy of ± 0.1 mol/l; the spectrum of time constants at the respective transition centers is very similar. The experimental results are discussed regarding the data obtained by molecular dynamics simulations.


Assuntos
DNA Forma A/química , DNA de Forma B/química , DNA Forma A/metabolismo , DNA de Forma B/metabolismo , Óxido de Deutério/química , Cinética , Sais/química
20.
Mol Cell ; 68(2): 388-397.e6, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28988932

RESUMO

Noncoding RNAs (ncRNAs) regulate gene expression in all organisms. Bacterial 6S RNAs globally regulate transcription by binding RNA polymerase (RNAP) holoenzyme and competing with promoter DNA. Escherichia coli (Eco) 6S RNA interacts specifically with the housekeeping σ70-holoenzyme (Eσ70) and plays a key role in the transcriptional reprogramming upon shifts between exponential and stationary phase. Inhibition is relieved upon 6S RNA-templated RNA synthesis. We report here the 3.8 Å resolution structure of a complex between 6S RNA and Eσ70 determined by single-particle cryo-electron microscopy and validation of the structure using footprinting and crosslinking approaches. Duplex RNA segments have A-form C3' endo sugar puckers but widened major groove widths, giving the RNA an overall architecture that mimics B-form promoter DNA. Our results help explain the specificity of Eco 6S RNA for Eσ70 and show how an ncRNA can mimic B-form DNA to directly regulate transcription by the DNA-dependent RNAP.


Assuntos
DNA de Forma B/metabolismo , DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , RNA Bacteriano/metabolismo , RNA não Traduzido/metabolismo , Fator sigma/metabolismo , DNA de Forma B/genética , DNA Bacteriano/genética , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , RNA Bacteriano/genética , RNA não Traduzido/genética , Fator sigma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA