Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Cell Mol Biol (Noisy-le-grand) ; 70(1): 226-232, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38372090

RESUMO

Delirium is a common psychiatric complication of chronic obstructive pulmonary disease (COPD). The relief of delirium is considered one of the beneficial ways to treat COPD. However, there are currently no specific drugs that alleviate delirium in COPD patients. Our research aimed to elucidate the specific mechanisms underlying delirium in COPD mice, while also seeking more effective therapeutic targets. In our study, bioinformatics analysis and qRT PCR were used to identify key factors in the development of delirium in COPD animal models. Open field and elevated plus maze tests were used to detect delirium in mice. Tunel staining and HE staining were used to analyze the apoptosis of mouse hippocampus cells. EdU and CCK-8 experiments were used to analyze PC-12 cells vitality and proliferation. JASPAR online database, dual luciferase reporting experiments, ChIP experiments, and IF staining were used to analyze the interaction between RXRA and PLA2G2A. RXRA is highly expressed in the brain tissue of COPD mice with delirium symptoms. The downregulation of RXRA inhibits the delirium state in COPD mice. This is mainly due to the reduction of endoplasmic reticulum stress and cell apoptosis by inhibiting the expression of RXRA. In addition, we also confirmed that RXRA is a transcription factor of PLA2G2A. RXRA has an inhibitory effect on the expression of PLA2G2A. In vitro experiments have confirmed that inhibition of the RXRA/PLA2G2A axis reduces cell apoptosis, thereby alleviating the occurrence and development of delirium in COPD mice. Inhibition of the RXRA/PLA2G2A axis reduces endoplasmic reticulum stress and cell apoptosis. This process alleviates the development of delirium in COPD mice.


Assuntos
Delírio , Fosfolipases A2 do Grupo II , Doença Pulmonar Obstrutiva Crônica , Receptor X Retinoide alfa , Animais , Camundongos , Apoptose , Delírio/tratamento farmacológico , Delírio/metabolismo , Estresse do Retículo Endoplasmático , Fosfolipases A2 do Grupo II/metabolismo , Pulmão/metabolismo , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Receptor X Retinoide alfa/metabolismo
2.
J Pharm Pharmacol ; 75(7): 886-897, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37330271

RESUMO

OBJECTIVE: Delirium (acute brain syndrome) is a common and serious neuropsychiatric disorder characterized by an acute decline in cognitive function. However, there is no effective treatment clinically. Here we investigated the potential effect of jujuboside A (JuA, a natural triterpenoid saponin) on cognitive impairment in delirium. METHODS: Delirium models of mice were established by injecting lipopolysaccharide (LPS) plus midazolam and implementing a jet lag protocol. Novel object recognition test and Y maze test were used to evaluate the effects of JuA on delirium-associated cognitive impairment. The mRNA and protein levels of relevant clock factors and inflammatory factors were measured by qPCR and Western blotting. Hippocampal Iba1+ intensity was determined by immunofluorescence staining. KEY FINDINGS: JuA ameliorated delirium (particularly delirium-associated cognitive impairment) in mice, which was proved by the behavioural tests, including a preference for new objects, an increase of spontaneous alternation and improvement of locomotor activity. Furthermore, JuA inhibited the expression of ERK1/2, p-p65, TNFα and IL-1ß in hippocampus, and repressed microglial activation in delirious mice. This was attributed to the increased expression of E4BP4 (a negative regulator of ERK1/2 cascade and microglial activation). Moreover, loss of E4bp4 in mice abrogated the effects of JuA on delirium as well as on ERK1/2 cascade and microglial activation in the hippocampus of delirious mice. Additionally, JuA treatment increased the expression of E4BP4 and decreased the expression of p-p65, TNFα and IL-1ß in LPS-stimulated BV2 cells, supporting a protective effect of JuA on delirium. CONCLUSIONS: JuA protects against delirium-associated cognitive impairment through promoting hippocampal E4BP4 in mice. Our findings are of great significance to the drug development of JuA against delirium and related disorders.


Assuntos
Delírio , Saponinas , Camundongos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos/farmacologia , Hipocampo , Saponinas/farmacologia , Cognição , Delírio/metabolismo , Camundongos Endogâmicos C57BL
3.
Exp Neurol ; 367: 114453, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37302746

RESUMO

Neurologic morbidity is highly prevalent in pediatric critical illness, and the use of benzodiazepines and/or opioids is a risk factor for delirium and post-discharge sequelae. However, little is known about how multidrug sedation with these medications interacts with inflammation in the developing brain, a frequent condition during childhood critical illness that has not been extensively studied. In weanling rats, mild-moderate inflammation was induced with lipopolysaccharide (LPS) on postnatal day (P)18 and combined with 3 days repeated opioid and benzodiazepine sedation using morphine and midazolam (MorMdz) between P19-21. Delirium-like behaviors including abnormal response to whisker stimulation, wet dog shakes, and delay in finding buried food were induced in male and female rat pups treated with LPS, MorMdz, or LPS/MorMdz (n ≥ 17/group) and were compared using a z-score composite. Composite behavior scores were significantly increased in LPS, MorMdz, and LPS/MorMdz groups compared to saline control (F3,78 = 38.1, p < 0.0001). Additionally, expression of glial-associated neuroinflammatory markers ionized calcium-binding adaptor molecule 1 (Iba1) and glial fibrillary acidic protein (GFAP) in western blots of P22 brain homogenate were significantly higher after LPS than after LPS/MorMdz (Iba1, p < 0.0001; GFAP, p < 0.001). Likewise, proinflammatory cytokines were increased in brains of LPS-treated pups versus Saline (p = 0.002), but not LPS/MorMdz-treated pups (p = 0.16). These results are of potential interest during pediatric critical illness, as inflammation is ubiquitous and the effects of multidrug sedation on homeostatic neuroimmune responses need to be considered along with neurodevelopmental effects.


Assuntos
Delírio , Doenças Neuroinflamatórias , Humanos , Ratos , Animais , Masculino , Feminino , Hipnóticos e Sedativos/efeitos adversos , Hipnóticos e Sedativos/metabolismo , Assistência ao Convalescente , Estado Terminal , Alta do Paciente , Encéfalo/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Benzodiazepinas/farmacologia , Analgésicos Opioides/efeitos adversos , Delírio/metabolismo , Lipopolissacarídeos/toxicidade
4.
J Neuroinflammation ; 20(1): 75, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932450

RESUMO

OBJECTIVES: Enhanced neuroinflammation is an important mechanism underlying perioperative neurocognitive disorders. Regulatory T cells (Tregs) play a crucial role in regulating systemic immune responses. The present study was aimed to investigate the participation of Tregs in the development of postoperative cognitive dysfunction (POCD). METHODS: Surgery-associated neurocognitive disorder was induced in 18-month-old mice subjected to internal fixation of tibial fracture. Morris water maze was used to examine mice cognitive function. Splenic Tregs were collected for RNA sequencing and flow cytometry. Levels of inflammatory factors in the circulation and hippocampus were measured by enzyme-linked immunosorbent assay. Protein presences of tight junction proteins were detected by immunofluorescence. RESULTS: Surgery of internal fixation of tibial fracture induced cognitive impairment in aged mice, accompanied by elevated plasma levels of inflammatory factors and increased circulating Tregs. Transfusion of Tregs from young mice partially restored the structure of the blood-brain barrier and alleviated POCD in aged mice. Compared with young Tregs, differentially expressed genes in aged Tregs were enriched in tumor necrosis factor (TNF) signaling pathway and cytokine-cytokine receptor interaction. Flow cytometry revealed that aged Tregs had blunted functions under basal and stimulated conditions. Blockade of the CD25 epitope protected the blood-brain barrier structure, reduced TNF-α levels in the hippocampus, and improved surgery-associated cognition in aged mice. CONCLUSIONS: Blocking peripheral regulatory T cells improves surgery-induced cognitive function in aged mice. Therefore, aged Tregs play an essential role in the occurrence of POCD.


Assuntos
Disfunção Cognitiva , Delírio , Complicações Cognitivas Pós-Operatórias , Linfócitos T Reguladores , Fraturas da Tíbia , Animais , Camundongos , Barreira Hematoencefálica/metabolismo , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Citocinas/metabolismo , Delírio/metabolismo , Hipocampo/metabolismo , Camundongos Endogâmicos C57BL , Complicações Cognitivas Pós-Operatórias/etiologia , Complicações Cognitivas Pós-Operatórias/metabolismo , Fraturas da Tíbia/cirurgia , Linfócitos T Reguladores/patologia
5.
Cells ; 11(19)2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36230916

RESUMO

Cognitive impairment after surgery is a common problem, affects mainly the elderly, and can be divided into postoperative delirium and postoperative cognitive dysfunction. Both phenomena are accompanied by neuroinflammation; however, the precise molecular mechanisms underlying cognitive impairment after anesthesia are not yet fully understood. Anesthesiological drugs can have a longer-term influence on protein transcription, thus, epigenetics is a possible mechanism that impacts on cognitive function. Epigenetic mechanisms may be responsible for long-lasting effects and may implicate novel therapeutic approaches. Hence, we here summarize the existing literature connecting postoperative cognitive impairment to anesthesia. It becomes clear that anesthetics alter the expression of DNA and histone modifying enzymes, which, in turn, affect epigenetic markers, such as methylation, histone acetylation and histone methylation on inflammatory genes (e.g., TNF-alpha, IL-6 or IL1 beta) and genes which are responsible for neuronal development (such as brain-derived neurotrophic factor). Neuroinflammation is generally increased after anesthesia and neuronal growth decreased. All these changes can induce cognitive impairment. The inhibition of histone deacetylase especially alleviates cognitive impairment after surgery and might be a novel therapeutic option for treatment. However, further research with human subjects is necessary because most findings are from animal models.


Assuntos
Anestesia , Disfunção Cognitiva , Delírio , Complicações Cognitivas Pós-Operatórias , Idoso , Anestesia/efeitos adversos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Delírio/complicações , Delírio/metabolismo , Epigênese Genética , Hipocampo/metabolismo , Histona Desacetilases/metabolismo , Histonas/metabolismo , Humanos , Interleucina-6/metabolismo , Doenças Neuroinflamatórias , Complicações Cognitivas Pós-Operatórias/genética , Fator de Necrose Tumoral alfa/metabolismo
6.
Mol Psychiatry ; 27(12): 5049-5061, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36195636

RESUMO

Coronavirus disease 2019 (COVID-19), represents an enormous new threat to our healthcare system and particularly to the health of older adults. Although the respiratory symptoms of COVID-19 are well recognized, the neurological manifestations, and their underlying cellular and molecular mechanisms, have not been extensively studied yet. Our study is the first one to test the direct effect of serum from hospitalised COVID-19 patients on human hippocampal neurogenesis using a unique in vitro experimental assay with human hippocampal progenitor cells (HPC0A07/03 C). We identify the different molecular pathways activated by serum from COVID-19 patients with and without neurological symptoms (i.e., delirium), and their effects on neuronal proliferation, neurogenesis, and apoptosis. We collected serum sample twice, at time of hospital admission and approximately 5 days after hospitalization. We found that treatment with serum samples from COVID-19 patients with delirium (n = 18) decreased cell proliferation and neurogenesis, and increases apoptosis, when compared with serum samples of sex- and age-matched COVID-19 patients without delirium (n = 18). This effect was due to a higher concentration of interleukin 6 (IL6) in serum samples of patients with delirium (mean ± SD: 229.9 ± 79.1 pg/ml, vs. 32.5 ± 9.5 pg/ml in patients without delirium). Indeed, treatment of cells with an antibody against IL6 prevented the decreased cell proliferation and neurogenesis and the increased apoptosis. Moreover, increased concentration of IL6 in serum samples from delirium patients stimulated the hippocampal cells to produce IL12 and IL13, and treatment with an antibody against IL12 or IL13 also prevented the decreased cell proliferation and neurogenesis, and the increased apoptosis. Interestingly, treatment with the compounds commonly administered to acute COVID-19 patients (the Janus kinase inhibitors, baricitinib, ruxolitinib and tofacitinib) were able to restore normal cell viability, proliferation and neurogenesis by targeting the effects of IL12 and IL13. Overall, our results show that serum from COVID-19 patients with delirium can negatively affect hippocampal-dependent neurogenic processes, and that this effect is mediated by IL6-induced production of the downstream inflammatory cytokines IL12 and IL13, which are ultimately responsible for the detrimental cellular outcomes.


Assuntos
COVID-19 , Delírio , Hipocampo , Neurogênese , Idoso , Humanos , COVID-19/sangue , COVID-19/metabolismo , COVID-19/patologia , Delírio/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Interleucina-12/metabolismo , Interleucina-12/farmacologia , Interleucina-13/metabolismo , Interleucina-13/farmacologia , Interleucina-6 , Células-Tronco/metabolismo , Células-Tronco/virologia
7.
Aging Cell ; 21(4): e13592, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35299279

RESUMO

Delirium is the most common postoperative complication in older patients after prolonged anesthesia and surgery and is associated with accelerated cognitive decline and dementia. The neuronal pathogenesis of postoperative delirium is largely unknown. The unfolded protein response (UPR) is an adaptive reaction of cells to perturbations in endoplasmic reticulum function. Dysregulation of UPR has been implicated in a variety of diseases including Alzheimer's disease and related dementias. However, whether UPR plays a role in anesthesia-induced cognitive impairment remains unexplored. By performing in vivo calcium imaging in the mouse frontal cortex, we showed that exposure of aged mice to the inhalational anesthetic sevoflurane for 2 hours resulted in a marked elevation of neuronal activity during recovery, which lasted for at least 24 hours after the end of exposure. Concomitantly, sevoflurane anesthesia caused a prolonged increase in phosphorylation of PERK and eIF2α, the markers of UPR activation. Genetic deletion or pharmacological inhibition of PERK prevented neuronal hyperactivity and memory impairment induced by sevoflurane. Moreover, we showed that PERK suppression also reversed various molecular and synaptic changes induced by sevoflurane anesthesia, including alterations of synaptic NMDA receptors, tau protein phosphorylation, and dendritic spine loss. Together, these findings suggest that sevoflurane anesthesia causes abnormal UPR in the aged brain, which contributes to neuronal hyperactivity, synapse loss and cognitive decline in aged mice.


Assuntos
Anestesia , Delírio , Idoso , Animais , Delírio/induzido quimicamente , Delírio/metabolismo , Humanos , Camundongos , Sevoflurano/efeitos adversos , Sevoflurano/metabolismo , Sinapses/metabolismo , Resposta a Proteínas não Dobradas , eIF-2 Quinase/metabolismo
8.
J Nat Med ; 76(3): 634-644, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35257304

RESUMO

Neuroinflammation is associated with the development of hypoactive delirium, which results in poor clinical outcomes. Drugs effective against hypoactive sur have not yet been established. Yokukansan has an anti-neuroinflammatory effect, making it potentially effective against hypoactive delirium. This study aimed to examine the effect of Yokukansan on the pentobarbital-induced loss of righting reflex duration extended with lipopolysaccharide (LPS)-induced neuroinflammation and diazepam-induced gamma-aminobutyric acid receptor stimulation in a mouse model. The active ingredients in Yokukansan and its anti-neuroinflammatory effect on the hippocampus were also investigated. Furthermore, we examined the in vitro anti-inflammatory effects of Yokukansan on LPS-stimulated BV2 cells, a murine microglial cell line. Findings revealed that treatment with Yokukansan significantly decreased the duration of pentobarbital-induced loss of righting reflex by attenuating the LPS-induced increase in interleukin-6 and tumor necrosis factor-alpha levels in the hippocampus. Moreover, treatment with Yokukansan significantly decreased the number of ionized calcium-binding adapter molecule-1-positive cells in the hippocampal dentate gyrus after 24 h of LPS administration. In addition, glycyrrhizic acid, an active ingredient in Yokukansan, partially decreased the duration of pentobarbital-induced loss of righting reflex. Treatment with Yokukansan also suppressed the expression of inducible nitric oxide, interleukin-6, and tumor necrosis factor mRNA in LPS-stimulated BV2 cells. Thus, these findings suggest that Yokukansan and glycyrrhizic acid may be effective therapeutic agents for treating neuroinflammation-induced hypoactive delirium.


Assuntos
Delírio , Lipopolissacarídeos , Animais , Delírio/metabolismo , Diazepam/metabolismo , Diazepam/farmacologia , Diazepam/uso terapêutico , Medicamentos de Ervas Chinesas , Ácido Glicirrízico/farmacologia , Hipocampo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , NF-kappa B/metabolismo , Doenças Neuroinflamatórias , Pentobarbital/metabolismo , Pentobarbital/farmacologia , Pentobarbital/uso terapêutico , Reflexo de Endireitamento , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
11.
Anaesthesia ; 77 Suppl 1: 49-58, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35001383

RESUMO

Delirium is a common condition affecting hospital inpatients, including those having surgery and on the intensive care unit. Delirium is also common in patients with COVID-19 in hospital settings, and the occurrence is higher than expected for similar infections. The short-term outcomes of those with COVID-19 delirium are similar to that of classical delirium and include increased length of stay and increased mortality. Management of delirium in COVID-19 in the context of a global pandemic is limited by the severity of the syndrome and compounded by the environmental constraints. Practical management includes effective screening, early identification and appropriate treatment aimed at minimising complications and timely escalation decisions. The pandemic has played out on the national stage and the effect of delirium on patients, relatives and healthcare workers remains unknown but evidence from the previous SARS outbreak suggests there may be long-lasting psychological damage.


Assuntos
COVID-19/epidemiologia , COVID-19/psicologia , Delírio/epidemiologia , Delírio/psicologia , Pessoal de Saúde/psicologia , Encéfalo/metabolismo , COVID-19/metabolismo , COVID-19/terapia , Delírio/metabolismo , Delírio/terapia , Humanos , Mediadores da Inflamação/metabolismo , Unidades de Terapia Intensiva/tendências
12.
J Neuroinflammation ; 18(1): 247, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711238

RESUMO

BACKGROUND: Urinary tract infection (UTI) is frequently implicated as a precipitant of delirium, which refers to an acute confusional state that is associated with high mortality, increased length of stay, and long-term cognitive decline. The pathogenesis of delirium is thought to involve cytokine-mediated neuronal dysfunction of the frontal cortex and hippocampus. We hypothesized that systemic IL-6 inhibition would mitigate delirium-like phenotypes in a mouse model of UTI. METHODS: C57/BL6 mice were randomized to either: (1) non-UTI control, (2) UTI, and (3) UTI + anti-IL-6 antibody. UTI was induced by transurethral inoculation of 1 × 108 Escherichia coli. Frontal cortex and hippocampus-mediated behaviors were evaluated using functional testing and corresponding structural changes were evaluated via quantification of neuronal cleaved caspase-3 (CC3) by immunohistochemistry and western blot. IL-6 in the brain and plasma were evaluated using immunohistochemistry, ELISA, and RT-PCR. RESULTS: Compared to non-UTI control mice, mice with UTI demonstrated significantly greater impairments in frontal and hippocampus-mediated behaviors, specifically increased thigmotaxis in Open Field (p < 0.05) and reduced spontaneous alternations in Y-maze (p < 0.01), while treatment of UTI mice with systemic anti-IL-6 fully reversed these functional impairments. These behavioral impairments correlated with frontal and hippocampal neuronal CC3 changes, with significantly increased frontal and hippocampal CC3 in UTI mice compared to non-UTI controls (p < 0.0001), and full reversal of UTI-induced CC3 neuronal changes following treatment with systemic anti-IL-6 antibody (p < 0.0001). Plasma IL-6 was significantly elevated in UTI mice compared to non-UTI controls (p < 0.01) and there were positive and significant correlations between plasma IL-6 and frontal CC3 (r2 = 0.5087/p = 0.0028) and frontal IL-6 and CC3 (r2 = 0.2653, p < 0.0001). CONCLUSIONS: These data provide evidence for a role for IL-6 in mediating delirium-like phenotypes in a mouse model of UTI. These findings provide pre-clinical justification for clinical investigations of IL-6 inhibitors to treat UTI-induced delirium.


Assuntos
Delírio/metabolismo , Modelos Animais de Doenças , Interleucina-6/metabolismo , Fenótipo , Infecções Urinárias/metabolismo , Animais , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Delírio/patologia , Feminino , Interleucina-6/antagonistas & inibidores , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções Urinárias/patologia
13.
PLoS One ; 16(7): e0254654, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34255810

RESUMO

Postoperative delirium (POD) is a well-recognized postoperative complication and is associated with increased morbidity and mortality. We investigated whether the preoperative neutrophil-lymphocyte ratio (NLR) could be an effective predictor of POD after head and neck free-flap reconstruction. This was a single-center, retrospective, observational study. We analyzed the perioperative data of patients who had undergone elective head and neck free-flap reconstruction surgery. POD was assessed with the Intensive Care Delirium Screening Checklist (ICDSC) during admission to our intensive care unit (ICU). POD was defined as an ICDSC score ≥4. Risk factors for POD were evaluated by univariate and multivariate logistic regression analysis. We included 97 patients. The incidence of POD was 20.6% (20/97). Significantly longer ICU stays were observed in the patients with POD compared to those without POD (median [interquartile range]: 5 [4-6] vs. 4 [4-5], p = 0.031). Higher preoperative NLR values (3 3.0 (adjusted Odds Ratio: 23.6, 95% Confidence Interval: 6.6-85.1; p<0.001) was independently associated with POD. The multivariate area under the receiver operator curve was significantly greater for the E-PRE-DELIRIC model with NLR compared to the E-PRE-DELIRIC model (0.87 vs. 0.60; p<0.001). The preoperative NLR may be a good predictor of POD in patients undergoing head and neck free-flap reconstruction.


Assuntos
Delírio/diagnóstico , Delírio/metabolismo , Linfócitos/metabolismo , Neutrófilos/metabolismo , Procedimentos de Cirurgia Plástica/efeitos adversos , Complicações Pós-Operatórias/diagnóstico , Idoso , Feminino , Humanos , Modelos Logísticos , Masculino , Análise Multivariada , Complicações Pós-Operatórias/metabolismo , Estudos Retrospectivos
14.
Int J Mol Sci ; 22(9)2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34063611

RESUMO

Serotonin (5-hydroxytryptamine, 5-HT) plays two important roles in humans-one central and the other peripheral-depending on the location of the 5-HT pools of on either side of the blood-brain barrier. In the central nervous system it acts as a neurotransmitter, controlling such brain functions as autonomic neural activity, stress response, body temperature, sleep, mood and appetite. This role is very important in intensive care, as in critically ill patients multiple serotoninergic agents like opioids, antiemetics and antidepressants are frequently used. High serotonin levels lead to altered mental status, deliria, rigidity and myoclonus, together recognized as serotonin syndrome. In its role as a peripheral hormone, serotonin is unique in controlling the functions of several organs. In the gastrointestinal tract it is important for regulating motor and secretory functions. Apart from intestinal motility, energy metabolism is regulated by both central and peripheral serotonin signaling. It also has fundamental effects on hemostasis, vascular tone, heart rate, respiratory drive, cell growth and immunity. Serotonin regulates almost all immune cells in response to inflammation, following the activation of platelets.


Assuntos
Estado Terminal , Inflamação/metabolismo , Síndrome da Serotonina/metabolismo , Serotonina/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Delírio/metabolismo , Delírio/patologia , Motilidade Gastrointestinal/fisiologia , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/patologia , Humanos , Inflamação/patologia , Mioclonia/metabolismo , Mioclonia/patologia , Serotonina/biossíntese , Síndrome da Serotonina/patologia
15.
Am J Respir Cell Mol Biol ; 65(4): 403-412, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34014798

RESUMO

Mechanical ventilation is a known risk factor for delirium, a cognitive impairment characterized by dysfunction of the frontal cortex and hippocampus. Although IL-6 is upregulated in mechanical ventilation-induced lung injury (VILI) and may contribute to delirium, it is not known whether the inhibition of systemic IL-6 mitigates delirium-relevant neuropathology. To histologically define neuropathological effects of IL-6 inhibition in an experimental VILI model, VILI was simulated in anesthetized adult mice using a 35 cc/kg tidal volume mechanical ventilation model. There were two control groups, as follow: 1) spontaneously breathing or 2) anesthetized and mechanically ventilated with 10 cc/kg tidal volume to distinguish effects of anesthesia from VILI. Two hours before inducing VILI, mice were treated with either anti-IL-6 antibody, anti-IL-6 receptor antibody, or saline. Neuronal injury, stress, and inflammation were assessed using immunohistochemistry. CC3 (cleaved caspase-3), a neuronal apoptosis marker, was significantly increased in the frontal (P < 0.001) and hippocampal (P < 0.0001) brain regions and accompanied by significant increases in c-Fos and heat shock protein-90 in the frontal cortices of VILI mice compared with control mice (P < 0.001). These findings were not related to cerebral hypoxia, and there was no evidence of irreversible neuronal death. Frontal and hippocampal neuronal CC3 were significantly reduced with anti-IL-6 antibody (P < 0.01 and P < 0.0001, respectively) and anti-IL-6 receptor antibody (P < 0.05 and P < 0.0001, respectively) compared with saline VILI mice. In summary, VILI induces potentially reversible neuronal injury and inflammation in the frontal cortex and hippocampus, which is mitigated with systemic IL-6 inhibition. These data suggest a potentially novel neuroprotective role of systemic IL-6 inhibition that justifies further investigation.


Assuntos
Anticorpos/farmacologia , Apoptose/efeitos dos fármacos , Delírio/metabolismo , Interleucina-6/antagonistas & inibidores , Neurônios/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Animais , Delírio/tratamento farmacológico , Delírio/patologia , Modelos Animais de Doenças , Feminino , Lobo Frontal/lesões , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Proteínas de Choque Térmico HSP90/metabolismo , Hipocampo/lesões , Hipocampo/metabolismo , Hipocampo/patologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Interleucina-6/metabolismo , Camundongos , Neurônios/patologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/tratamento farmacológico , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia
16.
Sci Rep ; 11(1): 10629, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34017039

RESUMO

Delirium is an acute change in attention and cognition occurring in ~ 65% of severe SARS-CoV-2 cases. It is also common following surgery and an indicator of brain vulnerability and risk for the development of dementia. In this work we analyzed the underlying role of metabolism in delirium-susceptibility in the postoperative setting using metabolomic profiling of cerebrospinal fluid and blood taken from the same patients prior to planned orthopaedic surgery. Distance correlation analysis and Random Forest (RF) feature selection were used to determine changes in metabolic networks. We found significant concentration differences in several amino acids, acylcarnitines and polyamines linking delirium-prone patients to known factors in Alzheimer's disease such as monoamine oxidase B (MAOB) protein. Subsequent computational structural comparison between MAOB and angiotensin converting enzyme 2 as well as protein-protein docking analysis showed that there potentially is strong binding of SARS-CoV-2 spike protein to MAOB. The possibility that SARS-CoV-2 influences MAOB activity leading to the observed neurological and platelet-based complications of SARS-CoV-2 infection requires further investigation.


Assuntos
COVID-19/metabolismo , Delírio/metabolismo , Monoaminoxidase/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Metabolômica
17.
Sci Rep ; 11(1): 8376, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863952

RESUMO

Postoperative delirium is a common neuropsychiatric syndrome resulting a high postsurgical mortality rate and decline in postdischarge function. Extensive research has been performed on both human and animal delirium-like models due to their clinical significance, focusing on systematic inflammation and consequent neuroinflammation playing a key role in the pathogenesis of postoperative cognitive dysfunctions. Since animal models are widely utilized for pathophysiological study of neuropsychiatric disorders, this study aimed at examining the validity of the scopolamine-induced delirium-like mice model with respect to the neuroinflammatory hypothesis of delirium. Male C57BL/6 mice were treated with intraperitoneal scopolamine (2 mg/kg). Neurobehavioral tests were performed to evaluate the changes in cognitive functions, including learning and memory, and the level of anxiety after surgery or scopolamine treatment. The levels of pro-inflammatory cytokines (IL-1ß, IL-18, and TNF-α) and inflammasome components (NLRP3, ASC, and caspase-1) in different brain regions were measured. Gene expression profiles were also examined using whole-genome RNA sequencing analyses to compare gene expression patterns of different mice models. Scopolamine treatment showed significant increase in the level of anxiety and impairments in memory and cognitive function associated with increased level of pro-inflammatory cytokines and NLRP3 inflammasome components. Genetic analysis confirmed the different expression patterns of genes involved in immune response and inflammation and those related with the development of the nervous system in both surgery and scopolamine-induced mice models. The scopolamine-induced delirium-like mice model successfully showed that analogous neuropsychiatric changes coincides with the neuroinflammatory hypothesis for pathogenesis of delirium.


Assuntos
Disfunção Cognitiva/patologia , Delírio/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/patologia , Escopolamina/toxicidade , Animais , Antagonistas Colinérgicos/toxicidade , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Delírio/induzido quimicamente , Delírio/genética , Delírio/metabolismo , Perfilação da Expressão Gênica , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
18.
Curr Mol Pharmacol ; 14(2): 132-137, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32329703

RESUMO

Delirium is a very common but annoying clinical state that interferes with the treatment of background disease and delays recovery. Delirium is a troublesome condition that exhausts not only the patient but also his/her family and healthcare professionals. Since aging is a risk factor for delirium, how to control delirium is an extremely important issue in an aging society. Phenotype of delirium is so diverse that it is difficult to elucidate the mechanism of individual symptoms, but it is clinically well known that maintaining sleep quality is important in preventing and improving delirium. Drugs and factors that are known to disrupt the sleep-wake cycle also overlap with the risk factors for delirium, indicating the close connection between delirium and sleep. Although the sleep-wake cycle is tightly regulated by many neurotransmitters and hormones, the role of each substance in this cycle is being elucidated in detail. It is well known that acetylcholine is one of the most important neurotransmitters involved in wakefulness, and anticholinergic drugs reduce rapid eye movement sleep. Anticholinergic drugs are also the major drug causing drug-induced delirium. Several clinical studies have reported that melatonin receptor agonists reduce delirium. Some clinical studies have examined the relationship between delirium and environmental factors that interfere with sleep, such as noise and brightness. The purpose of this review is to organize the cause of poor sleep underlying delirium and propose strategies to prevent delirium, based on rich neurological and pharmacological findings of sleep. We consider that elimination of causes of sleep deprivation underlying delirium is one of the most effective prevention strategies for delirium.


Assuntos
Antagonistas Colinérgicos/farmacologia , Delírio/induzido quimicamente , Melatonina/farmacologia , Sono/efeitos dos fármacos , Adenosina/metabolismo , Animais , Delírio/metabolismo , Histamina/metabolismo , Humanos , Qualidade do Sono , Vigília/efeitos dos fármacos
19.
J Alzheimers Dis ; 77(4): 1609-1622, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32925050

RESUMO

BACKGROUND: Positron emission tomography (PET) of the brain with 2-[F-18]-fluoro-2-deoxy-D-glucose (FDG) is widely used for the etiological diagnosis of clinically uncertain cognitive impairment (CUCI). Acute full-blown delirium can cause reversible alterations of FDG uptake that mimic neurodegenerative disease. OBJECTIVE: This study tested whether delirium in remission affects the performance of FDG PET for differentiation between neurodegenerative and non-neurodegenerative etiology of CUCI. METHODS: The study included 88 patients (82.0±5.7 y) with newly detected CUCI during hospitalization in a geriatric unit. Twenty-seven (31%) of the patients were diagnosed with delirium during their current hospital stay, which, however, at time of enrollment was in remission so that delirium was not considered the primary cause of the CUCI. Cases were categorized as neurodegenerative or non-neurodegenerative etiology based on visual inspection of FDG PET. The diagnosis at clinical follow-up after ≥12 months served as ground truth to evaluate the diagnostic performance of FDG PET. RESULTS: FDG PET was categorized as neurodegenerative in 51 (58%) of the patients. Follow-up after 16±3 months was obtained in 68 (77%) of the patients. The clinical follow-up diagnosis confirmed the FDG PET-based categorization in 60 patients (88%, 4 false negative and 4 false positive cases with respect to detection of neurodegeneration). The fraction of correct PET-based categorization did not differ between patients with delirium in remission and patients without delirium (86% versus 89%, p = 0.666). CONCLUSION: Brain FDG PET is useful for the etiological diagnosis of CUCI in hospitalized geriatric patients, as well as in patients with delirium in remission.


Assuntos
Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Delírio/diagnóstico por imagem , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons/métodos , Idoso , Idoso de 80 Anos ou mais , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Delírio/metabolismo , Feminino , Fluordesoxiglucose F18/metabolismo , Seguimentos , Humanos , Masculino , Estudos Prospectivos , Indução de Remissão , Incerteza
20.
J Neurosci ; 40(29): 5681-5696, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32513828

RESUMO

Systemic infection triggers a spectrum of metabolic and behavioral changes, collectively termed sickness behavior, which while adaptive, can affect mood and cognition. In vulnerable individuals, acute illness can also produce profound, maladaptive, cognitive dysfunction including delirium, but our understanding of delirium pathophysiology remains limited. Here, we used bacterial lipopolysaccharide (LPS) in female C57BL/6J mice and acute hip fracture in humans to address whether disrupted energy metabolism contributes to inflammation-induced behavioral and cognitive changes. LPS (250 µg/kg) induced hypoglycemia, which was mimicked by interleukin (IL)-1ß (25 µg/kg) but not prevented in IL-1RI-/- mice, nor by IL-1 receptor antagonist (IL-1RA; 10 mg/kg). LPS suppression of locomotor activity correlated with blood glucose concentrations, was mitigated by exogenous glucose (2 g/kg), and was exacerbated by 2-deoxyglucose (2-DG) glycolytic inhibition, despite preventing IL-1ß synthesis. Using the ME7 model of chronic neurodegeneration in female mice, to examine vulnerability of the diseased brain to acute stressors, we showed that LPS (100 µg/kg) produced acute cognitive dysfunction, selectively in those animals. These acute cognitive impairments were mimicked by insulin (11.5 IU/kg) and mitigated by glucose, demonstrating that acutely reduced glucose metabolism impairs cognition selectively in the vulnerable brain. To test whether these acute changes might predict altered carbohydrate metabolism during delirium, we assessed glycolytic metabolite levels in CSF in humans during inflammatory trauma-induced delirium. Hip fracture patients showed elevated CSF lactate and pyruvate during delirium, consistent with acutely altered brain energy metabolism. Collectively, the data suggest that disruption of energy metabolism drives behavioral and cognitive consequences of acute systemic inflammation.SIGNIFICANCE STATEMENT Acute systemic inflammation alters behavior and produces disproportionate effects, such as delirium, in vulnerable individuals. Delirium has serious short and long-term sequelae but mechanisms remain unclear. Here, we show that both LPS and interleukin (IL)-1ß trigger hypoglycemia, reduce CSF glucose, and suppress spontaneous activity. Exogenous glucose mitigates these outcomes. Equivalent hypoglycemia, induced by lipopolysaccharide (LPS) or insulin, was sufficient to trigger cognitive impairment selectively in animals with existing neurodegeneration and glucose also mitigated those impairments. Patient CSF from inflammatory trauma-induced delirium also shows altered brain carbohydrate metabolism. The data suggest that the degenerating brain is exquisitely sensitive to acute behavioral and cognitive consequences of disrupted energy metabolism. Thus "bioenergetic stress" drives systemic inflammation-induced dysfunction. Elucidating this may offer routes to mitigating delirium.


Assuntos
Disfunção Cognitiva/metabolismo , Delírio/metabolismo , Metabolismo Energético , Glucose/metabolismo , Inflamação/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Disfunção Cognitiva/etiologia , Delírio/etiologia , Feminino , Fraturas do Quadril/líquido cefalorraquidiano , Fraturas do Quadril/complicações , Humanos , Comportamento de Doença/fisiologia , Inflamação/líquido cefalorraquidiano , Inflamação/etiologia , Interleucina-1beta/administração & dosagem , Lipopolissacarídeos/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA