Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 523
Filtrar
1.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38892381

RESUMO

Metabolic dysfunction-associated fatty liver disease (MAFLD) is one of the most common chronic liver diseases worldwide. Some patients with MAFLD develop metabolic dysfunction-associated steatohepatitis (MASH), which can lead to severe liver fibrosis. However, the molecular mechanisms underlying this progression remain unknown, and no effective treatment for MASH has been developed so far. In this study, we performed a longitudinal detailed analysis of mitochondria in the livers of choline-deficient, methionine-defined, high-fat-diet (CDAHFD)-fed mice, which exhibited a MASH-like pathology. We found that FoF1-ATPase activity began to decrease in the mitochondria of CDAHFD-fed mice prior to alterations in the activity of mitochondrial respiratory chain complex, almost at the time of onset of liver fibrosis. In addition, the decrease in FoF1-ATPase activity coincided with the accelerated opening of the mitochondrial permeability transition pore (PTP), for which FoF1-ATPase might be a major component or regulator. As fibrosis progressed, mitochondrial permeability transition (PT) induced in CDAHFD-fed mice became less sensitive to cyclosporine A, a specific PT inhibitor. These results suggest that episodes of fibrosis might be related to the disruption of mitochondrial function via PTP opening, which is triggered by functional changes in FoF1-ATPase. These novel findings could help elucidate the pathogenesis of MASH and lead to the development of new therapeutic strategies.


Assuntos
Deficiência de Colina , Dieta Hiperlipídica , Modelos Animais de Doenças , Fígado Gorduroso , Animais , Dieta Hiperlipídica/efeitos adversos , Camundongos , Deficiência de Colina/metabolismo , Deficiência de Colina/complicações , Masculino , Fígado Gorduroso/metabolismo , Fígado Gorduroso/etiologia , Fígado Gorduroso/patologia , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Mitocôndrias Hepáticas/metabolismo , Colina/metabolismo , Camundongos Endogâmicos C57BL , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/etiologia , Aminoácidos/metabolismo , Mitocôndrias/metabolismo , Metionina/deficiência , Metionina/metabolismo
2.
PLoS One ; 19(5): e0303296, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753743

RESUMO

AIM: Metabolic dysfunction-associated steatohepatitis (MASH) is one of the most prevalent liver diseases and is characterized by steatosis and the accumulation of bioactive lipids. This study aims to understand the specific lipid species responsible for the progression of liver fibrosis in MASH. METHODS: Changes in bioactive lipid levels were examined in the livers of MASH mice fed a choline-deficient diet (CDD). Additionally, sphingosine kinase (SphK)1 mRNA, which generates sphingosine 1 phosphate (S1P), was examined in the livers of patients with MASH. RESULTS: CDD induced MASH and liver fibrosis were accompanied by elevated levels of S1P and increased expression of SphK1 in capillarized liver sinusoidal endothelial cells (LSECs) in mice. SphK1 mRNA also increased in the livers of patients with MASH. Treatment of primary cultured mouse hepatic stellate cells (HSCs) with S1P stimulated their activation, which was mitigated by the S1P receptor (S1PR)2 inhibitor, JTE013. The inhibition of S1PR2 or its knockout in mice suppressed liver fibrosis without reducing steatosis or hepatocellular damage. CONCLUSION: S1P level is increased in MASH livers and contributes to liver fibrosis via S1PR2.


Assuntos
Fígado Gorduroso , Células Estreladas do Fígado , Cirrose Hepática , Lisofosfolipídeos , Fosfotransferases (Aceptor do Grupo Álcool) , Receptores de Esfingosina-1-Fosfato , Esfingosina , Animais , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Lisofosfolipídeos/metabolismo , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/genética , Cirrose Hepática/etiologia , Camundongos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Humanos , Receptores de Esfingosina-1-Fosfato/metabolismo , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Masculino , Camundongos Knockout , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Fígado/patologia , Deficiência de Colina/complicações , Deficiência de Colina/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Receptores de Lisoesfingolipídeo/metabolismo , Receptores de Lisoesfingolipídeo/genética , Pirazóis , Piridinas
3.
J Ethnopharmacol ; 329: 118127, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38583728

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Shugan Xiaozhi (SGXZ) decoction is a traditional Chinese medicine used for treating nonalcoholic steatohepatitis (NASH). It has been used clinically for over 20 years and proved to be effective; however, the molecular mechanism underlying the effects of SGXZ decoction remains unclear. AIM OF THE STUDY: We analyzed the chemical components, core targets, and molecular mechanisms of SGXZ decoction to improve NASH through network pharmacology and in vivo experiments. MATERIALS AND METHODS: The chemical components, core targets, and related signaling pathways of SGXZ decoction intervention in NASH were predicted using network pharmacology. Molecular docking was performed to verify chemical components and their core targets. The results were validated in the NASH model treated with SGXZ decoction. Mouse liver function was assessed by measuring ALT and AST levels. TC and TG levels were determined to evaluate lipid metabolism, and lipid deposition was assessed via oil red O staining. Mouse liver damage was determined via microscopy following hematoxylin and eosin staining. Liver fibrosis was assessed via Masson staining. Western blot (WB) and immunohistochemical (IHC) analyses were performed to detect inflammation and the expression of apoptosis-related proteins, including IL-1ß, IL-6, IL-18, TNF-α, MCP1, p53, FAS, Caspase-8, Caspase-3, Caspase-9, Bax, Bid, Cytochrome c, Bcl-2, and Bcl-XL. In addition, WB and IHC were used to assess protein expression associated with the TLR4/MyD88/NF-κB pathway. RESULTS: Quercetin, luteolin, kaempferol, naringenin, and nobiletin in SGXZ decoction were effective chemical components in improving NASH, and TNF-α, IL-6, and IL-1ß were the major core targets. Molecular docking indicated that these chemical components and major core targets might interact. KEGG pathway analysis showed that the pathways affected by SGXZ decoction, primarily including apoptosis and TLR4/NF-κB signaling pathways, interfere with NASH. In vivo experiments indicated that SGXZ decoction considerably ameliorated liver damage, fibrosis, and lipid metabolism disorder in MCD-induced NASH mouse models. In addition, WB and IHC verified the underlying molecular mechanisms of SGXZ decoction as predicted via network pharmacology. SGXZ decoction inhibited the activation of apoptosis-related pathways in MCD-induced NASH mice. Moreover, SGXZ decoction suppressed the activation of TLR4/MyD88/NF-κB pathway in MCD-induced NASH mice. CONCLUSION: SGXZ decoction can treat NASH through multiple targets and pathways. These findings provide new insights into the effective treatment of NASH using SGXZ decoction.


Assuntos
Apoptose , Medicamentos de Ervas Chinesas , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Hepatopatia Gordurosa não Alcoólica , Transdução de Sinais , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Apoptose/efeitos dos fármacos , Masculino , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Camundongos , Transdução de Sinais/efeitos dos fármacos , Deficiência de Colina/complicações , Inflamação/tratamento farmacológico , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Modelos Animais de Doenças , Farmacologia em Rede , Anti-Inflamatórios/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos
4.
Toxicol Lett ; 396: 36-47, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38663832

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, which can cause serious complications and gradually increase the mortality rate. However, the effects of NAFLD on drug-metabolizing enzymes and transporters remain unclear, which may cause some confusion regarding patient medication. In this study, a NAFLD rat model was constructed by feeding rats with methionine and choline deficiency diets for 6 weeks, and the mRNA and protein levels of drug-metabolizing enzymes and transporter were analyzed by real-time fluorescent quantitative PCR and Western blot, respectively. The activity of drug-metabolizing enzymes was detected by cocktail methods. In the NAFLD rat model, the mRNA expression of phase I enzymes, phase II enzymes, and transporters decreased. At the protein level, only CYP1A1, CYP1B1, CYP2C11, and CYP2J3 presented a decrease. In addition, the activities of CYP1A2, CYP2B1, CYP2C11, CYP2D1, CYP3A2, UGT1A1, UGT1A3, UGT1A6, and UGT1A9 decreased. These changes may be caused by the alteration of FXR, HNF4α, LXRα, LXRß, PXR, and RXR. In conclusion, NAFLD changes the expression and activity of hepatic drug-metabolizing enzymes and transporters in rats, which may affect drug metabolism and pharmacokinetics. In clinical medication, drug monitoring should be strengthened to avoid potential risks.


Assuntos
Deficiência de Colina , Sistema Enzimático do Citocromo P-450 , Fígado , Hepatopatia Gordurosa não Alcoólica , Ratos Sprague-Dawley , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/enzimologia , Masculino , Fígado/metabolismo , Fígado/enzimologia , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Deficiência de Colina/complicações , Modelos Animais de Doenças , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Metionina/metabolismo , Ratos , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Regulação Enzimológica da Expressão Gênica
5.
Am J Pathol ; 194(7): 1218-1229, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38588852

RESUMO

Hepatocyte nuclear factor 4 alpha (HNF4α) is a nuclear factor essential for liver function that regulates the expression of cMyc and plays an important role during liver regeneration. This study investigated the role of the HNF4α-cMyc interaction in regulating liver injury and regeneration using the choline-deficient and ethionine-supplemented (CDE) diet model. Wild-type (WT), hepatocyte-specific HNF4α-knockout (KO), cMyc-KO, and HNF4α-cMyc double KO (DKO) mice were fed a CDE diet for 1 week to induce subacute liver injury. To study regeneration, normal chow diet was fed for 1 week after CDE diet. WT mice exhibited significant liver injury and decreased HNF4α mRNA and protein expression after CDE diet. HNF4α deletion resulted in significantly higher injury with increased inflammation, fibrosis, proliferation, and hepatic progenitor cell activation compared with WT mice after CDE diet but indicated similar recovery. Deletion of cMyc lowered liver injury with activation of inflammatory genes compared with WT and HNF4α-KO mice after CDE diet. DKO mice had a phenotype comparable to that of the HNF4α-KO mice after CDE diet and a complete recovery. DKO mice exhibited a significant increase in hepatic progenitor cell markers both after injury and recovery phase. Taken together, these data show that HNF4α protects against inflammatory and fibrotic changes after CDE diet-induced injury, which is driven by cMyc.


Assuntos
Fator 4 Nuclear de Hepatócito , Regeneração Hepática , Camundongos Knockout , Animais , Fator 4 Nuclear de Hepatócito/metabolismo , Fator 4 Nuclear de Hepatócito/genética , Regeneração Hepática/fisiologia , Camundongos , Etionina , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Fígado/metabolismo , Fígado/patologia , Dieta/efeitos adversos , Masculino , Camundongos Endogâmicos C57BL , Hepatócitos/metabolismo , Hepatócitos/patologia , Deficiência de Colina/complicações
6.
Metab Syndr Relat Disord ; 22(5): 394-401, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38498801

RESUMO

Background/Aims: Extracellular vesicles (EVs) are promising as a biomarker of metabolic dysfunction associated steatotic liver disease (MASLD). The objective is to study EVs and their involvement in MASLD concerning the disease's pathogenesis and progression characteristics. Methods: Male adult Sprague Dawley rats were randomly assigned into two experimental models of MASLD: MASLD-16 and MASLD-28, animals received a choline-deficient high-fat diet (CHFD) and Control-16 and Control-28, animals received a standard diet (SD) for 16 and 28 weeks, respectively. Biological samples from these animal models were used, as well as previously registered variables. EVs from hepatic tissue were characterized using confocal microscopy. EVs were isolated through differential ultracentrifugation from serum and characterized using NanoSight. The data from the EVs were correlated with biochemical, molecular, and histopathological parameters. Results: Liver EVs were identified through the flotillin-1 protein. EVs were isolated from the serum of all groups. There was a decrease of EVs concentration in MASLD-28 in comparison with Control-28 (P < 0.001) and a significant increase in EVs concentration in Control-28 compared with Control-16 (P < 0.001). There was a strong correlation between serum EVs concentration with hepatic gene expression of interleukin (Il)6 (r2 = 0.685, P < 0.05), Il1b (r2 = 0.697, P < 0.05) and tumor necrosis factor-alpha (Tnfa; r2 = 0.636, P < 0.05) in MASLD-16. Moreover, there was a strong correlation between serum EVs size and Il10 in MASLD-28 (r2 = 0.762, P < 0.05). Conclusion: The concentration and size of EVs correlated with inflammatory markers, suggesting their involvement in the systemic circulation, cellular communication, and development and progression of MASLD, demonstrating that EVs have the potential to serve as noninvasive biomarkers for MASLD diagnosis and prognosis.


Assuntos
Dieta Hiperlipídica , Modelos Animais de Doenças , Vesículas Extracelulares , Ratos Sprague-Dawley , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Animais , Masculino , Ratos , Fígado/metabolismo , Fígado/patologia , Biomarcadores/sangue , Biomarcadores/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Fígado Gorduroso/patologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/etiologia , Mediadores da Inflamação/metabolismo , Mediadores da Inflamação/sangue , Inflamação/patologia , Inflamação/metabolismo , Deficiência de Colina/complicações
7.
Curr Nutr Rep ; 13(2): 152-165, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38427291

RESUMO

PURPOSE OF REVIEW: Choline is an essential nutrient for human health and cellular homeostasis as it is necessary for the synthesis of lipid cell membranes, lipoproteins, and the synthesis of the neurotransmitter acetylcholine. The aim of this review is to analyze the beneficial effects of choline and its significance in cellular metabolism and various inflammatory pathways, such as the inflammasome. We will discuss the significance of dietary choline in cardiometabolic disorders, such as non-alcoholic fatty liver disease (NAFLD), cardiovascular disease (CVD), and chronic kidney disease (CKD) as well as in cognitive function and associated neuropsychiatric disorders. RECENT FINDINGS: Choline deficiency has been related to the development of NAFLD and cognitive disability in the offspring as well as in adulthood. In sharp contrast, excess dietary intake of choline mediated via the increased production of trimethylamine by the gut microbiota and increased trimethylamine-N-oxide (TMAO) levels has been related to atherosclerosis in most studies. In this context, CVD and CKD through the accumulation of TMAO, p-Cresyl-sulfate (pCS), and indoxyl-sulfate (IS) in serum may be the result of the interplay between excess dietary choline, the increased production of TMAO by the gut microbiota, and the resulting activation of inflammatory responses and fibrosis. A balanced diet, with no excess nor any deficiency in dietary choline, is of outmost importance regarding the prevention of cardiometabolic disorders as well as cognitive function. Large-scale studies with the use of next-generation probiotics, especially Akkermansia muciniphila and Faecalibacterium prausnitzii, should further examine their therapeutic potential in this context.


Assuntos
Doenças Cardiovasculares , Colina , Dieta , Microbioma Gastrointestinal , Insuficiência Renal Crônica , Humanos , Doenças Cardiovasculares/prevenção & controle , Hepatopatia Gordurosa não Alcoólica , Deficiência de Colina/complicações , Metilaminas/metabolismo
8.
Food Funct ; 15(6): 2982-2995, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38411344

RESUMO

Non-alcoholic steatohepatitis (NASH) is the hepatic manifestation of a cluster of conditions associated with lipid metabolism disorders. Ideal animal models mimicking the human NASH need to be explored to better understand the pathogenesis. A choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) has recently been used to induce the NASH model, but the advantages are not established. NASH models were induced using the well-known traditional methionine- and choline-deficient (MCD) diet for 5 weeks and the recently used CDAHFD for 3 weeks. Liver phenotypes were analyzed to evaluate the differences in markers related to NASH. Lipidomics and metabolism analyses were used to investigate the effects of dietary regimens on the lipidome of the liver. The CDAHFD induced stronger NASH responses than the MCD, including lipid deposition, liver injury, inflammation, bile acid overload and hepatocyte proliferation. A significant difference in the hepatic lipidome was revealed between the CDAHFD and MCD-induced NASH models. In particular, the CDAHFD reduced the hepatic levels of phosphatidylcholines (PCs) and acylcarnitines (ACs), which was supported by the metabolism analysis and in line with the tendency of human NASH. Pathologically, the CDAHFD could effectively induce a more human-like NASH model over the traditional MCD. The hepatic PCs, ACs and their metabolism in CDAHFD-treated mice were down-regulated, similar to those in human NASH.


Assuntos
Deficiência de Colina , Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Deficiência de Colina/complicações , Colina , Dieta Hiperlipídica/efeitos adversos , Metionina , Modelos Animais de Doenças
9.
Biochem Pharmacol ; 222: 116073, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395263

RESUMO

Stem cells from the apical papilla(SCAPs) exhibit remarkable tissue repair capabilities, demonstrate anti-inflammatory and pro-angiogenic effects, positioning them as promising assets in the realm of regenerative medicine. Recently, the focus has shifted towards exosomes derived from stem cells, perceived as safer alternatives while retaining comparable physiological functions. This study delves into the therapeutic implications of exosomes derived from SCAPs in the methionine-choline-deficient (MCD) diet-induced mice non-alcoholic steatohepatitis (NASH) model. We extracted exosomes from SCAPs. During the last two weeks of the MCD diet, mice were intravenously administered SCAPs-derived exosomes at two distinct concentrations (50 µg/mouse and 100 µg/mouse) biweekly. Thorough examinations of physiological and biochemical indicators were performed to meticulously evaluate the impact of exosomes derived from SCAPs on the advancement of NASH in mice induced by MCD diet. This findings revealed significant reductions in body weight loss and liver damage induced by the MCD diet following exosomes treatment. Moreover, hepatic fat accumulation was notably alleviated. Mechanistically, the treatment with exosomes led to an upregulation of phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK) levels in the liver, enhancing hepatic fatty acid oxidation and transporter gene expression while inhibiting genes associated with fatty acid synthesis. Additionally, exosomes treatment increased the transcription levels of key liver mitochondrial marker proteins and the essential mitochondrial biogenesis factor. Furthermore, the levels of serum inflammatory factors and hepatic tissue inflammatory factor mRNA expression were significantly reduced, likely due to the anti-inflammatory phenotype induced by exosomes in macrophages. The above conclusion suggests that SCAPs-exosomes can improve NASH.


Assuntos
Deficiência de Colina , Exossomos , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Metionina/metabolismo , Colina/metabolismo , Metabolismo dos Lipídeos , Exossomos/metabolismo , Deficiência de Colina/complicações , Deficiência de Colina/tratamento farmacológico , Deficiência de Colina/metabolismo , Fígado/metabolismo , Inflamação/metabolismo , Racemetionina/metabolismo , Racemetionina/farmacologia , Anti-Inflamatórios/farmacologia , Dieta , Ácidos Graxos/metabolismo , Camundongos Endogâmicos C57BL
10.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338668

RESUMO

Non-alcoholic steatohepatitis (NASH) is an inflammatory form of non-alcoholic fatty liver disease (NAFLD), closely associated with disease progression, cirrhosis, liver failure, and hepatocellular carcinoma. Time-restricted feeding (TRF) has been shown to decrease body weight and adiposity and improve metabolic outcomes; however, the effect of TRF on NASH has not yet been fully understood. We had previously reported that inositol polyphosphate multikinase (IPMK) mediates hepatic insulin signaling. Importantly, we have found that TRF increases hepatic IPMK levels. Therefore, we investigated whether there is a causal link between TRF and IPMK in a mouse model of NASH, i.e., methionine- and choline-deficient diet (MCDD)-induced steatohepatitis. Here, we show that TRF alleviated markers of NASH, i.e., reduced hepatic steatosis, liver triglycerides (TG), serum alanine transaminase (ALT) and aspartate aminotransferase (AST), inflammation, and fibrosis in MCDD mice. Interestingly, MCDD led to a significant reduction in IPMK levels, and the deletion of hepatic IPMK exacerbates the NASH phenotype induced by MCDD, accompanied by increased gene expression of pro-inflammatory chemokines. Conversely, TRF restored IPMK levels and significantly reduced gene expression of proinflammatory cytokines and chemokines. Our results demonstrate that TRF attenuates MCDD-induced NASH via IPMK-mediated changes in hepatic steatosis and inflammation.


Assuntos
Deficiência de Colina , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Metionina/metabolismo , Colina/metabolismo , Deficiência de Colina/complicações , Deficiência de Colina/metabolismo , Fígado/metabolismo , Racemetionina/metabolismo , Dieta , Inflamação/metabolismo , Quimiocinas/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
11.
Mol Nutr Food Res ; 68(4): e2300561, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38234006

RESUMO

SCOPE: Gut microbiota (GM) is involved in nonalcoholic steatohepatitis (NASH) development. Phytochemicals soyasaponins can prevent NASH possibly by modulating GM. This study aims to investigate the preventive bioactivities of soyasaponin monomers (SS-A1 and SS-Bb) against NASH and explores the mechanisms by targeting GM. METHODS AND RESULTS: Male C57BL/6 mice are fed with methionine and choline deficient (MCD) diet containing SS-A1 , SS-Bb, or not for 16 weeks. Antibiotics-treated pseudo germ-free (PGF) mice are fed with MCD diet containing SS-A1 , SS-Bb, or not for 8 weeks. GM is determined by 16S rRNA amplicon sequencing. Bile acids (BAs) are measured by UPLC-MS/MS. In NASH mice, SS-A1 and SS-Bb alleviate steatohepatitis and fibrosis, reduce ALT, AST, and LPS in serum, decrease TNF-α, IL-6, α-SMA, triglycerides, and cholesterol in liver. SS-A1 and SS-Bb decrease Firmicutes, Erysipelotrichaceae, unidentified-Clostridiales, Eggerthellaceae, Atopobiaceae, Aerococcus, Jeotgalicoccus, Gemella, Rikenella, increase Proteobacteria, Verrucomicrobia, Akkermansiaceae, Romboutsia, and Roseburia. SS-A1 and SS-Bb alter BAs composition in liver, serum, and feces, activate farnesoid X receptor (FXR) in liver and ileum, increase occludin and ZO-1 in intestine. However, GM clearance abrogates the preventive bioactivities of SS-A1 and SS-Bb against NASH. CONCLUSION: GM plays essential roles in soyasaponin's preventive bioactivities against steatohepatitis in MCD diet-induced NASH mice.


Assuntos
Deficiência de Colina , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Masculino , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/microbiologia , Metionina , Colina , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S , Cromatografia Líquida , Deficiência de Colina/complicações , Camundongos Endogâmicos C57BL , Espectrometria de Massas em Tandem , Fígado , Dieta , Racemetionina
12.
Magn Reson Med ; 91(4): 1625-1636, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38115605

RESUMO

PURPOSE: Nonalcoholic fatty liver disease is an important cause of chronic liver disease. There are limited methods for monitoring metabolic changes during progression to steatohepatitis. Hyperpolarized 13 C MRSI (HP 13 C MRSI) was used to measure metabolic changes in a rodent model of fatty liver disease. METHODS: Fifteen Wistar rats were placed on a methionine- and choline-deficient (MCD) diet for 1-18 weeks. HP 13 C MRSI, T2 -weighted imaging, and fat-fraction measurements were obtained at 3 T. Serum aspartate aminotransaminase, alanine aminotransaminase, and triglycerides were measured. Animals were sacrificed for histology and measurement of tissue lactate dehydrogenase (LDH) activity. RESULTS: Animals lost significant weight (13.6% ± 2.34%), an expected characteristic of the MCD diet. Steatosis, inflammation, and mild fibrosis were observed. Liver fat fraction was 31.7% ± 4.5% after 4 weeks and 22.2% ± 4.3% after 9 weeks. Lactate-to-pyruvate and alanine-to-pyruvate ratios decreased significantly over the study course; were negatively correlated with aspartate aminotransaminase and alanine aminotransaminase (r = -[0.39-0.61]); and were positively correlated with triglycerides (r = 0.59-0.60). Despite observed decreases in hyperpolarized lactate signal, LDH activity increased by a factor of 3 in MCD diet-fed animals. Observed decreases in lactate and alanine hyperpolarized signals on the MCD diet stand in contrast to other studies of liver injury, where lactate and alanine increased. Observed hyperpolarized metabolite changes were not explained by alterations in LDH activity, suggesting that changes may reflect co-factor depletion known to occur as a result of oxidative stress in the MCD diet. CONCLUSION: HP 13 C MRSI can noninvasively measure metabolic changes in the MCD model of chronic liver disease.


Assuntos
Deficiência de Colina , Hepatopatia Gordurosa não Alcoólica , Ratos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Metionina/metabolismo , Colina/metabolismo , Ácido Pirúvico/metabolismo , Ácido Aspártico/metabolismo , Deficiência de Colina/complicações , Deficiência de Colina/metabolismo , Deficiência de Colina/patologia , Ratos Wistar , Fígado/metabolismo , Racemetionina/metabolismo , Dieta , Triglicerídeos , Alanina/metabolismo , Lactatos/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
13.
Nat Commun ; 14(1): 6763, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990006

RESUMO

Choline is an essential nutrient, and its deficiency causes steatohepatitis. Dietary phosphatidylcholine (PC) is digested into lysoPC (LPC), glycerophosphocholine, and choline in the intestinal lumen and is the primary source of systemic choline. However, the major PC metabolites absorbed in the intestinal tract remain unidentified. ATP8B1 is a P4-ATPase phospholipid flippase expressed in the apical membrane of the epithelium. Here, we use intestinal epithelial cell (IEC)-specific Atp8b1-knockout (Atp8b1IEC-KO) mice. These mice progress to steatohepatitis by 4 weeks. Metabolomic analysis and cell-based assays show that loss of Atp8b1 in IEC causes LPC malabsorption and thereby hepatic choline deficiency. Feeding choline-supplemented diets to lactating mice achieves complete recovery from steatohepatitis in Atp8b1IEC-KO mice. Analysis of samples from pediatric patients with ATP8B1 deficiency suggests its translational potential. This study indicates that Atp8b1 regulates hepatic choline levels through intestinal LPC absorption, encouraging the evaluation of choline supplementation therapy for steatohepatitis caused by ATP8B1 dysfunction.


Assuntos
Deficiência de Colina , Fígado Gorduroso , Gastroenteropatias , Enteropatias , Feminino , Humanos , Camundongos , Animais , Criança , Deficiência de Colina/complicações , Lactação , Fígado Gorduroso/metabolismo , Colina , Fosfatidilcolinas/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo
14.
Int J Mol Sci ; 24(15)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37569885

RESUMO

Icariin, a flavonoid abundant in the herb Epimedium, exhibits anti-ferroptotic activity. However, its impact on nonalcoholic steatohepatitis (NASH) development remains unclear. This study aimed to investigate the potential role of icariin in mitigating methionine choline-deficient (MCD) diet-induced NASH in C57BL/6J mice. The results showed that icariin treatment significantly reduced serum alanine aminotrasferase and aspartate aminotransferase activities while improving steatosis, inflammation, ballooning, and fibrosis in the liver tissues of mice fed the MCD diet. These improvements were accompanied by a substantial reduction in the hepatic iron contents and levels of malondialdehyde and 4-hydroxynonenal, as well as an increase in the activities of catalase and superoxide dismutase. Notably, icariin treatment suppressed the hepatic protein levels of ferroptosis markers such as acyl-CoA synthetase long-chain family member 4 and arachidonate 12-lipoxygenase, which were induced by the MCD diet. Furthermore, transmission electron microscopy confirmed the restoration of morphological changes in the mitochondria, a hallmark characteristic of ferroptosis, by icariin. Additionally, icariin treatment significantly increased the protein levels of Nrf2, a cystine/glutamate transporter (xCT), and glutathione peroxidase 4 (GPX4). In conclusion, our study suggests that icariin has the potential to attenuate NASH, possibly by suppressing ferroptosis via the Nrf2-xCT/GPX4 pathway.


Assuntos
Deficiência de Colina , Ferroptose , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/complicações , Colina/metabolismo , Metionina/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Deficiência de Colina/complicações , Deficiência de Colina/metabolismo , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Flavonoides/farmacologia , Flavonoides/metabolismo , Racemetionina/metabolismo , Dieta , Suplementos Nutricionais
15.
Food Funct ; 14(4): 2096-2111, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36734470

RESUMO

Non-alcoholic steatohepatitis (NASH) is a chronic liver disease with few therapeutic options available currently. Hemp seed oil extracted from the seeds of hemp (Cannabis sativa L.) has significant nutritional and biological properties due to the unique composition of polyunsaturated fatty acids and various antioxidant compounds. However, little is known about the beneficial effects and molecular mechanisms of hemp seed oil on NASH. Here, the hepatoprotective effects of hemp seed oil on methionine-choline-deficient (MCD) diet-induced NASH in C57BL/6 mice were explored via integration of transcriptomics and metabolomics. Hemp seed oil could improve hepatic steatosis, inflammation and fibrosis in mice with MCD diet-induced NASH. In a nuclear magnetic resonance (NMR)-based metabonomic study, the hepatic and urinary metabolic profiles of mice supplemented with hemp seed oil showed a tendency to recover to healthy controls compared to those of NASH mice. Eight potential biomarkers associated with NASH in both liver tissue and urine were restored to near normal levels by administration of hemp seed oil. The proposed pathways were mainly involved in pyrimidine metabolism, one-carbon metabolism, amino acid metabolism, glycolysis and the tricarboxylic acid (TCA) cycle. Hepatic transcriptomics based on Illumina RNA-Seq sequencing showed that hemp seed oil exerted anti-NASH activities by regulating multiple signaling pathways, e.g., downregulation of the TNF signaling pathway, the IL-17 signaling pathway, the MAPK signaling pathway and the NF-κB signaling pathway, which played a pivotal role in the pathogenesis of NASH. In particular, integration of metabonomic and transcriptomic results suggested that hemp seed oil could attenuate NASH-related liver fibrosis by inhibition of glutaminolysis. These results provided new insights into the hepatoprotective effects of hemp seed oil against MCD diet-induced NASH and hemp seed oil might have potential as an effective therapy for NASH.


Assuntos
Cannabis , Deficiência de Colina , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Cannabis/metabolismo , Metionina/metabolismo , Colina/metabolismo , Transcriptoma , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Dieta , Racemetionina/metabolismo , Racemetionina/farmacologia , Deficiência de Colina/complicações , Deficiência de Colina/metabolismo , Deficiência de Colina/patologia
16.
Mol Carcinog ; 62(5): 577-582, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36752344

RESUMO

Hepatocellular carcinoma (HCC) is one of the most worrying tumors worldwide today, and its epidemiology is on the rise. Traditional pharmacological approaches have shown unfavorable results and exhibited many side effects. Hence, there is a need for new efficacious molecules with fewer side effects and improvements on traditional approaches. We previously showed that lysophosphatidic acid (LPA) supports hepatocarcinogenesis, and its effects are mainly mediated by LPA receptor 6 (LPAR6). We also reported that 9-xanthylacetic acid (XAA) acts as an antagonist of LPAR6 to inhibit the growth of HCC. Here, we report that LPAR6 is involved in the choline-deficient l-amino acid-defined (CDAA) diet-induced hepatocarcinogenesis in mice. Our data demonstrate that CDAA diet-induced metabolic imbalance stimulates LPAR6 expression in mice and that XAA counteracts diet-induced effects on hepatic lipid accumulation, fibrosis, inflammation, and HCC development. These conclusions are corroborated by results on LPAR6 gain and loss-of-function in HCC cells.


Assuntos
Carcinoma Hepatocelular , Deficiência de Colina , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/prevenção & controle , Carcinoma Hepatocelular/metabolismo , Aminoácidos , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/prevenção & controle , Neoplasias Hepáticas/metabolismo , Colina/farmacologia , Deficiência de Colina/complicações , Deficiência de Colina/metabolismo , Dieta/efeitos adversos , Carcinogênese/genética
17.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077461

RESUMO

The progression of nonalcoholic fatty liver disease (NAFLD) is associated with alterations of the gut-liver axis. The activation of toll-like receptor 4 (TLR4) pathways by endotoxins, such as lipopolysaccharide (LPS), contributes to liver injury. The aim of the present study was to evaluate the possible beneficial effects of a calcium-sulphate-bicarbonate natural mineral water on the gut-liver axis by evaluating liver and terminal ileum histopathology in a murine model of NAFLD. NAFLD was induced in mice by administrating a methionine-choline-deficient (MCD) diet. The following experimental groups were evaluated: controls (N = 10); MCD+Tap water (MCD; N = 10); MCD+Calcium-sulphate-bicarbonate water (MCD/Wcsb; N = 10). Mice were euthanised after 4 and 8 weeks. Liver and terminal ileum samples were collected. Samples were studied by histomorphology, immunohistochemistry, and immunofluorescence. In mice subjected to the MCD diet, treatment with mineral water improved inflammation and fibrosis, and was associated with a reduced number of activated hepatic stellate cells when compared to MCD mice not treated with mineral water. Moreover, MCD/Wcsb mice showed lower liver LPS localization and less activation of TLR4 pathways compared to the MCD. Finally, Wcsb treatment was associated with improved histopathology and higher occludin positivity in intestinal mucosa. In conclusion, calcium-sulphate-bicarbonate water may exert modulatory activity on the gut-liver axis in MCD mice, suggesting potential beneficial effects on NAFLD.


Assuntos
Deficiência de Colina , Águas Minerais , Hepatopatia Gordurosa não Alcoólica , Animais , Bicarbonatos/metabolismo , Cálcio/metabolismo , Sulfato de Cálcio , Colina/metabolismo , Deficiência de Colina/complicações , Deficiência de Colina/metabolismo , Modelos Animais de Doenças , Lipopolissacarídeos/metabolismo , Fígado/metabolismo , Metionina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Sulfatos/metabolismo , Receptor 4 Toll-Like/metabolismo
18.
Medicina (Kaunas) ; 58(6)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35744053

RESUMO

Background and Objectives: Oxidative stress is implicated in the progression of nonalcoholic steatohepatitis (NASH) through the triggering of inflammation. Deuterium-reinforced polyunsaturated fatty acids (D-PUFAs) are more resistant to the reactive oxygen species (ROS)-initiated chain reaction of lipid peroxidation than regular hydrogenated (H-) PUFAs. Here, we aimed to investigate the impacts of D-PUFAs on oxidative stress and its protective effect on NASH. Materials and Methods: C57BL/6 mice were randomly divided into three groups and were fed a normal chow diet, a methionine-choline-deficient (MCD) diet, and an MCD with 0.6% D-PUFAs for 5 weeks. The phenotypes of NASH in mice were determined. The levels of oxidative stress were examined both in vivo and in vitro. Results: The treatment with D-PUFAs attenuated the ROS production and enhanced the cell viability in tert-butyl hydroperoxide (TBHP)-loaded hepatocytes. Concurrently, D-PUFAs decreased the TBHP-induced oxidative stress in Raw 264.7 macrophages. Accordingly, D-PUFAs increased the cell viability and attenuated the lipopolysaccharide-stimulated proinflammatory cytokine expression of macrophages. In vivo, the administration of D-PUFAs reduced the phenotypes of NASH in MCD-fed mice. Specifically, D-PUFAs decreased the liver transaminase activity and attenuated the steatosis, inflammation, and fibrosis in the livers of NASH mice. Conclusion: D-PUFAs may be potential therapeutic agents to prevent NASH by broadly reducing oxidative stress.


Assuntos
Deficiência de Colina , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Deficiência de Colina/complicações , Deficiência de Colina/metabolismo , Deutério , Dieta , Modelos Animais de Doenças , Ácidos Graxos Insaturados/farmacologia , Inflamação/tratamento farmacológico , Fígado/metabolismo , Metionina/farmacologia , Metionina/uso terapêutico , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
19.
J Nutr Biochem ; 106: 109020, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35472433

RESUMO

Nonalcoholic steatohepatitis, one of the most common chronic liver diseases, is a progressive form of nonalcoholic fatty liver disease accompanied by the development of liver fibrosis. Chlorogenic acid (CGA) is a natural polyphenolic compound. This study aims to observe the CGA-provided alleviation on liver fibrosis in methionine and choline deficient (MCD) diet-induced nonalcoholic steatohepatitis in mice and to elucidate its engaged mechanism. CGA attenuated hepatocellular injury, decreased the elevated hepatic lipids accumulation and attenuated liver fibrosis by reducing hepatic collagen deposition in mice fed with MCD diet. CGA abrogated the activation of hepatic stellate cells (HSCs) and promoted mitochondrial biogenesis both in vivo and in vitro. Moreover, the CGA-provided inhibition on HSCs activation in vitro was obviously disappeared after the application of peroxisome proliferator-activated receptor gamma, coactivator 1alpha (PGC1α) siRNA. CGA reduced the enhanced hepatic extracellular matrix (ECM) expression and the elevated serum high-mobility group box 1 (HMGB1) content in mice fed with MCD diet. CGA decreased the HMGB1-induced ECM production in both human liver sinusoidal endothelial cells and human umbilical vein endothelial cells. CGA also weakly promoted mitochondrial biogenesis in both liver sinusoidal endothelial cells and human umbilical vein endothelial cells incubated with HMGB1. Hence, CGA ameliorated hepatic fibrosis in mice fed with MCD diet through inhibiting HSCs activation via promoting mitochondrial biogenesis and reducing the HMGB1-initiated ECM production in hepatic vascular endothelial cells.


Assuntos
Deficiência de Colina , Proteína HMGB1 , Hepatopatia Gordurosa não Alcoólica , Animais , Ácido Clorogênico/farmacologia , Ácido Clorogênico/uso terapêutico , Colina/metabolismo , Colina/farmacologia , Deficiência de Colina/complicações , Deficiência de Colina/metabolismo , Dieta , Células Endoteliais , Proteína HMGB1/metabolismo , Fígado/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Metionina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo
20.
Inflammation ; 45(5): 1968-1984, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35419738

RESUMO

Nonalcoholic steatohepatitis (NASH) is a disease with a high incidence worldwide, but its diagnosis and treatment are poorly managed. In this study, NASH pathophysiology and DNA damage biomarkers were investigated in mice with NASH treated and untreated with melatonin (MLT). C57BL/6 mice were fed a methionine- and choline-deficient (MCD) diet for 4 weeks to develop NASH. Melatonin was administered at 20 mg/kg during the last 2 weeks. Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were measured, and hepatic tissue was dissected for histological analysis, evaluation of lipoperoxidation, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), as well as nuclear factor-erythroid 2 (Nrf2), tumor necrosis factor alpha (TNF-α), inducible nitric oxide synthase (iNOS), and transforming growth factor beta (TGF-ß) expression by immunohistochemistry. DNA damage was evaluated using Comet assay, while a micronucleus test in bone marrow was performed to assess the genomic instability associated with the disease. Melatonin decreased AST and ALT, liver inflammatory processes, balloonization, and fibrosis in mice with NASH, decreasing TNF-α, iNOS, and TGF-ß, as well as oxidative stress, shown by reducing lipoperoxidation and intensifying Nrf2 expression. The SOD and GPx activities were increased, while CAT was decreased by treatment with MLT. Although the micronucleus frequency was not increased in mice with NASH, a protective effect on DNA was observed with MLT treatment in blood and liver tissues using Comet assay. As conclusions, MLT slows down the progression of NASH, reducing hepatic oxidative stress and inflammatory processes, inhibiting DNA damage via anti-inflammatory and antioxidant actions.


Assuntos
Deficiência de Colina , Melatonina , Hepatopatia Gordurosa não Alcoólica , Alanina Transaminase , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Aspartato Aminotransferases , Biomarcadores/metabolismo , Catalase/metabolismo , Colina/análise , Colina/metabolismo , Colina/farmacologia , Deficiência de Colina/complicações , Deficiência de Colina/metabolismo , Dano ao DNA , Dieta , Glutationa Peroxidase/metabolismo , Inflamação/metabolismo , Fígado/metabolismo , Melatonina/farmacologia , Melatonina/uso terapêutico , Metionina/análise , Metionina/genética , Metionina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA