Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
mBio ; 8(1)2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28223457

RESUMO

In this study, strain-resolved metagenomics was used to solve a mystery. A 6.4-Mbp complete closed genome was recovered from a soil metagenome and found to be astonishingly similar to that of Delftia acidovorans SPH-1, which was isolated in Germany a decade ago. It was suspected that this organism was not native to the soil sample because it lacked the diversity that is characteristic of other soil organisms; this suspicion was confirmed when PCR testing failed to detect the bacterium in the original soil samples. D. acidovorans was also identified in 16 previously published metagenomes from multiple environments, but detailed-scale single nucleotide polymorphism analysis grouped these into five distinct clades. All of the strains indicated as contaminants fell into one clade. Fragment length anomalies were identified in paired reads mapping to the contaminant clade genotypes only. This finding was used to establish that the DNA was present in specific size selection reagents used during sequencing. Ultimately, the source of the contaminant was identified as bacterial biofilms growing in tubing. On the basis of direct measurement of the rate of fixation of mutations across the period of time in which contamination was occurring, we estimated the time of separation of the contaminant strain from the genomically sequenced ancestral population within a factor of 2. This research serves as a case study of high-resolution microbial forensics and strain tracking accomplished through metagenomics-based comparative genomics. The specific case reported here is unusual in that the study was conducted in the background of a soil metagenome and the conclusions were confirmed by independent methods.IMPORTANCE It is often important to determine the source of a microbial strain. Examples include tracking a bacterium linked to a disease epidemic, contaminating the food supply, or used in bioterrorism. Strain identification and tracking are generally approached by using cultivation-based or relatively nonspecific gene fingerprinting methods. Genomic methods have the ability to distinguish strains, but this approach typically has been restricted to isolates or relatively low-complexity communities. We demonstrate that strain-resolved metagenomics can be applied to extremely complex soil samples. We genotypically defined a soil-associated bacterium and identified it as a contaminant. By linking together snapshots of the bacterial genome over time, it was possible to estimate how long the contaminant had been diverging from a likely source population. The results are congruent with the derivation of the bacterium from a strain isolated in Germany and sequenced a decade ago and highlight the utility of metagenomics in strain tracking.


Assuntos
Delftia acidovorans/classificação , Delftia acidovorans/isolamento & purificação , Microbiologia Ambiental , Metagenômica , Análise por Conglomerados , Delftia acidovorans/genética , Genótipo , Alemanha
2.
Appl Microbiol Biotechnol ; 87(4): 1427-35, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20422180

RESUMO

Polyhydroxyalkanoate (PHA) synthases catalyze chain transfer (CT) reaction after polymerization reaction of PHA by transferring PHA chain from PHA synthase to a CT agent, resulting in covalent bonding of CT agent to PHA chain at the carboxyl end. Previous studies have shown that poly(ethylene glycol) (PEG) is an effective exogenous CT agent. This study aimed to compare the effects of PEG on CT reaction during poly[(R)-3-hydroxybutyrate] [P(3HB)] synthesis by using six PHA synthases in Escherichia coli JM109. The synthesized P(3HB) polymers were characterized in terms of molecular weight and end-group structure. Supplementation of PEG to the culture medium reduced P(3HB) molecular weights by up to 96% due to PEG-induced CT reaction. The P(3HB) polymers were subjected to (1)H NMR analysis to confirm the formation of a covalent bond between PEG and P(3HB) chain at the carboxyl end. This study revealed the reactivity of PHA synthases to PEG with respect to CT reaction in E. coli.


Assuntos
Aciltransferases/química , Bactérias/enzimologia , Proteínas de Bactérias/química , Polietilenoglicóis/química , Poli-Hidroxialcanoatos/química , Aciltransferases/genética , Aciltransferases/metabolismo , Azotobacter/classificação , Azotobacter/enzimologia , Azotobacter/genética , Bacillus megaterium/classificação , Bacillus megaterium/enzimologia , Bacillus megaterium/genética , Bactérias/química , Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catálise , Cupriavidus necator/classificação , Cupriavidus necator/enzimologia , Cupriavidus necator/genética , Delftia acidovorans/classificação , Delftia acidovorans/enzimologia , Delftia acidovorans/genética , Expressão Gênica , Dados de Sequência Molecular , Filogenia , Polietilenoglicóis/metabolismo , Poli-Hidroxialcanoatos/metabolismo
3.
Microbiology (Reading) ; 149(Pt 9): 2545-2556, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12949179

RESUMO

The bacterial strain Delftia acidovorans P4a, isolated from an extreme environment (heavily contaminated with organochlorines, highly alkaline conditions in an aqueous environment), was found to mineralize 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid under alkaline conditions. Screening a genomic DNA library of the alkalitolerant strain for 2,4-D genes revealed the presence of the two 2,4-D gene clusters tfdCDEF and tfdC(II)E(II)BKA, tfdR genes being located in the vicinity of each tfd gene cluster. The results showed that the putative genes of the complete 2,4-D degradation pathway are organized in a single genomic unit. Sequence similarities to homologous gene clusters indicate that the individual tfd elements of strain P4a do not share a common origin, but were brought together by recombination events. The entire region is flanked by insertion elements of the IS1071 and IS1380 families, forming a transposon-like structure of about 30 kb, of which 28.4 kb were analysed. This element was shown to be located on the bacterial chromosome. The present study provides the first reported case of a chromosomally located catabolic transposon which carries the genes for the complete 2,4-D degradation pathway.


Assuntos
Ácido 2,4-Diclorofenoxiacético/metabolismo , Elementos de DNA Transponíveis/fisiologia , Delftia acidovorans/metabolismo , Genes Bacterianos/fisiologia , Sequência de Bases , Biodegradação Ambiental , Elementos de DNA Transponíveis/genética , Delftia acidovorans/classificação , Delftia acidovorans/genética , Dados de Sequência Molecular , Família Multigênica
4.
Microbiol Res ; 154(3): 241-6, 1999 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-10652787

RESUMO

A gram-negative prototrophic bacterial species, strain MC1, was isolated from the vicinity of herbicide-contaminated building rubble and identified by 16S rDNA sequence analysis, its physiological properties, GC content, and fatty acid composition as Comamonas acidovorans. This strain displays activity for the productive degradation of the two enantiomers of dichlorprop [(RS)-2-(2,4-dichlorophenoxy-)propionate; (RS)-2,4-DP] and mecoprop [(RS)-2-(4-chloro-2-methyl-) phenoxypropionate; (RS)-MCPP] in addition phenoxyacetate herbicides, i.e. 2,4-dichlorophenoxyacetate (2,4-D) and 4-chloro-2-methylphenoxyacetate (MCPA), and various chlorophenols were utilized. Rates amounted to 1.2 mmoles/h g dry mass (2,4-D) and 2.7 mmoles/h g dry mass [(RS)-2,4-DP]. Degradation of (RS)-2,4-DP was not inhibited up to concentrations of 500 mg/l, nor of 2,4-D up to 200 mg/l. The optimum pH value of (RS)-2,4-DP degradation was around 8. The application of respective primers for PCR amplification revealed the presence of tfdB and tfdC genes.


Assuntos
Ácido 2,4-Diclorofenoxiacético/análogos & derivados , Ácido 2,4-Diclorofenoxiacético/metabolismo , Ácido 2-Metil-4-clorofenoxiacético/análogos & derivados , Ácido 2-Metil-4-clorofenoxiacético/metabolismo , Delftia acidovorans/isolamento & purificação , Delftia acidovorans/metabolismo , Herbicidas/metabolismo , Composição de Bases , Biodegradação Ambiental , Clorofenóis/metabolismo , DNA Bacteriano/genética , Delftia acidovorans/classificação , Delftia acidovorans/genética , Concentração de Íons de Hidrogênio , Filogenia , RNA Ribossômico 16S/análise , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA