Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 766
Filtrar
1.
Int J Mol Sci ; 25(18)2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39337670

RESUMO

Gestational diabetes mellitus (GDM) is a common condition during pregnancy. The prevalence of GDM is continuously increasing worldwide. Due to accessible diagnostic methods and a clear understanding of risk factors, GDM can be effectively diagnosed and managed. Galectins may influence immunomodulatory and inflammatory processes. This study examines the expression of galectin-7 in the placentas of women with gestational diabetes (GDM), compares it to its expression in healthy pregnancies, and evaluates the associated clinical outcomes. The placentas of 40 healthy women and 40 GDM placentas were included in the cohort. The expression level of galecin-7 was measured in the syncytiotrophoblast (SCT) and in the decidua of the placenta by immunohistochemistry and double immunofluorescence staining. The evaluation was performed by an immunoreactivity score (IRS). The study results show an increased expression of galectin-7 in the SCT and the decidua of GDM placentas as compared to the placentas of the control group. Elevated levels of galectin-7 were observed in both the nucleus and the cytoplasm. This study investigated the hypothesis that galectins are involved in pathophysiological processes of gestational diabetes. Statistical analysis of gene expression patterns confirmed that galectin-7 is indeed upregulated in GDM placentas. Further studies are needed to show the correlation of galectin-7 and the development and maintenance of gestational diabetes mellitus.


Assuntos
Diabetes Gestacional , Galectinas , Placenta , Humanos , Diabetes Gestacional/metabolismo , Diabetes Gestacional/genética , Feminino , Gravidez , Galectinas/metabolismo , Galectinas/genética , Placenta/metabolismo , Adulto , Trofoblastos/metabolismo , Decídua/metabolismo , Decídua/patologia , Estudos de Casos e Controles
2.
Nat Commun ; 15(1): 8379, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333481

RESUMO

Scar tissue formation is a hallmark of wound repair in adults and can chronically affect tissue architecture and function. To understand the general phenomena, we sought to explore scar-driven imbalance in tissue homeostasis caused by a common, and standardized surgical procedure, the uterine scar due to cesarean surgery. Deep uterine scar is associated with a rapidly increasing condition in pregnant women, placenta accreta spectrum (PAS), characterized by aggressive trophoblast invasion into the uterus, frequently necessitating hysterectomy at parturition. We created a model of uterine scar, recapitulating PAS-like invasive phenotype, showing that scar matrix activates mechanosensitive ion channel, Piezo1, through glycolysis-fueled cellular contraction. Piezo1 activation increases intracellular calcium activity and Protein kinase C activation, leading to NF-κB nuclear translocation, and MafG stabilization. This inflammatory transformation of decidua leads to production of IL-8 and G-CSF, chemotactically recruiting invading trophoblasts towards scar, initiating PAS. Our study demonstrates aberrant mechanics of scar disturbs stroma-epithelia homeostasis in placentation, with implications in cancer dissemination.


Assuntos
Cicatriz , Inflamação , Canais Iônicos , Placenta Acreta , Trofoblastos , Feminino , Gravidez , Humanos , Placenta Acreta/metabolismo , Placenta Acreta/patologia , Cicatriz/metabolismo , Cicatriz/patologia , Canais Iônicos/metabolismo , Canais Iônicos/genética , Animais , Inflamação/metabolismo , Inflamação/patologia , Trofoblastos/metabolismo , Trofoblastos/patologia , Decídua/patologia , Decídua/metabolismo , Camundongos , NF-kappa B/metabolismo , Cesárea/efeitos adversos , Proteína Quinase C/metabolismo , Proteína Quinase C/genética , Interleucina-8/metabolismo , Útero/patologia , Útero/metabolismo
3.
Int Immunopharmacol ; 142(Pt B): 113224, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39306886

RESUMO

BACKGROUND: Decidual mesenchymal stem cells (DMSCs) are easily obtained and exhibit strong anti-inflammatory and anti-apoptotic effects. Compared with bone marrow mesenchymal stem cells (BMSCs), their role in cell transplantation after idiopathic pulmonary fibrosis remains unclear. We investigated whether the transplantation of BMSCs and DMSCs could alleviate pulmonary inflammation and fibrosis in a bleomycin-induced mouse model of pulmonary fibrosis. METHODS: BMSCs and DMSCs were derived from healthy donors. The anti-inflammatory and anti-apoptotic effects on both cell types were evaluated in vitro. The function of DMSCs in MLE-12 cells and mouse lung fibroblasts was examined using additional transwell coculture experiments in vitro. Twenty-one days after MSC transplantation, we examined the inflammatory factors in the serum and bronchoalveolar lavage fluid, collagen content, pathology, fibrotic area, lung function, and micro-computed tomography of the lung tissue. RESULTS: DMSCs exhibited better anti-inflammatory and anti-apoptotic effects than BMSCs on MLE-12 cells in vitro. In addition, DMSCs inhibited tumor growth factor ß-dependent epithelial-mesenchymal transition in MLE-12 cells and attenuated mouse lung fibroblasts fibrosis. Furthermore, transplantation of DMSCs in the mouse idiopathic pulmonary fibrosis model significantly attenuated pulmonary inflammation and lung fibrosis compared with BMSCs transplantation. CONCLUSIONS: DMSCs exhibited better efficacy in improving pulmonary inflammation and lung fibrosis than BMSCs. Thus, DMSCs are a potential therapeutic target for pulmonary fibrosis.


Assuntos
Apoptose , Bleomicina , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Feminino , Humanos , Gravidez , Camundongos , Fibrose Pulmonar/terapia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Decídua/patologia , Fibroblastos , Camundongos Endogâmicos C57BL , Linhagem Celular , Modelos Animais de Doenças , Células Cultivadas , Pulmão/patologia , Transição Epitelial-Mesenquimal
4.
Cell Mol Life Sci ; 81(1): 329, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090270

RESUMO

Decidualisation of the endometrium is a key event in early pregnancy, which enables embryo implantation. Importantly, the molecular processes impairing decidualisation in obese mothers are yet to be characterised. We hypothesise that impaired decidualisation in obese mice is mediated by the upregulation of leptin modulators, the suppressor of cytokine signalling 3 (SOCS3) and the protein tyrosine phosphatase non-receptor type 2 (PTPN2), together with the disruption of progesterone (P4)-signal transducer and activator of transcription (STAT3) signalling. After feeding mice with chow diet (CD) or high-fat diet (HFD) for 16 weeks, we confirmed the downregulation of P4 and oestradiol (E2) steroid receptors in decidua from embryonic day (E) 6.5 and decreased proliferation of stromal cells from HFD. In vitro decidualised mouse endometrial stromal cells (MESCs) and E6.5 deciduas from the HFD showed decreased expression of decidualisation markers, followed by the upregulation of SOCS3 and PTPN2 and decreased phosphorylation of STAT3. In vivo and in vitro leptin treatment of mice and MESCs mimicked the results observed in the obese model. The downregulation of Socs3 and Ptpn2 after siRNA transfection of MESCs from HFD mice restored the expression level of decidualisation markers. Finally, DIO mice placentas from E18.5 showed decreased labyrinth development and vascularisation and fetal growth restricted embryos. The present study revealed major defects in decidualisation in obese mice, characterised by altered uterine response to E2 and P4 steroid signalling. Importantly, altered hormonal response was associated with increased expression of leptin signalling modulators SOCS3 and PTPN2. Elevated levels of SOCS3 and PTPN2 were shown to molecularly affect decidualisation in obese mice, potentially disrupting the STAT3-PR regulatory molecular hub.


Assuntos
Decídua , Retardo do Crescimento Fetal , Leptina , Placenta , Transdução de Sinais , Animais , Feminino , Camundongos , Gravidez , Decídua/metabolismo , Decídua/patologia , Dieta Hiperlipídica/efeitos adversos , Retardo do Crescimento Fetal/metabolismo , Retardo do Crescimento Fetal/patologia , Leptina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo , Obesidade/patologia , Placenta/metabolismo , Progesterona/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Fator de Transcrição STAT3/metabolismo , Células Estromais/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética
5.
Cell Mol Life Sci ; 81(1): 324, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080028

RESUMO

Polycystic ovary syndrome (PCOS) is a complex common endocrine disorder affecting women of reproductive age. Ovulatory dysfunction is recognized as a primary infertile factor, however, even when ovulation is medically induced and restored, PCOS patients continue to experience reduced cumulative pregnancy rates and a higher spontaneous miscarriage rate. Hyperandrogenism, a hallmark feature of PCOS, affects ovarian folliculogenesis, endometrial receptivity, and the establishment and maintenance of pregnancy. Decidualization denotes the transformation that the stromal compart of the endometrium must undergo to accommodate pregnancy, driven by the rising progesterone levels and local cAMP production. However, studies on the impact of hyperandrogenism on decidualization are limited. In this study, we observed that primary endometrial stromal cells from women with PCOS exhibit abnormal responses to progesterone during in vitro decidualization. A high concentration of testosterone inhibits human endometrial stromal cells (HESCs) decidualization. RNA-Seq analysis demonstrated that pyruvate dehydrogenase kinase 4 (PDK4) expression was significantly lower in the endometrium of PCOS patients with hyperandrogenism compared to those without hyperandrogenism. We also characterized that the expression of PDK4 is elevated in the endometrium stroma at the mid-secretory phase. Artificial decidualization could enhance PDK4 expression, while downregulation of PDK4 leads to abnormal decidualization both in vivo and in vitro. Mechanistically, testosterone excess inhibits IGFBP1 and PRL expression, followed by phosphorylating of AMPK that stimulates PDK4 expression. Based on co-immunoprecipitation analysis, we observed an interaction between SIRT1 and PDK4, promoting glycolysis to facilitate decidualization. Restrain of AR activation resumes the AMPK/SIRT1/PDK4 pathway suppressed by testosterone excess, indicating that testosterone primarily acts on decidualization through AR stimulation. Androgen excess in the endometrium inhibits decidualization by disrupting the AMPK/SIRT1/PDK4 signaling pathway. These data demonstrate the critical roles of endometrial PDK4 in regulating decidualization and provide valuable information for understanding the underlying mechanism during decidualization.


Assuntos
Proteínas Quinases Ativadas por AMP , Endométrio , Síndrome do Ovário Policístico , Sirtuína 1 , Células Estromais , Humanos , Feminino , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Células Estromais/metabolismo , Células Estromais/patologia , Células Estromais/efeitos dos fármacos , Sirtuína 1/metabolismo , Sirtuína 1/genética , Endométrio/metabolismo , Endométrio/patologia , Endométrio/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Adulto , Hiperandrogenismo/metabolismo , Hiperandrogenismo/patologia , Decídua/metabolismo , Decídua/patologia , Testosterona/metabolismo , Testosterona/farmacologia , Androgênios/farmacologia , Androgênios/metabolismo , Progesterona/metabolismo , Progesterona/farmacologia , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Transdução de Sinais/efeitos dos fármacos
6.
Am J Dermatopathol ; 46(10): 704-711, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39008463

RESUMO

ABSTRACT: Cutaneous deciduosis is an extremely rare condition that clinically presents as a nodular lesion in the skin as a scar or neoplasm. Histologically, this may pose a diagnostic challenge simulating malignant epithelioid neoplasms including sarcoma. Histologically, a nodular growth pattern of large monomorphic epithelioid cells is observed. The epithelioid cells in deciduosis can appear atypical with considerable nuclear pleomorphism, mimicking a malignancy. These features can be misinterpreted as a primary cutaneous or metastatic malignancy by dermatopathologists who are not familiar with gynecologic pathology. Failure to correctly diagnose this condition may result in unnecessary diagnostic studies for the patient. In this article, we report a case of cutaneous deciduosis in a 35-year-old woman with a cesarean scar. Histological examination revealed nodular proliferation of large epithelioid cells with pale eosinophilic cytoplasm and large nuclei with prominent nucleoli. Compressed atrophic slit-like glands resembling endometrial glands were present in some areas. Histopathological features of decidual cells, along with appropriate immunohistochemical studies, help establish the diagnosis and rule out other neoplastic mimics of deciduosis.


Assuntos
Neoplasias Cutâneas , Humanos , Feminino , Adulto , Diagnóstico Diferencial , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/diagnóstico , Dermatopatias/patologia , Dermatopatias/diagnóstico , Cicatriz/patologia , Imuno-Histoquímica , Cesárea , Células Epitelioides/patologia , Decídua/patologia
7.
Reproduction ; 168(3)2024 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-38995736

RESUMO

In Brief: Advanced maternal age is associated with a higher rate of pregnancy complications that are unrelated to karyotypic abnormalities of the oocyte. This study shows that the murine uterine stroma undergoes profound epigenetic changes affecting active and repressive histone modification profiles that are associated with impaired endometrial functionality and underpin the decline in reproductive performance of aged females. Abstract: Decidualization describes the transformation of the uterine stroma in response to an implanting embryo, a process critical for supporting the development of the early embryo, for ensuring normal placentation and ultimately for a healthy reproductive outcome. Maternal age has been found to impede the progression of decidualization, heightening the risk of reproductive problems. Here, we set out to comprehensively characterize this deficit by pursuing transcriptomic and epigenomic profiling approaches specifically in the uterine stromal cell (UtSC) compartment of young and aged female mice. We find that UtSCs from aged females are globally far less responsive to the decidualization stimulus triggered by exposure to the steroid hormones estrogen and progesterone. Despite an overall transcriptional hyperactivation of genes that are differentially expressed as a function of maternal age, the hormonally regulated genes specifically fail to be activated in aged UtSCs. Moreover, even in their unstimulated 'ground' state, UtSCs from aged females are epigenetically distinct, as determined by genomic enrichment profiling for the active and repressive histone marks H3K4me3 and H3K9me3, respectively. We find that many hormone-inducible genes exhibit a profound lack of promoter-associated H3K4me3 in aged UtSCs, implying that a significant enrichment of active histone marks prior to gene stimulation is required to enable the elicitation of a rapid transcriptional response. With this combination of criteria, our data highlight specific deficits in epigenetic marking and gene expression of ion channels and vascular markers. These results point to fundamental defects in muscle-related and perivascular niche functions of the uterine stroma with advanced maternal age.


Assuntos
Envelhecimento , Decídua , Epigênese Genética , Células Estromais , Feminino , Animais , Camundongos , Células Estromais/metabolismo , Decídua/metabolismo , Decídua/patologia , Código das Histonas , Histonas/metabolismo , Útero/metabolismo , Útero/patologia , Gravidez , Reprodução , Camundongos Endogâmicos C57BL , Idade Materna
8.
Biomol Biomed ; 24(6): 1827-1847, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-38958464

RESUMO

Recent discoveries in mRNA modification have highlighted N1-methyladenosine (m1A), but its role in preeclampsia (PE) pathogenesis remains unclear. In this study, we utilized methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) to identify m1A peaks and the expression profile of mRNA in the decidua of humans with early-onset PE (EPE), late-onset PE (LPE), and normal pregnancy (NP). We assessed the m1A modification patterns in preeclamptic decidua using 10 m1A modulators. Our bioinformatic analysis focused on differentially methylated mRNAs (DMGs) and differentially expressed mRNAs (DEGs) in pairwise comparisons of EPE vs. NP, LPE vs. NP, and EPE vs. LPE, as well as m1A-related DEGs. The comparisons of EPE vs. NP, LPE vs. NP, and EPE vs. LPE identified 3110, 2801, and 2818 DMGs, respectively. We discerned three different m1A modification patterns from this data. Further analysis revealed that key PE-related DMGs and m1A-related DEGs predominantly influence signaling pathways critical for decidualization, including cAMP, MAPK, PI3K-Akt, Notch, and TGF-ß pathways. Additionally, these modifications impact pathways related to vascular smooth muscle contraction, estrogen signaling, and relaxin signaling, contributing to vascular dysfunction. Our findings demonstrate that preeclamptic decidua exhibits unique mRNA m1A modification patterns and gene expression profiles that significantly alter signaling pathways essential for both decidualization and vascular dysfunction. These differences in m1A modification patterns provide valuable insights into the molecular mechanisms influencing the decidualization process and vascular function in the pathogenesis of PE. These m1A modification regulators could potentially serve as potent biomarkers or therapeutic targets for PE, warranting further investigation.


Assuntos
Adenosina , Decídua , Pré-Eclâmpsia , RNA Mensageiro , Humanos , Feminino , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Gravidez , Decídua/metabolismo , Decídua/patologia , Adenosina/análogos & derivados , Adenosina/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Adulto , Transdução de Sinais/genética
9.
FASEB J ; 38(14): e23833, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39012313

RESUMO

Recurrent spontaneous abortion (RSA) is a common pregnancy-related disorder. Cbl proto-oncogene like 1 (CBLL1) is an E3 ubiquitin ligase, which has been reported to vary with the menstrual cycle in the endometrium. However, whether CBLL1 is involved in the occurrence and development of RSA remains unclear. This study aimed to investigate the effects of CBLL1 on RSA. We analyzed the expression of CBLL1 in the decidua of RSA patients, as well as its functional effects on cellular senescence, oxidative stress, and proliferation of human endometrial stromal cells (HESCs). RNA sequencing was employed to identify a key downstream target gene regulated by CBLL1. We found that CBLL1 was upregulated in the decidua of RSA patients. Additionally, overexpression of CBLL1 promoted HESC senescence, increased oxidative stress levels, and inhibited proliferation. Phosphatase and tensin homolog located on chromosome 10 (PTEN) was identified as one of the important downstream target genes of CBLL1. In vivo experiments demonstrated that CBLL1 overexpression in the endometrium caused higher embryo absorption rate in mice. Consequently, elevated CBLL1 expression is a potential cause of RSA, representing a novel therapeutic target for RSA.


Assuntos
Aborto Habitual , Senescência Celular , Endométrio , PTEN Fosfo-Hidrolase , Células Estromais , Adulto , Animais , Feminino , Humanos , Camundongos , Gravidez , Aborto Habitual/metabolismo , Aborto Habitual/genética , Aborto Habitual/patologia , Proliferação de Células , Decídua/metabolismo , Decídua/patologia , Endométrio/metabolismo , Endométrio/patologia , Estresse Oxidativo , Proto-Oncogene Mas , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Células Estromais/metabolismo
10.
J Reprod Immunol ; 164: 104270, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38878627

RESUMO

Matrix metalloproteinases (MMPs) degrade extracellular matrix proteins and are important for placenta formation during early pregnancy. Recurrent pregnancy loss (RPL) is associated with abnormalities in endometrial extracellular matrix remodeling. This study aimed to elucidate the roles of MMP2 and MMP9 in RPL pathogenesis. In total, 295 women with a history of RPL and 101 controls were included in this genetic study. Genotype analysis was performed using polymerase chain reaction (PCR) restriction fragment length polymorphisms. For proteolytic analysis, decidua and villi were collected from 10 RPL-miscarried women with normal fetal chromosomes (NC) and 19 women with fetal chromosome aberrations (AC). The expression of MMP2 and MMP9 in the decidua and villi was measured by IHC and ELISA. All samples were collected after obtaining informed consent. There were no statistically significant differences in MMP2-735 C/T and MMP9-1562 C/T frequencies between women with RPL and the controls. There was no significant difference in MMP2 expression levels in the villi; however, MMP9 expression was significantly higher in normal fetal chromosomes. In the decidua, the expression of MMP2 in the NC group was significantly lower, and MMP9 in the NC group was significantly higher than in the AC group. Although no differences in MMP2-735 C/T and MMP9-1562 C/T gene polymorphisms were observed in the present study, it is suggested that differences at the protein level are involved in the pathogenesis of RPL since MMP expression is not only regulated by genes but also by local inflammation and various inductive signals.


Assuntos
Aborto Habitual , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , Humanos , Feminino , Aborto Habitual/genética , Gravidez , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Adulto , Polimorfismo de Nucleotídeo Único , Decídua/patologia , Decídua/imunologia , Decídua/metabolismo , Genótipo , Predisposição Genética para Doença
11.
J Cell Physiol ; 239(8): e31292, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38704705

RESUMO

Spontaneous abortion is the most common complication in early pregnancy, the exact etiology of most cases cannot be determined. Emerging studies suggest that mutations in ciliary genes may be associated with progression of pregnancy loss. However, the involvement of primary cilia on spontaneous abortion and the underlying molecular mechanisms remains poorly understood. We observed the number and length of primary cilia were significantly decreased in decidua of spontaneous abortion in human and lipopolysaccharide (LPS)-induced abortion mice model, accompanied with increased expression of proinflammatory cytokines interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α. The length of primary cilia in human endometrial stromal cell (hESC) was significantly shortened after TNF-α treatment. Knocking down intraflagellar transport 88 (IFT88), involved in cilia formation and maintenance, promoted the expression of TNF-α. There was a reverse regulatory relationship between cilia shortening and TNF-α expression. Further research found that shortened cilia impair decidualization in hESC through transforming growth factor (TGF)-ß/SMAD2/3 signaling. Primary cilia were impaired in decidua tissue of spontaneous abortion, which might be mainly caused by inflammatory injury. Primary cilia abnormalities resulted in dysregulation of TGF-ß/SMAD2/3 signaling transduction and decidualization impairment, which led to spontaneous abortion.


Assuntos
Aborto Espontâneo , Cílios , Transdução de Sinais , Proteína Smad2 , Proteína Smad3 , Fator de Crescimento Transformador beta , Feminino , Cílios/metabolismo , Cílios/patologia , Aborto Espontâneo/metabolismo , Aborto Espontâneo/patologia , Humanos , Proteína Smad2/metabolismo , Proteína Smad2/genética , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/genética , Animais , Proteína Smad3/metabolismo , Proteína Smad3/genética , Gravidez , Camundongos , Decídua/metabolismo , Decídua/patologia , Fator de Necrose Tumoral alfa/metabolismo , Células Estromais/metabolismo , Células Estromais/patologia
12.
Pediatr Radiol ; 54(9): 1549-1552, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38787524

RESUMO

Decidual cast is a little-known entity characterized by sloughing of the endometrium in several large pieces or in one cylindrical or membranous piece retaining the shape of the uterine cavity. Accounts of the diagnosis are sporadic and have not previously appeared in the pediatric imaging literature. We describe a case of a post-menarchal adolescent girl presenting with abnormal uterine bleeding, severe dysmenorrhea, and imaging features of genital tract obstruction, the cause of which was found to be a large decidual cast during examination under anesthesia. While rare, awareness of this phenomenon should be useful to pediatric imagers as the combination of bleeding and obstructive symptoms produces a confusing picture that may lead to a protracted clinical and imaging course.


Assuntos
Decídua , Humanos , Feminino , Adolescente , Decídua/diagnóstico por imagem , Decídua/patologia , Diagnóstico Diferencial , Hemorragia Uterina/diagnóstico por imagem , Hemorragia Uterina/etiologia , Ultrassonografia/métodos
13.
Reproduction ; 168(3)2024 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-38781072

RESUMO

In brief: Failure to induce mesenchymal-epithelial transition (MET) during stromal cell decidualization can lead to consequences such as impaired fertility in patients with endometriosis. METTL3-mediated m6A modification plays an important role in attenuating MET and defective decidualization of endometrial stromal cells and contributes to the development of reduced endometrial receptivity in endometriosis. Abstract: Mesenchymal-epithelial transition (MET)-mediated endometrial decidualization is pivotal for achieving endometrial receptivity and successful pregnancy. We observed blockade of MET in the eutopic secretory endometrium of patients with endometriosis, but the underlying mechanism is unknown. In this study, real-time PCR was used to detect PRL and IGFBP1 expression, whereas western blotting was used to detect the expression of MET markers and METTL3. Phalloidin staining was used to identify changes in cell morphology. M6A levels were quantified using a colorimetric method and m6A dot blots, and functional analysis was performed using spheroid adhesion assays. We first found that increased E-cadherin expression was accompanied by decreased vimentin and Slug expression in the eutopic secretory endometrium of individuals with endometriosis. We also detected a significant increase in both the m6A level and the expression of the related methyltransferase METTL3. Finally, METTL3 expression was negatively correlated with PRL, IGFBP1, and MET markers expression. Collectively, our findings suggest that METTL3 mediates m6A modification, thereby inhibiting MET formation within the eutopic secretory endometrium of patients with endometriosis. Increased METTL3-mediated m6A modification plays a crucial role in attenuating MET formation and decidualization impairment in endometrial stromal cells, ultimately contributing to compromised endometrial receptivity in individuals with endometriosis. These insights could lead to the identification of potential therapeutic targets for improving both endometrial receptivity and pregnancy rate among individuals affected by endometriosis.


Assuntos
Endometriose , Endométrio , Transição Epitelial-Mesenquimal , Metiltransferases , Células Estromais , Feminino , Humanos , Endometriose/metabolismo , Endometriose/patologia , Endometriose/genética , Endométrio/metabolismo , Endométrio/patologia , Adulto , Metiltransferases/metabolismo , Metiltransferases/genética , Células Estromais/metabolismo , Células Estromais/patologia , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Decídua/metabolismo , Decídua/patologia , Adenosina/metabolismo , Adenosina/análogos & derivados , Caderinas/metabolismo , Caderinas/genética
14.
Placenta ; 153: 1-21, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38810540

RESUMO

INTRODUCTION: Studies have shown that EMT (epithelial-mesenchymal transition) and energy metabolism influence each other, and it is unclear whether the trophoblast energy metabolism phenotype is dominated by glycolysis or mitochondrial respiration, and the relationship between trophoblast energy metabolism and EMT is still unclear. METHODS: Exosomes were isolated from the DSC of URSA patients and their miRNA profile was characterized by miRNA sequencing. Wound healing assays and transwell assays were used to assess the invasion and migration ability of trophoblasts. Mitochondrial stress and glycolysis stress test were used to evaluate energy metabolism phenotype of trophoblast. Luciferase reporter assays, qRT-PCR and WB were conducted to uncover the underlying mechanism. Finally, animal experiments were employed to explore the effect of DSC-exos on embryo absorption in mice. RESULTS: Our results showed that URSA-DSC-exos suppressed trophoblast EMT to reduce their migration and invasion, miR-22-5p_R-1 was the most upregulated miRNAs. URSA-DSC-exos can suppress trophoblast MGS (metabolic switch from mitochondrial respiration to glycolysis) and inhibit trophoblast migration and invasion by transferring miR-22-5p_R-1. Mechanistically, miR-22-5p_R-1 suppress trophoblast MGS and inhibit trophoblast EMT by directly suppressing PDK4 expression at the post-transcriptional level. Furthermore, in vivo experiment suggested that URSA-DSC-exos aggravated embryo absorption in mice. Clinically, PDK4 and EMT molecule were aberrant in villous of URSA patients, and negative correlations were found between miR-22-5p_R-1 and PDK4. DISCUSSION: Our findings indicated that URSA-DSC-exos induced MGS obstacle playing an important role in intercellular communication between trophoblast and DSC, illuminating a novel mechanism in DSC regulation of trophoblasts and their role in URSA.


Assuntos
Aborto Habitual , Exossomos , Glicólise , MicroRNAs , Mitocôndrias , Piruvato Desidrogenase Quinase de Transferência de Acetil , Trofoblastos , Feminino , MicroRNAs/metabolismo , MicroRNAs/genética , Trofoblastos/metabolismo , Humanos , Gravidez , Exossomos/metabolismo , Animais , Camundongos , Mitocôndrias/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Aborto Habitual/metabolismo , Aborto Habitual/genética , Transição Epitelial-Mesenquimal , Adulto , Decídua/metabolismo , Decídua/patologia
15.
Cell Mol Life Sci ; 81(1): 237, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38795132

RESUMO

Ovarian endometriosis is a common gynecological disease, and one of its most significant symptoms is infertility. In patients with endometriosis, defects in endometrial decidualization lead to impaired endometrial receptivity and embryo implantation, thus affecting early pregnancy and women's desire to have children. However, the mechanisms underlying the development of endometriosis and its associated defective decidualization are unclear. We find that NEK2 expression is increased in the ectopic and eutopic endometrium of patients with endometriosis. Meanwhile, NEK2 interacts with FOXO1 and phosphorylates FOXO1 at Ser184, inhibiting the stability of the FOXO1 protein. Importantly, NEK2-mediated phosphorylation of FOXO1 at Ser184 promotes cell proliferation, migration, invasion and impairs decidualization. Furthermore, INH1, an inhibitor of NEK2, inhibits the growth of ectopic lesions in mouse models of endometriosis and promotes endometrial decidualization in mouse models of artificially induced decidualization. Taken together, these findings indicate that NEK2 regulates the development of endometriosis and associated disorders of decidualization through the phosphorylation of FOXO1, providing a new therapeutic target for its treatment.


Assuntos
Proliferação de Células , Endometriose , Endométrio , Proteína Forkhead Box O1 , Quinases Relacionadas a NIMA , Feminino , Endometriose/metabolismo , Endometriose/patologia , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Humanos , Animais , Fosforilação , Camundongos , Quinases Relacionadas a NIMA/metabolismo , Quinases Relacionadas a NIMA/genética , Endométrio/metabolismo , Endométrio/patologia , Movimento Celular , Decídua/metabolismo , Decídua/patologia , Adulto , Modelos Animais de Doenças
16.
J Reprod Immunol ; 164: 104258, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38810587

RESUMO

The pathogenesis of preeclampsia (PE) has not been elucidated, but immune imbalance is known to be one of the main pathogeneses. Dysfunction of decidual macrophages can lead to PE, and the PD-1/PD-L1 signaling pathway is associated with macrophage polarization. However, the relationship between the influence of the PD-1/PD-L1 signaling pathway on macrophage polarization and the onset of PE has not been fully elucidated. In this study, we analyzed the expression of CD68, iNOS, CD206, PD-1 and PD-L1 and the coexpression of CD68+PD-1+ and CD68+PD-L1+ in the decidual tissue of PE patients (n= 18) and healthy pregnant women (n=20). We found that CD68 and iNOS expression was increased in the decidua of PE patients (P < 0.001) and that CD206, PD-1 and PD-L1 expression and CD68+PD-1+ and CD68+PD-L1+ coexpression were decreased (P < 0.001). To assess the influence of the PD-1/PD-L1 signaling pathway on macrophage polarization, we added an anti-PD-1 mAb (pembrolizumab) or an anti-PD-L1 mAb (durvalumab) during THP-1 differentiation into M1 macrophages. Then, we detected the polarization of CD68+CD80+ macrophages and the expression of iNOS. To examine the effect of macrophage polarization on the invasion ability of trophoblast cells, macrophages were cocultured with HTR8/SVneo cells, and the invasion ability of HTR8/SVneo cells was detected via transwell assays. We found that CD68+CD80+ macrophage polarization was enhanced (P<0.05) and that iNOS expression was greater (P<0.01) in the pembrolizumab group. In the durvalumab group, CD68+CD80+ macrophage polarization and iNOS expression were also increased (P<0.05 and P<0.001). Compared with that in the untreated group, the aggressiveness of HTR8/SVneo cells was decreased in both the pembrolizumab group (P < 0.01) and the durvalumab group (P < 0.001). These findings indicate that the PD-1/PD-L1 signaling pathway may play an important role in the pathogenesis of PE by influencing macrophage polarization and reducing the invasion ability of trophoblasts.


Assuntos
Antígeno B7-H1 , Decídua , Macrófagos , Pré-Eclâmpsia , Receptor de Morte Celular Programada 1 , Transdução de Sinais , Humanos , Feminino , Pré-Eclâmpsia/imunologia , Pré-Eclâmpsia/patologia , Pré-Eclâmpsia/metabolismo , Gravidez , Antígeno B7-H1/metabolismo , Antígeno B7-H1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Decídua/imunologia , Decídua/patologia , Decídua/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Transdução de Sinais/imunologia , Adulto , Antígenos CD/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Ativação de Macrófagos/imunologia , Células THP-1
17.
FASEB J ; 38(9): e23622, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703029

RESUMO

Endometriosis (EMs)-related infertility commonly has decreased endometrial receptivity and normal decidualization is the basis for establishing and maintaining endometrial receptivity. However, the potential molecular regulatory mechanisms of impaired endometrial decidualization in patients with EMs have not been fully clarified. We confirmed the existence of reduced endometrial receptivity in patients with EMs by scanning electron microscopy and quantitative real-time PCR. Here we identified an lncRNA, named BMPR1B-AS1, which is significantly downregulated in eutopic endometrium in EMs patients and plays an essential role in decidual formation. Furthermore, RNA pull-down, mass spectrometry, RNA immunoprecipitation, and rescue analyses revealed that BMPR1B-AS1 positively regulates decidual formation through interaction with the RNA-binding protein insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2). Downregulation of IGF2BP2 led to a decreased stability of BMPR1B-AS1 and inhibition of activation of the SMAD1/5/9 pathway, an inhibitory effect which diminished decidualization in human endometrial stromal cells (hESCs) decidualization. In conclusion, our identified a novel regulatory mechanism in which the IGF2BP2-BMPR1B-AS1-SMAD1/5/9 axis plays a key role in the regulation of decidualization, providing insights into the potential link between abnormal decidualization and infertility in patients with EMs, which will be of clinical significance for the management and treatment of infertility in patients with EMs.


Assuntos
Endometriose , RNA Longo não Codificante , Proteínas de Ligação a RNA , Adulto , Feminino , Humanos , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Decídua/metabolismo , Decídua/patologia , Endometriose/metabolismo , Endometriose/genética , Endometriose/patologia , Endométrio/metabolismo , Endométrio/patologia , Infertilidade Feminina/metabolismo , Infertilidade Feminina/genética , Infertilidade Feminina/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Células Estromais/metabolismo , Proteínas Smad , Adulto Jovem
18.
Circulation ; 149(21): 1670-1688, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38314577

RESUMO

BACKGROUND: Preeclampsia is a serious disease of pregnancy that lacks early diagnosis methods or effective treatment, except delivery. Dysregulated uterine immune cells and spiral arteries are implicated in preeclampsia, but the mechanistic link remains unclear. METHODS: Single-cell RNA sequencing and spatial transcriptomics were used to identify immune cell subsets associated with preeclampsia. Cell-based studies and animal models including conditional knockout mice and a new preeclampsia mouse model induced by recombinant mouse galectin-9 were applied to validate the pathogenic role of a CD11chigh subpopulation of decidual macrophages (dMφ) and to determine its underlying regulatory mechanisms in preeclampsia. A retrospective preeclampsia cohort study was performed to determine the value of circulating galectin-9 in predicting preeclampsia. RESULTS: We discovered a distinct CD11chigh dMφ subset that inhibits spiral artery remodeling in preeclampsia. The proinflammatory CD11chigh dMφ exhibits perivascular enrichment in the decidua from patients with preeclampsia. We also showed that trophoblast-derived galectin-9 activates CD11chigh dMφ by means of CD44 binding to suppress spiral artery remodeling. In 3 independent preeclampsia mouse models, placental and plasma galectin-9 levels were elevated. Galectin-9 administration in mice induces preeclampsia-like phenotypes with increased CD11chigh dMφ and defective spiral arteries, whereas galectin-9 blockade or macrophage-specific CD44 deletion prevents such phenotypes. In pregnant women, increased circulating galectin-9 levels in the first trimester and at 16 to 20 gestational weeks can predict subsequent preeclampsia onset. CONCLUSIONS: These findings highlight a key role of a distinct perivascular inflammatory CD11chigh dMφ subpopulation in the pathogenesis of preeclampsia. CD11chigh dMφ activated by increased galectin-9 from trophoblasts suppresses uterine spiral artery remodeling, contributing to preeclampsia. Increased circulating galectin-9 may be a biomarker for preeclampsia prediction and intervention.


Assuntos
Decídua , Galectinas , Macrófagos , Pré-Eclâmpsia , Remodelação Vascular , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/imunologia , Gravidez , Feminino , Animais , Galectinas/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Humanos , Decídua/metabolismo , Decídua/patologia , Camundongos Knockout , Útero/metabolismo , Útero/irrigação sanguínea , Modelos Animais de Doenças , Receptores de Hialuronatos/metabolismo , Receptores de Hialuronatos/genética , Estudos Retrospectivos , Camundongos Endogâmicos C57BL , Antígenos CD11
19.
Reprod Sci ; 31(7): 1983-2000, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38424407

RESUMO

BACKGROUND: Clinically, recurrent spontaneous abortion (RSA) is a pregnancy illness that is difficult to treat. Impaired decidualization is a documented cause of RSA, but the etiology and mechanism are still unknown. cAMP-responsive element binding protein 5 (CREB5) is a member of the ATF/CREB family. CREB5 has been reported to be related to pathological pregnancy, but there are few related studies on this topic in patients with RSA, and the underlying mechanism is unclear. METHODS: We collected decidual tissues from RSA patients and healthy pregnant women to measure the expression level of CREB5, PRL, IGFBP1, ATG5, LC3B, and SQSTM/p62. Then, the changes in CREB5 expression and autophagy levels were measured in human endometrial stromal cells (hESCs) during decidualization. The expression levels of PRL and IGFBP1 were tested in sh-CREB5/ov-CREB5 hESCs after decidualization induction, and the autophagy level in sh-CREB5/ov-CREB5 hESCs was measured without decidualization induction. The decidualization ability of sh-CREB5 and ov-CREB5 hESCs treated with an autophagy inducer or inhibitor was measured. To investigate the effect of CREB5 in hESCs on the invasion and migration of HTR8/SVneo cells, we performed a coculture experiment. Finally, we examined the expression of CREB5 and autophagy key proteins in mouse decidual tissues by constructing an abortion mouse model. RESULTS: In our study, we found that the expression of CREB5 was unusually elevated in the uterine decidua of RSA patients, but the expression of PRL, IGFBP1, and autophagy were decreased. During the decidualization of hESCs, the expression of CREB5 gradually decreases in a time-dependent manner with increasing autophagy. Moreover, by knocking down or overexpressing CREB5 in hESCs, it was found that CREB5 can impair decidualization and reduce autophagy in hESCs. Furthermore, the damage caused by CREB5 in terms of decidualization can be reversed by the addition of an autophagy inducer (rapamycin). In addition, CREB5 can increase the secretion of proteins (IL-1ß and TGF-ß1) in hESCs to inhibit trophoblast invasion and migration. CONCLUSIONS: Our data support the supposition that CREB5 disturbs the decidualization of endometrial stromal cells and interactions at the maternal-fetal interface by inhibiting autophagy and that its abnormal upregulation and dysfunction may lead to RSA. It may function as a diagnostic and therapeutic target for RSA. Similarly, we found that in the spontaneous abortion mouse model, the expression of CREB5 in the decidual tissue of the abortion group was significantly increased, and autophagy was decreased.


Assuntos
Aborto Habitual , Autofagia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Decídua , Feminino , Autofagia/fisiologia , Humanos , Gravidez , Decídua/metabolismo , Decídua/patologia , Aborto Habitual/metabolismo , Aborto Habitual/patologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Animais , Adulto , Camundongos , Células Estromais/metabolismo , Relações Materno-Fetais/fisiologia , Troca Materno-Fetal/fisiologia , Endométrio/metabolismo , Endométrio/patologia , Proteína A de Ligação a Elemento de Resposta do AMP Cíclico
20.
Pediatr Dev Pathol ; 27(3): 270-274, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38221679

RESUMO

A 43-year-old female presented with blood loss and persistent abdominal pain at 14 weeks of gestation. Ultrasound examination and subsequent magnetic resonance imaging (MRI) revealed bilateral multicystic uterine adnexa. Exploratory laparotomy was performed at 17 weeks of gestation and bilateral serous ovarian adenocarcinoma FIGO stage IIIC was diagnosed. Complete cytoreductive surgery (CRS) was not feasible at that moment. Nine days after the exploratory laparotomy, immature rupture of membranes and contractions occurred and she delivered a premature boy after 19 weeks of gestation. Pathological examination of the placenta revealed that her ovarian cancer metastasized to the membranes. We describe the first case of ovarian cancer metastasized to the decidua of the placental membranes with histological, immunohistochemical, and molecular confirmation. This case highlights the importance of conscientious evaluation of placenta and membranes in pregnant women with ovarian cancer.


Assuntos
Neoplasias Ovarianas , Complicações Neoplásicas na Gravidez , Humanos , Feminino , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/secundário , Gravidez , Adulto , Complicações Neoplásicas na Gravidez/patologia , Complicações Neoplásicas na Gravidez/diagnóstico , Decídua/patologia , Cistadenocarcinoma Seroso/secundário , Cistadenocarcinoma Seroso/diagnóstico , Cistadenocarcinoma Seroso/patologia , Cistadenocarcinoma Seroso/metabolismo , Placenta/patologia , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA