Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.067
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731938

RESUMO

Inherited retinal degeneration (RD) constitutes a heterogeneous group of genetic retinal degenerative disorders. The molecular mechanisms underlying RD encompass a diverse spectrum of cellular signaling, with the unfolded protein response (UPR) identified as a common signaling pathway chronically activated in degenerating retinas. TRIB3 has been recognized as a key mediator of the PERK UPR arm, influencing various metabolic pathways, such as insulin signaling, lipid metabolism, and glucose homeostasis, by acting as an AKT pseudokinase that prevents the activation of the AKT → mTOR axis. This study aimed to develop a gene-independent approach targeting the UPR TRIB3 mediator previously tested by our group using a genetic approach in mice with RD. The goal was to validate a therapeutic approach targeting TRIB3 interactomes through the pharmacological targeting of EGFR-TRIB3 and delivering cell-penetrating peptides targeting TRIB3 → AKT. The study employed rd10 and P23H RHO mice, with afatinib treatment conducted in p15 rd10 mice through daily intraperitoneal injections. P15 P23H RHO mice received intraocular injections of cell-penetrating peptides twice at a 2-week interval. Our study revealed that both strategies successfully targeted TRIB3 interactomes, leading to an improvement in scotopic A- and B-wave ERG recordings. Additionally, the afatinib-treated mice manifested enhanced photopic ERG amplitudes accompanied by a delay in photoreceptor cell loss. The treated rd10 retinas also showed increased PDE6ß and RHO staining, along with an elevation in total PDE activity in the retinas. Consequently, our study demonstrated the feasibility of a gene-independent strategy to target common signaling in degenerating retinas by employing a TRIB3-based therapeutic approach that delays retinal function and photoreceptor cell loss in two RD models.


Assuntos
Degeneração Retiniana , Animais , Camundongos , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Modelos Animais de Doenças , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Transdução de Sinais/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Camundongos Endogâmicos C57BL , Retina/metabolismo , Retina/efeitos dos fármacos , Retina/patologia
2.
Acta Neuropathol Commun ; 12(1): 76, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755736

RESUMO

Activated microglia play an important role in driving photoreceptor degeneration-associated neuroinflammation in the retina. Controlling pro-inflammatory activation of microglia holds promise for mitigating the progression of photoreceptor degeneration. Our previous study has demonstrated that pre-light damage treatment of hyperoside, a naturally occurring flavonol glycoside with antioxidant and anti-inflammatory activities, prevents photooxidative stress-induced photoreceptor degeneration and neuroinflammatory responses in the retina. However, the direct impact of hyperoside on microglia-mediated neuroinflammation during photoreceptor degeneration remains unknown. Upon verifying the anti-inflammatory effects of hyperoside in LPS-stimulated BV-2 cells, our results here further demonstrated that post-light damage hyperoside treatment mitigated the loss of photoreceptors and attenuated the functional decline of the retina. Meanwhile, post-light damage hyperoside treatment lowered neuroinflammatory responses and dampened microglial activation in the illuminated retinas. With respect to microglial activation, hyperoside mitigated the pro-inflammatory responses in DNA-stimulated BV-2 cells and lowered DNA-stimulated production of 2'3'-cGAMP in BV-2 cells. Moreover, hyperoside was shown to directly interact with cGAS and suppress the enzymatic activity of cGAS in a cell-free system. In conclusion, the current study suggests for the first time that the DNA sensor cGAS is a direct target of hyperoside. Hyperoside is effective at mitigating DNA-stimulated cGAS-mediated pro-inflammatory activation of microglia, which likely contributes to the therapeutic effects of hyperoside at curtailing neuroinflammation and alleviating neuroinflammation-instigated photoreceptor degeneration.


Assuntos
Microglia , Nucleotidiltransferases , Quercetina , Degeneração Retiniana , Animais , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Quercetina/farmacologia , Quercetina/análogos & derivados , Degeneração Retiniana/patologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/prevenção & controle , Camundongos , Nucleotidiltransferases/metabolismo , Camundongos Endogâmicos C57BL , DNA/metabolismo , Linhagem Celular , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/patologia , Células Fotorreceptoras de Vertebrados/metabolismo , Masculino
3.
Sci Rep ; 14(1): 10498, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714794

RESUMO

Prominin 1 (PROM1) is a pentaspan transmembrane glycoprotein localized on the nascent photoreceptor discs. Mutations in PROM1 are linked to various retinal diseases. In this study, we assessed the role of PROM1 in photoreceptor biology and physiology using the PROM1 knockout murine model (rd19). Our study found that PROM1 is essential for vision and photoreceptor development. We found an early reduction in photoreceptor response beginning at post-natal day 12 (P12) before eye opening in the absence of PROM1 with no apparent loss in photoreceptor cells. However, at this stage, we observed an increased glial cell activation, indicative of cell damage. Contrary to our expectations, dark rearing did not mitigate photoreceptor degeneration or vision loss in PROM1 knockout mice. In addition to physiological defects seen in PROM1 knockout mice, ultrastructural analysis revealed malformed outer segments characterized by whorl-like continuous membranes instead of stacked disks. In parallel to the reduced rod response at P12, proteomics revealed a significant reduction in the levels of protocadherin, a known interactor of PROM1, and rod photoreceptor outer segment proteins, including rhodopsin. Overall, our results underscore the indispensable role of PROM1 in photoreceptor development and maintenance of healthy vision.


Assuntos
Antígeno AC133 , Camundongos Knockout , Animais , Camundongos , Antígeno AC133/metabolismo , Antígeno AC133/genética , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Rodopsina/metabolismo , Rodopsina/genética , Células Fotorreceptoras de Vertebrados/metabolismo
4.
Front Immunol ; 15: 1374617, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665911

RESUMO

Blindness or vision loss due to neuroretinal and photoreceptor degeneration affects millions of individuals worldwide. In numerous neurodegenerative diseases, including age-related macular degeneration, dysregulated immune response-mediated retinal degeneration has been found to play a critical role in the disease pathogenesis. To better understand the pathogenic mechanisms underlying the retinal degeneration, we used a mouse model of systemic immune activation where we infected mice with lymphocytic choriomeningitis virus (LCMV) clone 13. Here, we evaluated the effects of LCMV infection and present a comprehensive discovery-based proteomic investigation using tandem mass tag (TMT) labeling and high-resolution liquid chromatography-tandem mass spectrometry (LC-MS/MS). Changes in protein regulation in the posterior part of the eye, neuroretina, and RPE/choroid were compared to those in the spleen as a secondary lymphoid organ and to the kidney as a non-lymphoid but encapsulated organ at 1, 8, and 28 weeks of infection. Using bioinformatic tools, we found several proteins responsible for maintaining normal tissue homeostasis to be differentially regulated in the neuroretina and the RPE/choroid during the degenerative process. Additionally, in the organs we observed, several important protein pathways contributing to cellular homeostasis and tissue development were perturbed and associated with LCMV-mediated inflammation, promoting disease progression. Our findings suggest that the response to a systemic chronic infection differs between the neuroretina and the RPE/choroid, and the processes induced by chronic systemic infection in the RPE/choroid are not unlike those induced in non-immune-privileged organs such as the kidney and spleen. Overall, our data provide detailed insight into several molecular mechanisms of neuroretinal degeneration and highlight various novel protein pathways that further suggest that the posterior part of the eye is not an isolated immunological entity despite the existence of neuroretinal immune privilege.


Assuntos
Modelos Animais de Doenças , Vírus da Coriomeningite Linfocítica , Proteômica , Degeneração Retiniana , Animais , Camundongos , Proteômica/métodos , Degeneração Retiniana/imunologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos Endogâmicos C57BL , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Espectrometria de Massas em Tandem , Proteoma , Retina/imunologia , Retina/metabolismo , Retina/patologia , Cromatografia Líquida , Corioide/imunologia , Corioide/patologia , Corioide/metabolismo
5.
Nat Commun ; 15(1): 3562, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670966

RESUMO

The diagnosis of inherited retinal degeneration (IRD) is challenging owing to its phenotypic and genotypic complexity. Clinical information is important before a genetic diagnosis is made. Metabolomics studies the entire picture of bioproducts, which are determined using genetic codes and biological reactions. We demonstrated that the common diagnoses of IRD, including retinitis pigmentosa (RP), cone-rod dystrophy (CRD), Stargardt disease (STGD), and Bietti's crystalline dystrophy (BCD), could be differentiated based on their metabolite heatmaps. Hundreds of metabolites were identified in the volcano plot compared with that of the control group in every IRD except BCD, considered as potential diagnosing markers. The phenotypes of CRD and STGD overlapped but could be differentiated by their metabolomic features with the assistance of a machine learning model with 100% accuracy. Moreover, EYS-, USH2A-associated, and other RP, sharing considerable similar characteristics in clinical findings, could also be diagnosed using the machine learning model with 85.7% accuracy. Further study would be needed to validate the results in an external dataset. By incorporating mass spectrometry and machine learning, a metabolomics-based diagnostic workflow for the clinical and molecular diagnoses of IRD was proposed in our study.


Assuntos
Aprendizado de Máquina , Metabolômica , Degeneração Retiniana , Retinose Pigmentar , Doença de Stargardt , Humanos , Metabolômica/métodos , Diagnóstico Diferencial , Degeneração Retiniana/diagnóstico , Degeneração Retiniana/sangue , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Masculino , Feminino , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/genética , Retinose Pigmentar/sangue , Retinose Pigmentar/metabolismo , Doença de Stargardt/genética , Adulto , Pessoa de Meia-Idade , Adolescente , Adulto Jovem , Biomarcadores/sangue , Metaboloma , Criança , Distrofias de Cones e Bastonetes/diagnóstico , Distrofias de Cones e Bastonetes/genética , Distrofias de Cones e Bastonetes/sangue , Distrofias de Cones e Bastonetes/metabolismo , Espectrometria de Massas , Degeneração Macular/sangue , Degeneração Macular/diagnóstico , Degeneração Macular/genética
6.
Exp Eye Res ; 242: 109879, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570182

RESUMO

Because the selective estrogen receptor modulator tamoxifen was shown to be retina-protective in the light damage and rd10 models of retinal degeneration, the purpose of this study was to test whether tamoxifen is retina-protective in a model where retinal pigment epithelium (RPE) toxicity appears to be the primary insult: the sodium iodate (NaIO3) model. C57Bl/6J mice were given oral tamoxifen (in the diet) or the same diet lacking tamoxifen, then given an intraperitoneal injection of NaIO3 at 25 mg/kg. The mice were imaged a week later using optical coherence tomography (OCT). ImageJ with a custom macro was utilized to measure retinal thicknesses in OCT images. Electroretinography (ERG) was used to measure retinal function one week post-injection. After euthanasia, quantitative real-time PCR (qRT-PCR) was performed. Tamoxifen administration partially protected photoreceptors. There was less photoreceptor layer thinning in OCT images of tamoxifen-treated mice. qRT-PCR revealed, in the tamoxifen-treated group, less upregulation of antioxidant and complement factor 3 mRNAs, and less reduction in the rhodopsin and short-wave cone opsin mRNAs. Furthermore, ERG results demonstrated preservation of photoreceptor function for the tamoxifen-treated group. Cone function was better protected than rods. These results indicate that tamoxifen provided structural and functional protection to photoreceptors against NaIO3. RPE cells were not protected. These neuroprotective effects suggest that estrogen-receptor modulation may be retina-protective. The fact that cones are particularly protected is intriguing given their importance for human visual function and their survival until the late stages of retinitis pigmentosa. Further investigation of this protective pathway could lead to new photoreceptor-protective therapeutics.


Assuntos
Modelos Animais de Doenças , Eletrorretinografia , Iodatos , Camundongos Endogâmicos C57BL , Degeneração Retiniana , Tamoxifeno , Tomografia de Coerência Óptica , Animais , Iodatos/toxicidade , Camundongos , Tomografia de Coerência Óptica/métodos , Tamoxifeno/farmacologia , Degeneração Retiniana/prevenção & controle , Degeneração Retiniana/induzido quimicamente , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Reação em Cadeia da Polimerase em Tempo Real , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/patologia , Rodopsina/metabolismo , Rodopsina/genética , Moduladores Seletivos de Receptor Estrogênico/farmacologia , RNA Mensageiro/genética , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/patologia , Epitélio Pigmentado da Retina/metabolismo , Opsinas de Bastonetes/metabolismo
7.
Biomed Pharmacother ; 174: 116538, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579401

RESUMO

Glaucoma is considered a neurodegenerative disease characterized by progressive visual field defects that may lead to blindness. Although controlling intraocular pressure (IOP) is the mainstay of glaucoma treatment, some glaucoma patients have unmet needs due to unclear pathogenic mechanisms. Recently, there has been growing evidence that neuroinflammation is a potential target for the development of novel antiglaucoma agents. In this study, we investigated the protective effects and cellular mechanisms of H7E, a novel small molecule inhibits HDAC8, using in vitro and in vivo glaucoma-like models. Importantly, H7E mitigated extracellular MMP-9 activity and MCP-1 levels in glutamate- or S100B-stimulated reactive Müller glia. In addition, H7E inhibited the upregulation of inflammation- and proliferation-related signaling pathways, particularly the ERK and JNK MAPK pathways. Under conditions of oxidative damage, H7E prevents retinal cell death and reduces extracellular glutamate released from stressed Müller glia. In a mouse model of NMDA-induced retinal degeneration, H7E alleviated functional and structural defects within the inner retina as assessed by electroretinography and optical coherence tomography. Our results demonstrated that the newly identified compound H7E protects against glaucoma damage by specifically targeting HDAC8 activity in the retina. This protective effect is attributed to the inhibition of Müller glial activation and the prevention of retinal cell death caused by oxidative stress.


Assuntos
Células Ependimogliais , Glaucoma , Inibidores de Histona Desacetilases , Histona Desacetilases , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Animais , Estresse Oxidativo/efeitos dos fármacos , Glaucoma/tratamento farmacológico , Glaucoma/metabolismo , Glaucoma/patologia , Inibidores de Histona Desacetilases/farmacologia , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/metabolismo , Células Ependimogliais/patologia , Camundongos , Histona Desacetilases/metabolismo , Retina/efeitos dos fármacos , Retina/metabolismo , Retina/patologia , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Masculino , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/patologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/prevenção & controle
8.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542418

RESUMO

Inherited retinal degenerative diseases (IRDs) are a group of rare diseases that lead to a progressive loss of photoreceptor cells and, ultimately, blindness. The overactivation of cGMP-dependent protein kinase G (PKG), one of the key effectors of cGMP-signaling, was previously found to be involved in photoreceptor cell death and was studied in murine IRD models to elucidate the pathophysiology of retinal degeneration. However, PKG is a serine/threonine kinase (STK) with several hundred potential phosphorylation targets and, so far, little is known about the specificity of the target interaction and downstream effects of PKG activation. Here, we carried out both the kinome activity and phosphoproteomic profiling of organotypic retinal explant cultures derived from the rd10 mouse model for IRD. After treating the explants with the PKG inhibitor CN03, an overall decrease in peptide phosphorylation was observed, with the most significant decrease occurring in seven peptides, including those from the known PKG substrate cyclic-AMP-response-element-binding CREB, but also Ca2+/calmodulin-dependent kinase (CaMK) peptides and TOP2A. The phosphoproteomic data, in turn, revealed proteins with decreased phosphorylation, as well as proteins with increased phosphorylation. The integration of both datasets identified common biological networks altered by PKG inhibition, which included kinases predominantly from the so-called AGC and CaMK families of kinases (e.g., PKG1, PKG2, PKA, CaMKs, RSKs, and AKTs). A pathway analysis confirmed the role of CREB, Calmodulin, mitogen-activated protein kinase (MAPK) and CREB modulation. Among the peptides and pathways that showed reduced phosphorylation activity, the substrates CREB, CaMK2, and CaMK4 were validated for their retinal localization and activity, using immunostaining and immunoblotting in the rd10 retina. In summary, the integrative analysis of the kinome activity and phosphoproteomic data revealed both known and novel PKG substrates in a murine IRD model. This data establishes a basis for an improved understanding of the biological pathways involved in cGMP-mediated photoreceptor degeneration. Moreover, validated PKG targets like CREB and CaMKs merit exploration as novel (surrogate) biomarkers to determine the effects of a clinical PKG-targeted treatment for IRDs.


Assuntos
Degeneração Retiniana , Animais , Camundongos , Fosforilação , Degeneração Retiniana/metabolismo , Calmodulina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Retina/metabolismo , GMP Cíclico/metabolismo
9.
Exp Eye Res ; 242: 109852, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460719

RESUMO

Oxidative stress plays a pivotal role in the pathogenesis of several neurodegenerative diseases. Retinal degeneration causes irreversible death of photoreceptor cells, ultimately leading to vision loss. Under oxidative stress, the synthesis of bioactive sphingolipid ceramide increases, triggering apoptosis in photoreceptor cells and leading to their death. This study investigates the effect of L-Cycloserine, a small molecule inhibitor of ceramide biosynthesis, on sphingolipid metabolism and the protection of photoreceptor-derived 661W cells from oxidative stress. The results demonstrate that treatment with L-Cycloserine, an inhibitor of Serine palmitoyl transferase (SPT), markedly decreases bioactive ceramide and associated sphingolipids in 661W cells. A nontoxic dose of L-Cycloserine can provide substantial protection of 661W cells against H2O2-induced oxidative stress by reversing the increase in ceramide level observed under oxidative stress conditions. Analysis of various antioxidant, apoptotic and sphingolipid pathway genes and proteins also confirms the ability of L-Cycloserine to modulate these pathways. Our findings elucidate the generation of sphingolipid mediators of cell death in retinal cells under oxidative stress and the potential of L-Cycloserine as a therapeutic candidate for targeting ceramide-induced degenerative diseases by inhibiting SPT. The promising therapeutic prospect identified in our findings lays the groundwork for further validation in in-vivo and preclinical models of retinal degeneration.


Assuntos
Apoptose , Ceramidas , Ciclosserina , Estresse Oxidativo , Esfingolipídeos , Estresse Oxidativo/efeitos dos fármacos , Ciclosserina/farmacologia , Animais , Ceramidas/metabolismo , Ceramidas/farmacologia , Camundongos , Esfingolipídeos/metabolismo , Apoptose/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Serina C-Palmitoiltransferase/metabolismo , Serina C-Palmitoiltransferase/antagonistas & inibidores , Peróxido de Hidrogênio/toxicidade , Peróxido de Hidrogênio/farmacologia , Linhagem Celular , Degeneração Retiniana/metabolismo , Degeneração Retiniana/prevenção & controle , Degeneração Retiniana/patologia , Degeneração Retiniana/tratamento farmacológico , Western Blotting , Inibidores Enzimáticos/farmacologia , Sobrevivência Celular/efeitos dos fármacos
10.
Sci Rep ; 14(1): 6940, 2024 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521799

RESUMO

Whole-body physical exercise has been shown to promote retinal structure and function preservation in animal models of retinal degeneration. It is currently unknown how exercise modulates retinal inflammatory responses. In this study, we investigated cytokine alterations associated with retinal neuroprotection induced by voluntary running wheel exercise in a retinal degeneration mouse model of class B1 autosomal dominant retinitis pigmentosa, I307N Rho. I307N Rho mice undergo rod photoreceptor degeneration when exposed to bright light (induced). Our data show, active induced mice exhibited significant preservation of retinal and visual function compared to inactive induced mice after 4 weeks of exercise. Retinal cytokine expression revealed significant reductions of proinflammatory chemokines, keratinocyte-derived chemokine (KC) and interferon gamma inducible protein-10 (IP-10) expression in active groups compared to inactive groups. Through immunofluorescence, we found KC and IP-10 labeling localized to retinal vasculature marker, collagen IV. These data show that whole-body exercise lowers specific retinal cytokine expression associated with retinal vasculature. Future studies should determine whether suppression of inflammatory responses is requisite for exercise-induced retinal protection.


Assuntos
Degeneração Retiniana , Retinose Pigmentar , Camundongos , Animais , Degeneração Retiniana/metabolismo , Quimiocina CXCL10 , Rodopsina/metabolismo , Retinose Pigmentar/metabolismo , Modelos Animais de Doenças
11.
Exp Clin Transplant ; 22(2): 148-155, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38511985

RESUMO

OBJECTIVES: MicroRNAs play an important role in the development and function of neuron cells. Among these, the miRNA known as MIR96 is abundantly expressed in mammalian retina and significantly affects differentiation, maturation, and survival of human photoreceptor cells. In this study, a mimic to miRNA-96 was transfected into human bone marrowderived mesenchymal stem cells to explore the biological functions of MIR96 at differentiation processing. MATERIALS AND METHODS: A mimic to miRNA-96 and a competitive control were transfected into human bone marrow-derived mesenchymal stem cells using Lipofectamine. After 24 and 48 hours, we evaluated changes in expression levels of genes associated with neural progenitor and photoreceptor differentiation (OTX2, NRL, protein kinase C, SLC1A1, and recoverin) by real-time polymerase chain reaction. In addition, we measured expression of mRNA and protein of the CRX gene (neuroretinal progenitor cell marker) and the RHO gene (terminal differentiation marker) using real-time polymerase chain reaction and immunocytochemistry, respectively. RESULTS: Real-time polymerase chain reaction results showed increased levels of RHO and recoverin mRNA after 24 hours in transfected cells. In addition, mRNA levels of OTX2, CRX, NRL, RHO, recoverin, and protein kinase C increased after 48 hours in transfected cells. Immunocytochemistry results confirmed these findings by demonstrating RHO and CRX at both 24 and 48 hours in transfected cells. CONCLUSIONS: Control of the expression of MIR96 can be a good strategy to promote cell differentiation and can be used in cell therapy for retinal degeneration. Our results showed that human bone marrow-derived mesenchymal stem cells can differentiate into photoreceptor cells after transfection with MIR96. These results support therapeutic use of MIR96 in retinal degeneration and suggest human bone marrowderived mesenchymal stem cells as a promising tool for interventions.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Degeneração Retiniana , Animais , Humanos , Degeneração Retiniana/metabolismo , Recoverina/metabolismo , Medula Óssea/metabolismo , Células Fotorreceptoras/metabolismo , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , Proteína Quinase C/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
12.
J Neuroinflammation ; 21(1): 68, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500151

RESUMO

BACKGROUND: Retinal degeneration results from disruptions in retinal homeostasis due to injury, disease, or aging and triggers peripheral leukocyte infiltration. Effective immune responses rely on coordinated actions of resident microglia and recruited macrophages, critical for tissue remodeling and repair. However, these phagocytes also contribute to chronic inflammation in degenerated retinas, yet the precise coordination of immune response to retinal damage remains elusive. Recent investigations have demonstrated that phagocytic cells can produce extracellular traps (ETs), which are a source of self-antigens that alter the immune response, which can potentially lead to tissue injury. METHODS: Innovations in experimental systems facilitate real-time exploration of immune cell interactions and dynamic responses. We integrated in vivo imaging with ultrastructural analysis, transcriptomics, pharmacological treatments, and knockout mice to elucidate the role of phagocytes and their modulation of the local inflammatory response through extracellular traps (ETs). Deciphering these mechanisms is essential for developing novel and enhanced immunotherapeutic approaches that can redirect a specific maladaptive immune response towards favorable wound healing in the retina. RESULTS: Our findings underscore the pivotal role of innate immune cells, especially macrophages/monocytes, in regulating retinal repair and inflammation. The absence of neutrophil and macrophage infiltration aids parenchymal integrity restoration, while their depletion, particularly macrophages/monocytes, impedes vascular recovery. We demonstrate that macrophages/monocytes, when recruited in the retina, release chromatin and granular proteins, forming ETs. Furthermore, the pharmacological inhibition of ETosis support retinal and vascular repair, surpassing the effects of blocking innate immune cell recruitment. Simultaneously, the absence of ETosis reshapes the inflammatory response, causing neutrophils, helper, and cytotoxic T-cells to be restricted primarily in the superficial capillary plexus instead of reaching the damaged photoreceptor layer. CONCLUSIONS: Our data offer novel insights into innate immunity's role in responding to retinal damage and potentially help developing innovative immunotherapeutic approaches that can shift the immune response from maladaptive to beneficial for retinal regeneration.


Assuntos
Armadilhas Extracelulares , Degeneração Retiniana , Animais , Camundongos , Macrófagos/metabolismo , Degeneração Retiniana/metabolismo , Imunidade Inata/fisiologia , Inflamação/metabolismo , Camundongos Knockout , Lasers
13.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474133

RESUMO

The human photoreceptor function is dependent on a highly specialised cilium. Perturbation of cilial function can often lead to death of the photoreceptor and loss of vision. Retinal ciliopathies are a genetically diverse range of inherited retinal disorders affecting aspects of the photoreceptor cilium. Despite advances in the understanding of retinal ciliopathies utilising animal disease models, they can often lack the ability to accurately mimic the observed patient phenotype, possibly due to structural and functional deviations from the human retina. Human-induced pluripotent stem cells (hiPSCs) can be utilised to generate an alternative disease model, the 3D retinal organoid, which contains all major retinal cell types including photoreceptors complete with cilial structures. These retinal organoids facilitate the study of disease mechanisms and potential therapies in a human-derived system. Three-dimensional retinal organoids are still a developing technology, and despite impressive progress, several limitations remain. This review will discuss the state of hiPSC-derived retinal organoid technology for accurately modelling prominent retinal ciliopathies related to genes, including RPGR, CEP290, MYO7A, and USH2A. Additionally, we will discuss the development of novel gene therapy approaches targeting retinal ciliopathies, including the delivery of large genes and gene-editing techniques.


Assuntos
Ciliopatias , Células-Tronco Pluripotentes Induzidas , Degeneração Retiniana , Animais , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Retina/metabolismo , Degeneração Retiniana/metabolismo , Terapia Genética , Organoides/metabolismo , Ciliopatias/metabolismo , Proteínas do Olho/metabolismo
14.
Biomed Pharmacother ; 173: 116424, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471273

RESUMO

The prevalence of retinal degenerative diseases, including age-related macular degeneration and retinitis pigmentosa, has been increasing globally and is linked to the aging population and improved life expectancy. These diseases are characterized by chronic, progressive neuronal damage or depletion of the photoreceptor cells in the retina, and limited effective treatment options are currently available. Mesenchymal stem cell-derived exosomes (MSC-EXOs) containing cytokines, growth factors, lipids, mRNA, and miRNA, which act as mediators of intercellular communication transferring bioactive molecules to recipient cells, offer an appealing, non-cellular nanotherapeutic approach for retinal degenerative diseases. However, treatment specificity is compromised due to their high heterogeneity in size, content, functional effects, and parental cellular source. To improve this, engineered MSC-EXOs with increased drug-loading capacity, targeting ability, and resistance to bodily degradation and elimination have been developed. This review summarizes the recent advances in miRNAs of MSC-EXOs as a treatment for retinal degeneration, discussing the strategies and methods for engineering therapeutic MSC-EXOs. Notably, to address the single functional role of engineered MSC-EXOs, we propose a novel concept called "Compound Engineered MSC-EXOs (Co-E-MSC-EXOs)" along with its derived potential therapeutic approaches. The advantages and challenges of employing Co-E-MSC-EXOs for retinal degeneration in clinical applications, as well as the strategies and issues related to them, are also highlighted.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Degeneração Retiniana , Humanos , Idoso , Exossomos/metabolismo , Degeneração Retiniana/terapia , Degeneração Retiniana/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Citocinas/metabolismo , Células-Tronco Mesenquimais/metabolismo
15.
J Vis Exp ; (203)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38345250

RESUMO

Transplantation of photoreceptor cells and retinal pigment epithelial (RPE) cells provide a potential therapy for retinal degeneration diseases. Subretinal transplantation of therapeutic donor cells into mouse recipients is challenging due to the limited surgical space allowed by the small volume of the mouse eye. We developed a trans-scleral surgical transplantation platform with direct transpupillary vision guidance to facilitate the subretinal delivery of exogenous cells in mouse recipients. The platform was tested using retinal cell suspensions and three-dimensional retinal sheets collected from rod-rich Rho::EGFP mice and cone-rich OPN1LW-EGFP;NRL-/- mice, respectively. Live/dead assay showed low cell mortality for both forms of donor cells. Retinal grafts were successfully delivered into the subretinal space of a mouse model of retinal degeneration, Rd1/NS, with minimum surgical complications as detected by multimodal confocal scanning laser ophthalmoscope (cSLO) imaging. Two months post-transplantation, histological staining demonstrated evidence of advanced maturation of the retinal grafts into 'adult' rods and cones (by robust Rho::EGFP, S-opsin, and OPN1LW:EGFP expression, respectively) in the subretinal space. Here, we provide a surgical platform that can enable highly accurate subretinal delivery with a low rate of complications in mouse recipients. This technique offers precision and relative ease of skill acquisition. Furthermore, the technique could be used not only for studies of subretinal cell transplantation but also for other intraocular therapeutic studies including gene therapies.


Assuntos
Degeneração Retiniana , Camundongos , Animais , Degeneração Retiniana/cirurgia , Degeneração Retiniana/metabolismo , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Transplante de Células/métodos , Visão Ocular
16.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338800

RESUMO

Degenerative retinal diseases associated with photoreceptor loss are a leading cause of visual impairment worldwide, with limited treatment options. Phenotypic profiling coupled with medicinal chemistry were used to develop a small molecule with proliferative effects on retinal stem/progenitor cells, as assessed in vitro in a neurosphere assay and in vivo by measuring Msx1-positive ciliary body cell proliferation. The compound was identified as having kinase inhibitory activity and was subjected to cellular pathway analysis in non-retinal human primary cell systems. When tested in a disease-relevant murine model of adult retinal degeneration (MNU-induced retinal degeneration), we observed that four repeat intravitreal injections of the compound improved the thickness of the outer nuclear layer along with the regeneration of the visual function, as measured with ERG, visual acuity, and contrast sensitivity tests. This serves as a proof of concept for the use of a small molecule to promote endogenous regeneration in the eye.


Assuntos
Degeneração Retiniana , Humanos , Camundongos , Animais , Degeneração Retiniana/metabolismo , Metilnitrosoureia , Retina/metabolismo , Células Fotorreceptoras , Regeneração , Modelos Animais de Doenças , Mamíferos
17.
Int J Mol Sci ; 25(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38338894

RESUMO

This review focuses on the role of small extracellular vesicles in the pathophysiological mechanisms of retinal degenerative diseases. Many of these mechanisms are related to or modulated by the oxidative burden of retinal cells. It has been recently demonstrated that cellular communication in the retina involves extracellular vesicles and that their rate of release and cargo features might be affected by the cellular environment, and in some instances, they might also be mediated by autophagy. The fate of these vesicles is diverse: they could end up in circulation being used as markers, or target neighbor cells modulating gene and protein expression, or eventually, in angiogenesis. Neovascularization in the retina promotes vision loss in diseases such as diabetic retinopathy and age-related macular degeneration. The importance of micro RNAs, either as small extracellular vesicles' cargo or free circulating, in the regulation of retinal angiogenesis is also discussed.


Assuntos
Vesículas Extracelulares , MicroRNAs , Degeneração Retiniana , Humanos , Retina/metabolismo , Degeneração Retiniana/metabolismo , Vesículas Extracelulares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Estresse Oxidativo
18.
Cell Commun Signal ; 22(1): 92, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38303059

RESUMO

Inherited retinal degenerations (IRDs) are a group of untreatable and commonly blinding diseases characterized by progressive photoreceptor loss. IRD pathology has been linked to an excessive activation of cyclic nucleotide-gated channels (CNGC) leading to Na+- and Ca2+-influx, subsequent activation of voltage-gated Ca2+-channels (VGCC), and further Ca2+ influx. However, a connection between excessive Ca2+ influx and photoreceptor loss has yet to be proven.Here, we used whole-retina and single-cell RNA-sequencing to compare gene expression between the rd1 mouse model for IRD and wild-type (wt) mice. Differentially expressed genes indicated links to several Ca2+-signalling related pathways. To explore these, rd1 and wt organotypic retinal explant cultures were treated with the intracellular Ca2+-chelator BAPTA-AM or inhibitors of different Ca2+-permeable channels, including CNGC, L-type VGCC, T-type VGCC, Ca2+-release-activated channel (CRAC), and Na+/Ca2+ exchanger (NCX). Moreover, we employed the novel compound NA-184 to selectively inhibit the Ca2+-dependent protease calpain-2. Effects on the retinal activity of poly(ADP-ribose) polymerase (PARP), sirtuin-type histone-deacetylase, calpains, as well as on activation of calpain-1, and - 2 were monitored, cell death was assessed via the TUNEL assay.While rd1 photoreceptor cell death was reduced by BAPTA-AM, Ca2+-channel blockers had divergent effects: While inhibition of T-type VGCC and NCX promoted survival, blocking CNGCs and CRACs did not. The treatment-related activity patterns of calpains and PARPs corresponded to the extent of cell death. Remarkably, sirtuin activity and calpain-1 activation were linked to photoreceptor protection, while calpain-2 activity was related to degeneration. In support of this finding, the calpain-2 inhibitor NA-184 protected rd1 photoreceptors.These results suggest that Ca2+ overload in rd1 photoreceptors may be triggered by T-type VGCCs and NCX. High Ca2+-levels likely suppress protective activity of calpain-1 and promote retinal degeneration via activation of calpain-2. Overall, our study details the complexity of Ca2+-signalling in photoreceptors and emphasizes the importance of targeting degenerative processes specifically to achieve a therapeutic benefit for IRDs. Video Abstract.


Assuntos
Ácido Egtázico/análogos & derivados , Degeneração Retiniana , Sirtuínas , Camundongos , Animais , Degeneração Retiniana/metabolismo , Calpaína/metabolismo , Trocador de Sódio e Cálcio , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/patologia , Morte Celular , Sirtuínas/metabolismo
19.
Neurobiol Dis ; 193: 106436, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38341159

RESUMO

Retinitis pigmentosa (RP) is a degenerative disease, caused by genetic mutations that lead to a loss in photoreceptors. For research on RP, rd10 mice, which carry mutations in the phosphodiesterase (PDE) gene, exhibit degenerative patterns comparable to those of patients with RP, making them an ideal model for investigating potential treatments. Although numerous studies have reported the potential of biochemical drugs, gene correction, and stem cell transplantation in decelerating rd10 retinal degeneration, a comprehensive review of these studies has yet to be conducted. Therefore, here, a comparative analysis of rd10 mouse treatment research over the past decade was performed. Our findings suggest that biochemical drugs capable of inhibiting the inflammatory response may be promising therapeutics. Additionally, significant progress has been made in the field of gene therapy; nevertheless, challenges such as strict delivery requirements, bystander editing, and off-target effects still need to be resolved. Nevertheless, secretory function is the only unequivocal protective effect of stem cell transplantation. In summary, this review presents a comprehensive analysis and synthesis of the treatment approaches employing rd10 mice as experimental subjects, describing a clear pathway for future RP treatment research and identifies potential clinical interventions.


Assuntos
Degeneração Retiniana , Retinose Pigmentar , Camundongos , Humanos , Animais , Retinose Pigmentar/genética , Retinose Pigmentar/terapia , Retinose Pigmentar/metabolismo , Degeneração Retiniana/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Retina/metabolismo
20.
Nucleic Acids Res ; 52(6): 3291-3309, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38165050

RESUMO

The mechanisms by which the relatively conserved spliceosome manages the enormously large number of splicing events that occur in humans (∼200 000 versus ∼300 in yeast) are poorly understood. Here, we show deposition of one RNA modification-N2-methylguanosine (m2G) on the G72 of U6 snRNA (the catalytic center of the spliceosome) promotes efficient pre-mRNA splicing activity in human cells. This modification was identified to be conserved among vertebrates. Further, THUMPD2 was demonstrated as the methyltransferase responsible for U6 m2G72 by explicitly recognizing the U6-specific sequences and structural elements. The knock-out of THUMPD2 eliminated U6 m2G72 and impaired the pre-mRNA splicing activity, resulting in thousands of changed alternative splicing events of endogenous pre-mRNAs in human cells. Notably, the aberrantly spliced pre-mRNA population elicited the nonsense-mediated mRNA decay pathway. We further show that THUMPD2 was associated with age-related macular degeneration and retinal function. Our study thus demonstrates how an RNA epigenetic modification of the major spliceosome regulates global pre-mRNA splicing and impacts physiology and disease.


Assuntos
Precursores de RNA , Splicing de RNA , Proteínas de Ligação a RNA , Degeneração Retiniana , Animais , Humanos , Metilação , Conformação de Ácido Nucleico , Degeneração Retiniana/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA/genética , RNA Nuclear Pequeno/metabolismo , Saccharomyces cerevisiae/genética , Spliceossomos/genética , Spliceossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA