RESUMO
The crustacean Daphnia magna is an emerging model for ecological and toxicological genomics. However, the lack of methods for spatial and temporal control of gene expression has impaired the elucidation of molecular mechanisms underlying responses to environments in vivo. Here we report local activation of the hsp70 promoter-driven gene cassette in D. magna by the infrared laser-evoked gene operator (IR-LEGO), a method for heating the target cells with infrared irradiation. We identified the heat-inducible promoter upstream of the D. magna hsp70-A gene. Using this promoter, we generated a transgenic Daphnia harboring the heat-shock responsive GFP reporter gene and confirmed that the GFP gene responds to heat treatment not only in juveniles and adults but also in embryos. We collected embryos from the reporter line and irradiated four different regions of interest in the embryos: a proximal region of the third thoracic segment, a part of the midline, a second maxilla, and a distal region of the endopodite of the second antenna, all of which increased GFP fluorescence with an infrared laser. Our results suggest that the IR-LEGO method is useful for spatial and temporal control of gene expression and would advance the functional genomics in D. magna.
Assuntos
Animais Geneticamente Modificados , Daphnia , Proteínas de Fluorescência Verde , Proteínas de Choque Térmico HSP70 , Raios Infravermelhos , Lasers , Regiões Promotoras Genéticas , Transgenes , Animais , Daphnia/genética , Daphnia/embriologia , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Análise Espaço-Temporal , Genes Reporter , Regulação da Expressão Gênica/efeitos da radiação , Daphnia magnaRESUMO
As cerium oxide nanoparticles (nCeO2) continue to infiltrate aquatic environments, the resulting health risks to exposed aquatic organisms are becoming evident. Cytochrome P450 (CYP) enzymes are integral to the detoxification processes in these species. Herein, we conducted a genomic analysis of CYPs in Daphnia magna, encompassing phylogenetic relationships, gene structure, and chromosomal localization. We identified twenty-six CYPs in D. magna, categorizing them into four clans and seven families, distributed across six chromosomes and one unanchored scaffold. The encoded CYP proteins varied in length from 99 to 585 amino acids, with molecular weights ranging from 11.6 kDa to 66.4 kDa. A quantitative real-time PCR analysis demonstrated a significant upregulation of CYP4C1.4, CYP4C1.5, CYP4C1.6, CYP4c3.3, and CYP4c3.6 in D. magna exposed to 150 mg/L nCeO2 for 24 h. The transcript levels of CYP4C1.3, CYP18a1, CYP4C1.1, and CYP4c3.9 were notably downregulated in D. magna exposed to 10 mg/L nCeO2 for 48 h. A further transcriptomic analysis identified differential expression patterns of eight CYP genes, including CYP4C1.3, in response to nCeO2 exposure. The differential regulation observed across most of the 26 CYPs highlights their potential role in xenobiotic detoxification in D. magna, thereby enhancing our understanding of CYP-mediated toxicological responses to metal nanoparticles in aquatic invertebrates.
Assuntos
Cério , Sistema Enzimático do Citocromo P-450 , Daphnia , Filogenia , Animais , Daphnia/genética , Daphnia/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Cério/toxicidade , Nanopartículas/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Daphnia magnaRESUMO
One of the major concerns following cancer treatment is cardiotoxicity. Therefore, it is important to predict potential cardiotoxicity of cancer chemotherapeutics at the preclinical phase. Current models of cardiotoxicity testing involve either cell culture models or rodent models. We developed a simple invertebrate animal model for rapid screening of cardiotoxicity of cancer chemotherapeutics. Daphnia magna (water flea, a crustacean) has a transparent body and a large myogenic heart that can be easily monitored under a microscope. Using this model, we have previously described comparative cardiotoxicity of several kinase inhibitors that were approved for the treatment of multiple cancers. In this article, we describe the step-wise protocols for evaluating the heart rate and survival of D. magna with relevant information on troubleshooting. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Culturing and maintenance of D. magna Basic Protocol 2: Experimental design for evaluating heart rate of Daphnia Basic Protocol 3: Long-term effect on Daphnia survival upon drug exposure.
Assuntos
Antineoplásicos , Cardiotoxicidade , Daphnia , Animais , Daphnia/efeitos dos fármacos , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Cardiotoxicidade/etiologia , Frequência Cardíaca/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Modelos Animais de Doenças , Daphnia magnaRESUMO
As a key form of post-transcriptional regulation, microRNAs (miRNAs) regulate gene expression by binding to target mRNAs, leading to mRNA decay or translational repression. Recently, the role of miRNAs in the response of aquatic organisms to environmental stressors has emerged. Daphnia, widely distributed cladocerans, play a crucial role in aquatic ecosystems. Cyanobacterial blooms often cause Daphnia populations to decrease, thereby disrupting ecosystem functionality and water quality. However, the post-transcriptional mechanisms behind Daphnia's response to toxic cyanobacteria are insufficiently understood. This study investigated the role of miR-210, a multifunctional miRNA involved in stress response and toxicity pathways, and its target genes (MLH3, CDHR5, and HYOU1) in two Daphnia magna clones exposed to toxic Microcystis aeruginosa. Results showed that M. aeruginosa inhibited somatic growth rates, led to microcystin accumulation, caused abnormal ultrastructural alterations in the digestive tract, and induced DNA damage in both clones. Notably, exposure significantly increased miR-210 expression and decreased the expression of its target genes compared with the controls. We identified miR-210s regulation on clonal-tolerance variations in D. magna to M. aeruginosa, emphasizing miRNAs' contribution to adaptive responses. Our work uncovered a novel post-transcriptional mechanism of cyanobacterial impact on zooplankton and provided essential insights for assessing cyanobacterial toxicity risks.
Assuntos
Daphnia , MicroRNAs , Animais , Daphnia/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Microcistinas/toxicidade , Cianobactérias/genética , Microcystis/genética , Daphnia magnaRESUMO
Heavy metals like arsenic is ubiquitously present in the environment. Geologic and anthropogenic activities are the root cause behind high concentration of arsenic in natural water bodies demanding strict monitoring of water quality prior to human consumption and utilization. In the present study, we have employed Daphnia magna for studying the biological effects of environmentally relevant high concentration of arsenic in water. In acute toxicity study, the LC50 value for 24hr exposure was found to be 2.504â¯mg/L, which gradually decreased with increase in time period (24hr- 96hr) to 2.011â¯mg/ L at 96hr. Sub-chronic toxicity was evaluated over 12 days using sub-lethal concentrations (5 %, 10 %, 15 %, and 20 % of the 24-hr LC50). Survivability in Daphnia showed a decreasing trend from 96â¯% to 91â¯% with increase in arsenic concentrations from 5 % of LC50 24 hr value to 20 % of LC 50 24hr value respectively. Alongside decreased survivability, there was a significant reduction in body size, with organisms exposed to the highest concentration of arsenic measuring 0.87±0.01â¯mm compared to 1.51±0.10â¯mm in the control group. Reproductive potential declined concentration dependently with exposure, with the highest reduction observed at 20 % of LC50 24hr value, where offspring numbers decreased to 7±1 from 23±5 in the control. Heart rate decreased in concentration and time-dependent manners, with the lowest rates observed at the highest arsenic concentration (279±16 bpm after 24hr and 277±27 bpm after 48hr). Comet assay and micronucleus assay conducted after 48 hrs of exposure revealed concentration-dependent genotoxic effects in Daphnia magna. Our results indicate negative impact on physiology and reproduction of Daphnia magna at environmentally existent concentration of arsenic. Also Daphnia magna could serve as a sensitive test system for investigating arsenic contamination in water bodies.
Assuntos
Arsênio , Daphnia , Poluentes Químicos da Água , Animais , Daphnia/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Arsênio/toxicidade , Dano ao DNA/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Testes de Toxicidade Aguda , Dose Letal Mediana , Testes para Micronúcleos , Mutagênicos/toxicidade , Daphnia magnaRESUMO
Endocrine-disrupting chemicals (EDCs) impair growth and development. While EDCs can occur naturally in aquatic ecosystems, they are continuously introduced through anthropogenic activities such as industrial effluents, pharmaceutical production, wastewater, and mining. To elucidate the chronic toxicological effects of endocrine-disrupting chemicals (EDCs) on aquatic organisms, we collected experimental data from a standardized chronic exposure test using Daphnia magna (D. magna), individuals of which were exposed to a potential EDC, trinitrotoluene (TNT). The chronic toxicity effects of this compound were explored through differential gene expression, gene ontology, network construction, and putative adverse outcome pathway (AOP) proposition. Our findings suggest that TNT has detrimental effects on the upstream signaling of Tcf/Lef, potentially adversely impacting oocyte maturation and early development. This study employs diverse bioinformatics approaches to elucidate the gene-level toxicological effects of chronic TNT exposure on aquatic ecosystems. The results provide valuable insights into the molecular mechanisms of the adverse impacts of TNT through network construction and putative AOP proposition.
Assuntos
Daphnia , Disruptores Endócrinos , Redes Reguladoras de Genes , Transcriptoma , Trinitrotolueno , Poluentes Químicos da Água , Daphnia/efeitos dos fármacos , Daphnia/genética , Animais , Disruptores Endócrinos/toxicidade , Trinitrotolueno/toxicidade , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Redes Reguladoras de Genes/efeitos dos fármacos , Perfilação da Expressão Gênica , Ontologia Genética , Testes de Toxicidade Crônica , Daphnia magnaRESUMO
Ecuador's wetlands and aquatic ecosystems are chronically exposed to ash contamination due to the frequent volcanoes' eruptions in the country. Still, the short and long-term effects of ash contamination on the aquatic biota are not well understood. We used ashes released by the Cotopaxi volcano in 2016 to investigate their acute and chronic effects in Daphna magna. We calculated the half maximal effective concentration (EC50) after 2 and 21 days of exposure, the non-observed effect concentration (NOEC), and the lowest observed effect concentration (LOEC) on offspring production. We also analyzed the metal concentration present in the ashes. The EC50 values at 2 and 21 days were found at 80% and 5% ash leachate concentrations, respectively. After 21 days of exposure, high mortality and low neonatal production were observed in all leachate concentrations (NOEC was at 15%, and LOEC was at 20% leachate concentration). Our results suggest that the ashes from the Cotopaxi volcano can cause acute and chronic toxicity to aquatic life and should be classified as hazardous waste, depending on the dose. There is an urgent need for further studies that assess toxicity caused by the intense volcanic activity in Ecuador.
Assuntos
Daphnia , Erupções Vulcânicas , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Equador , Daphnia/efeitos dos fármacos , Testes de Toxicidade Crônica , Testes de Toxicidade Aguda , Monitoramento Ambiental , Daphnia magnaRESUMO
Despite the benefits derived from the use of pharmaceuticals, these compounds are currently considered contaminants of emerging concern because of their presence and persistence in the environment. This study aimed to determine the toxicity of 27 pharmaceuticals and the interaction effects of binary mixtures of selected compounds towards two model organisms: the microcrustacean Daphnia magna and the bacterium Aliivibrio fischeri (Microtox test). Six compounds, namely polymyxin B, polymyxin E, fluoxetine, diphenhydramine, clenbuterol and ketoprofen exhibited moderate toxicity towards D. magna. Additionally, three compounds (cefotaxime, polymyxin B, polymyxin E) also showed a moderate toxic effect on A. fischeri. The comparison of such results with model estimations showed inaccuracy in the predicted data, highlighting the relevance of experimental ecotoxicological assays. The assayed mixtures contained four selected drugs of high-hazard according to their reported concentrations in wastewater and surface water (diphenhydramine, trimethoprim, ketoprofen, and fluoxetine); data revealed interactions only in the fluoxetine-containing mixtures for D. magna, while all mixtures showed interactions (mostly synergistic) for Microtox. Chronic effects on the reproduction of D. magna were observed after exposure to fluoxetine and diphenhydramine, although higher sensitivity was determined for the latter, while the mixture of these compounds (which showed acute synergy in both models) also affected the reproduction patterns. Nonetheless, all the effects described at the acute or chronic level (for individual compounds or mixtures) were determined at concentrations higher than commonly reported at environmental levels. This work provides valuable ecotoxicological information for the risk assessment of pharmaceuticals and their mixtures in the environment.
Assuntos
Aliivibrio fischeri , Daphnia , Poluentes Químicos da Água , Aliivibrio fischeri/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Animais , Poluentes Químicos da Água/toxicidade , Preparações Farmacêuticas , Testes de Toxicidade , Daphnia magnaRESUMO
The global rise in plastic production has led to significant plastic deposition in aquatic ecosystems, releasing chemical compounds as plastics degrade. Among these, bisphenol A (BPA) is a major global concern due to its endocrine-disrupting effects and widespread presence in aquatic environments. Furthermore, the toxicity of BPA on aquatic organisms can be modulated by global change stressors such as temperature, which plays an essential role in the metabolism of organisms, including the degradation and accumulation of toxic compounds. In this study, we aimed to understand how temperature can modulate the toxic effect of BPA on a phytoplankton species (Cryptomonas ovata) and how this effect can be transferred to its herbivorous consumer (Daphnia magna). To do this, we first determined the sensitivity of C. ovata over a BPA gradient (0-10â¯mgâ¯L-1). Subsequently, we experimentally determined how the increase in temperature (+5ºC) could modify the toxic effect of BPA on the physiology, metabolism and growth of the phytoplankton. Finally, we investigated how this effect transferred to the growth rate of D. magna through food. Our results show a negative effect of BPA on C. ovata from 5â¯mg BPA L-1, affecting its photosynthetic yield of photosystem II, net primary production, respiration, and growth. This effect was accelerated when the temperature was higher. Additionally, the growth rate of D. magna also decreased when fed on C. ovata grown in the presence of BPA and high temperature. Our results indicate that high temperature can accelerate the toxic effects of BPA on organisms located at the base of the food web and this effect could be transferred to higher levels through food.
Assuntos
Compostos Benzidrílicos , Criptófitas , Daphnia , Fenóis , Poluentes Químicos da Água , Compostos Benzidrílicos/toxicidade , Daphnia/efeitos dos fármacos , Animais , Fenóis/toxicidade , Poluentes Químicos da Água/toxicidade , Criptófitas/efeitos dos fármacos , Temperatura , Fitoplâncton/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Daphnia magnaRESUMO
This study demonstrated the strengths of in vivo molecular staining coupled with automated imaging analysis in Daphnia magna. A multiwell plate protocol was developed to assess mitochondrial membrane potential using the JC-1 dye. The suitability of five common anesthetics was initially tested, and 5% ethanol performed best in terms of anesthetic effects and healthy recovery. The staining conditions were optimized to 30 min staining with 2 µM JC-1 for best J-aggregate formation. The protocol was validated with the model compound carbonyl cyanide 3-chlorophenylhydrazone (CCCP) and used to measure the effect of four environmental contaminants, 2,4-dinitrophenol, triclosan, n-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), and ibuprofen, on mitochondrial health. Test organisms were imaged using an automated confocal microscope, and fluorescence intensities were automatically quantified. The effect concentrations for CCCP were lower by a factor of 30 compared with the traditional OECD 202 acute toxicity test. Mitochondrial effects were also detected at lower concentrations for all tested environmental contaminants compared to the OCED 202 test. For 2,4-dinitrophenol, mitochondria effects were detectable after 2 h exposure to environmentally relevant concentrations and predicted organism death was observed after 24 h. The high sensitivity and time efficiency of this novel automated imaging method make it a valuable tool for advancing ecotoxicological testing.
Assuntos
Daphnia , Potencial da Membrana Mitocondrial , Animais , Daphnia/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Ecotoxicologia , Fluorescência , Poluentes Químicos da Água/toxicidade , Daphnia magnaRESUMO
Harmful algal blooms and the toxins produced during these events are a human and environmental health concern worldwide. Saxitoxin and its derivatives are potent natural aquatic neurotoxins produced by certain freshwater cyanobacteria and marine algae species during these bloom events. Saxitoxins effects on human health are well studied, however its effects on aquatic biota are still largely unexplored. This work aims at evaluating the effects of a pulse acute exposure (24 h) of the model cladoceran Daphnia magna to 30 µg saxitoxin L-1, which corresponds to the safety guideline established by the World Health Organization (WHO) for these toxins in recreational freshwaters. Saxitoxin effects were assessed through a comprehensive array of biochemical (antioxidant enzymes activity and lipid peroxidation), genotoxicity (alkaline comet assay), neurotoxicity (total cholinesterases activity), behavioral (swimming patterns), physiological (feeding rate and heart rate), and epigenetic (total 5-mC DNA methylation) biomarkers. Exposure resulted in decreased feeding rate, heart rate, total cholinesterases activity and catalase activity. Contrarily, other antioxidant enzymes, namely glutathione-S-transferases and selenium-dependent Glutathione peroxidase had their activity increased, together with lipid peroxidation levels. The enhancement of the antioxidant enzymes was not sufficient to prevent oxidative damage, as underpinned by lipid peroxidation enhancement. Accordingly, average DNA damage level was significantly increased in STX-exposed daphnids. Total DNA 5-mC level was significantly decreased in exposed organisms. Results showed that even a short-term exposure to saxitoxin causes significant effects on critical molecular and cellular pathways and modulates swimming patterns in D. magna individuals. This study highlights sub-lethal effects caused by saxitoxin in D. magna, suggesting that these toxins may represent a marked challenge to their thriving even at a concentration deemed safe for humans by the WHO.
Assuntos
Daphnia , Saxitoxina , Daphnia/efeitos dos fármacos , Daphnia/fisiologia , Animais , Saxitoxina/toxicidade , Poluentes Químicos da Água/toxicidade , Humanos , Proliferação Nociva de Algas , Colinesterases/metabolismo , Daphnia magnaRESUMO
Dragon fruit oligosaccharide (DFO) is an indigestible prebiotic that enhances the growth and reproduction of Daphnia magna, increases the expression of genes involved in immunity, and reduces oxidative stress. This study investigated the effects of DFO on the expression of innate immunity- (Toll, Pelle, proPO, A2M, and CTL), oxidative stress- (Mn-SOD), and nitric oxide (NO) synthesis-related genes (NOS1, NOS2, and arginase) as well as NO localization and number of hemocytes in D. magna. For this ten-day-old D. magna were treated with 0 or 9 mg l-1 of DFO for 24 and 85 h. Gene expression levels, NO intensity and localization, and total hemocytes were evaluated. After 24 h, the expression of Toll and proPO increased significantly (p < 0.05), while that of C-type lectins (CTL) was reduced (p < 0.05). At 85 h, Mn-SOD and CTL expressions were markedly suppressed (p < 0.05). NO was mostly localized in the foregut, midgut, hindgut, and carapace. The expression of NOS1 was reduced after 24 h (p < 0.05). In addition, NO intensity at 24 h was insignificantly lower than the control (p > 0.05). At 85 h, the expression of NOS1, NOS2, and arginase was higher than control, but NO intensity did not differ significantly (p > 0.05). Furthermore, the total hemocyte count elevated remarkably at 85 h (p < 0.05). Our study suggested that 9 mg l-1 of DFO could alter the expression of the genes related to innate immunity, oxidative stress, and NO synthesis in D. magna and significantly stimulate hemocyte production.
Assuntos
Daphnia , Hemócitos , Imunidade Inata , Óxido Nítrico , Oligossacarídeos , Estresse Oxidativo , Animais , Hemócitos/imunologia , Hemócitos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Oligossacarídeos/farmacologia , Daphnia/imunologia , Óxido Nítrico/metabolismo , Imunidade Celular , Frutas/imunologia , Prebióticos/administração & dosagem , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Daphnia magna , CactaceaeRESUMO
Natural products, specifically plant extracts with biological activity and the ability to act as botanical biopesticides are often mistakenly considered nontoxic. Scientific evidence indicates the contrary, and for this reason, the objective of this work was to evaluate the toxicity of extracts obtained from Petiveria alliacea L. (Caryophyllales, Phytolaccaceae) using Daphnia magna Straus (Cladocera, Daphniidae) as a bioindicator to identify the plant extracts and the respective concentrations that present the highest toxicity. Leaves of P. alliacea were collected in the Peruvian amazone. From this material, three types of extract (hexane, ethanolic and aqueous) were prepared, which were used in the bioassays with D. magna to find the least toxic extract. Acute toxicity bioassays with D. magna during 48 h of exposure to hexane, ethanolic, and aqueous extracts yielded median lethal concentration (LC50) values of 26.9, 230.6, and 657.9 mg L-1, respectively. The aqueous extract presented the lowest toxicity, causing minimal D. magna mortality in the range of 6.67 to 13.33% at concentrations of 10 and 100 mg L-1. This result enables the efficient use of this plant species in a sustainable manner with a minimal environmental impact for the future development of natural products for pest control.
Assuntos
Daphnia , Extratos Vegetais , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Daphnia/efeitos dos fármacos , Dose Letal Mediana , Peru , Testes de Toxicidade Aguda , Daphnia magnaRESUMO
Microplastic risk assessment often characterizes primary plastics, plastics intentionally manufactured at the micro- and nanoscale, or plastics collected within the natural environment, which often lack repeatability and the volume necessary for reliable hazard characterization. There is limited understanding of how environmentally representative plastics prepared at the microscale impact aquatic organisms. The aim of the present study was to create environmentally representative microplastics and characterize their toxicokinetics and hazards. Plastic cups and forks were micronized to <120 µm particles and Daphnia magna were exposed for 48 h at concentrations ranging from 0.01 mg/L to 100 mg/L. Uptake and depuration experiments were conducted at the highest concentration where accumulation was confirmed. Raman spectroscopy identified that both plastics were polystyrene and had similar size distributions. Microplastics were not acutely toxic but accumulated and rapidly depurated. Toxicokinetics demonstrated that cup MPs were consumed at higher rates than fork MPs despite similar physical characteristics. Daphnia magna preferentially selected smaller particles from the heterogenous suspensions. Future research will need to further explore the relationship between physicochemical properties, particularly size, and ecotoxicity. The study focused on mortality as the primary hazard endpoint. However alternative, sublethal biomarkers may be more appropriate in describing the effects of microplastic exposure.
Assuntos
Daphnia , Microplásticos , Poluentes Químicos da Água , Daphnia/efeitos dos fármacos , Animais , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Monitoramento Ambiental , Plásticos/toxicidade , Toxicocinética , Daphnia magnaRESUMO
Metal contamination of aquatic environments remains a major concern due to their persistence. The water flea Daphnia magna is an important model species for metal toxicity studies and water quality assessment. However, most research has focused on physiological endpoints such as mortality, growth, and reproduction in laboratory settings, as well as neglected toxicogenomic responses. Copper (Cu) and zinc (Zn) are essential trace elements that play crucial roles in many biological processes, including iron metabolism, connective tissue formation, neurotransmitter synthesis, DNA synthesis, and immune function. Excess amounts of these metals result in deviations from homeostasis and may induce toxic responses. In this study, we analyzed Daphnia magna transcriptomic responses to IC5 levels of Cu (120 µg/L) and Zn (300 µg/L) in environmental water obtained from a pristine lake with adjusted water hardness (150 mg/L CaCO3). The study was carried out to gain insights into the Cu and Zn regulated stress response mechanisms in Daphnia magna at transcriptome level. A total of 2,688 and 3,080 genes were found to be differentially expressed (DEG) between the control and Cu and the control and Zn, respectively. There were 1,793 differentially expressed genes in common for both Cu and Zn, whereas the number of unique DEGs for Cu and Zn were 895 and 1,287, respectively. Gene ontology and KEGG pathways enrichment were carried out to identify the molecular functions and biological processes affected by metal exposures. In addition to well-known biomarkers, novel targets for metal toxicity screening at the genomic level were identified.
Assuntos
Cobre , Daphnia , Transcriptoma , Poluentes Químicos da Água , Zinco , Daphnia/genética , Daphnia/efeitos dos fármacos , Daphnia/metabolismo , Animais , Cobre/toxicidade , Zinco/toxicidade , Poluentes Químicos da Água/toxicidade , Transcriptoma/efeitos dos fármacos , Perfilação da Expressão Gênica , Daphnia magnaRESUMO
Agri-chemicals such as fungicides are applied in natural settings and hence are exposed to the environment's ultraviolet (UV) light. Recently, many fungicides in commerce are being modified as nano-enabled formulations to increase agricultural productivity and reduce potential off-target effects. The present study investigated the impacts of sunlight-grade UV emission on the effects of either conventional or nano-enabled azoxystrobin (Az or nAz, respectively), a commonly applied agricultural fungicide, on Daphnia magna. Daphnids were exposed to increasing concentrations of Az or nAz under either full-spectrum (Vis) or full-spectrum Vis + UV (Vis + UV) lighting regimes to evaluate LC50s. Az LC50 was calculated at 268.8 and 234.2 µg/L in Vis or Vis + UV, respectively, while LC50 for nAz was 485.6 and 431.0 µg/L under Vis or Vis + UV light, respectively. Daphnids were exposed to 10% LC50 of either Az or nAz under Vis or Vis + UV lighting regime for 48 h or 21 d (acute and chronic, respectively). By 48 h, both Az and nAz reduced O2 consumption and increased TBARS. Heart rate was increased in Az-exposed daphnids but not in nAz groups. Neither of the two chemicals impacted thoracic limb activity. In 21 d exposures, Az significantly reduced biomass production and fecundity, but nAz groups were not significantly different from controls. The results of the present study demonstrate that conventional Az is more toxic to D. magna at lethal and sub-lethal levels in acute and chronic exposures, and sunlight strength UV can potentiate both acute and chronic effects of Az and nAz on D. magna.
Assuntos
Daphnia , Fungicidas Industriais , Pirimidinas , Estrobilurinas , Raios Ultravioleta , Animais , Daphnia/efeitos dos fármacos , Estrobilurinas/toxicidade , Fungicidas Industriais/toxicidade , Pirimidinas/toxicidade , Poluentes Químicos da Água/toxicidade , Daphnia magnaRESUMO
We evaluated the physiological characteristics of chemical-tolerant cladocerans. Over the course of 26 generations (F25), Daphnia magna was continuously exposed to pirimicarb (carbamate) solutions (0, 3.8, 7.5, and 15 µg/L) in sub-lethal or lethal levels. The 48 h EC50 values (29.2-29.9 µg/L) for 7.5 and 15 µg/L exposure groups were found to be nearly two times higher than that in the control (17.2 µg/L). Subsequently, we investigated whether the extinction probability changed when the chemical-tolerant daphnids were fed two different types of food, Chlorella vulgaris and Synechococcus leopoliensis. Furthermore, we ascertained how chemical tolerance influences respiration and depuration rates. The 48 h EC50 value was positively related to the extinction probability when the daphnids were fed S. leopoliensis. Because the measured lipid content of S. leopoliensis was three times lower than that of C. vulgaris, the tolerant daphnids struggled under nutrient-poor conditions. Respiration rates across all pirimicarb treatment groups were higher than those in the control group, suggesting that they may produce large amounts of energy through respiration to maintain the chemical tolerance. Since the pirimicarb depuration rate for 7.5 µg/L exposure groups was higher than that in the control, the altered metabolic/excretion rate may be one factor for acquiring chemical tolerance. These altered physiological characteristics are crucial parameters for evaluating the mechanisms of chemical tolerance and associated fitness costs.
Assuntos
Carbamatos , Daphnia magna , Animais , Daphnia magna/efeitos dos fármacos , Daphnia magna/fisiologia , Pirimidinas , Poluentes Químicos da Água/toxicidadeRESUMO
Zeolite type 5A combined with the magnetic properties of maghemite nanoparticles facilitate the rapid absorption of heavy metals, which makes them an interesting proposal for the remediation of water contaminated with lead and arsenic. However, the physicochemical analysis related to concentration and size for the use of this magnetic zeolite composite (MZ0) in water bodies and the possible toxicological effects on aquatic fauna has not yet been carried out. The main objective of the research work is to determine lethal concentrations that cause damage to Daphnia magna based on LC50 tests, morphology, reproductive rate, and quantification of the expression of three genes closely involved in the morphological development of vital structures (Glass, NinaE, Pph13). To achieve this objective, populations of neonates and young individuals were used, and results showed that the LC50 for neonates was 11,314 mg L-1, while for young individuals, it was 0.0310 mg L-1. Damage to morphological development was evidenced by a decrease in eye size in neonates, an increase in eye size in young individuals, variations in the size of the caudal spine for both age groups, and slight increases in the heart size, body, and antenna for both age groups. The reproductive rate of neonates was not affected by the lower concentrations of MZ0, while in young individuals, the reproductive rate decreased by more than 50% from the minimum exposure concentration of MZ0. And for both ages, Glass gene expression levels decreased as the MZ0 concentration increased. Also, the MZ0 evidenced its affinity for the exoskeleton of D. magna, which was observed using both light microscopy and electron microscopy. It is concluded that MZ0 did not generate significant damage in the mortality, morphology, reproductive rate, or gene expression in D. magna at lower concentrations, demonstrating the importance of evaluating the possible impacts on different life stages of the cladoceran.
Assuntos
Daphnia , Zeolitas , Animais , Daphnia/efeitos dos fármacos , Daphnia/genética , Zeolitas/toxicidade , Zeolitas/química , Poluentes Químicos da Água/toxicidade , Reprodução/efeitos dos fármacos , Dose Letal Mediana , Daphnia magnaRESUMO
High ammonia pollution is a common problem in water bodies. However, research on the mechanisms underlying the toxic effects on organisms at different nutritional levels is still insufficient. Herein, based on the environmental concentration, the toxic effects of high ammonia pollution on Daphnia magna were investigated. Overall, the feeding and filtration rates of D. magna were significantly decreased by ammonia. Growth inhibition of D. magna by ammonia was confirmed by the decreased body length. After ammonia exposure, the metabolic status of D. magna changed, the correlation network weakened, and the correlations between metabolites were disrupted. Changes occurred in metabolites primarily involved in oxidative stress, fatty acid oxidation, tricarboxylic acid cycle, and protein digestion, absorption, and synthesis, which were validated through alterations in multiple biomarkers. In addition, mitochondrial function was evaluated and was found to inhibit mitochondrial activity, which was accompanied by a decreased marker of mitochondrial activity contents and ATPase activity. Thus, the results suggested that energy metabolism and oxidative stress were involved in ammonia-induced growth toxicity. This study provides new insights into the impact of ammonia on aquatic ecological health.
Assuntos
Amônia , Daphnia magna , Metabolismo Energético , Estresse Oxidativo , Poluentes Químicos da Água , Animais , Amônia/toxicidade , Daphnia magna/efeitos dos fármacos , Daphnia magna/fisiologia , Metabolismo Energético/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidadeRESUMO
To develop a method for predicting chronic toxicity of pharmaceuticals in Daphnia, we investigated the feasibility of combining the presence of drug-target orthologs in Daphnia magna, classification based on pharmacological effects, and ecotoxicity quantitative structure-activity relationship (QSAR) prediction. We established datasets on the chronic toxicity of pharmaceuticals in Daphnia, including information on therapeutic categories, target proteins, and the presence or absence of drug-target orthologs in D. magna, using literature and databases. Chronic toxicity was predicted using ecotoxicity prediction QSAR (Ecological Structure Activity Relationship and Kashinhou Tool for Ecotoxicity), and the differences between the predicted and measured values and the presence or absence of drug-target orthologs were examined. For pharmaceuticals without drug-target orthologs in D. magna or without expected specific actions, the ecotoxicity prediction QSAR analysis yielded acceptable predictions of the chronic toxicity of pharmaceuticals. In addition, a workflow model to assess the chronic toxicity of pharmaceuticals in Daphnia was proposed based on these evaluations and verified using an additional dataset. The addition of biological aspects such as drug-target orthologs and pharmacological effects would support the use of QSARs for predicting the chronic toxicity of pharmaceuticals in Daphnia.