Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Funct Integr Genomics ; 24(3): 79, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38653845

RESUMO

Coronaviruses have been identified as pathogens of gastrointestinal and respiratory diseases in humans and various animal species. In recent years, the global spread of new coronaviruses has had profound influences for global public health and economies worldwide. As highly pathogenic zoonotic viruses, coronaviruses have become the focus of current research. Porcine Deltacoronavirus (PDCoV), an enterovirus belonging to the family of coronaviruses, has emerged on a global scale in the past decade and significantly influenced the swine industry. Moreover, PDCoV infects not only pigs but also other species, including humans, chickens and cattles, exhibiting a broad host tropism. This emphasizes the need for in-depth studies on coronaviruses to mitigate their potential threats. In this review, we provided a comprehensive summary of the current studies on PDCoV. We first reviewed the epidemiological investigations on the global prevalence and distribution of PDCoV. Then, we delved into the studies on the pathogenesis of PDCoV to understand the mechanisms how the virus impacts its hosts. Furthermore, we also presented some exploration studies on the immune evasion mechanisms of the virus to enhance the understanding of host-virus interactions. Despite current limitations in vaccine development for PDCoV, we highlighted the inhibitory effects observed with certain substances, which offers a potential direction for future research endeavors. In conclusion, this review summarized the scientific findings in epidemiology, pathogenesis, immune evasion mechanisms and vaccine development of PDCoV. The ongoing exploration of potential vaccine candidates and the insights gained from inhibitory substances have provided a solid foundation for future vaccine development to prevent and control diseases associated with PDCoV.


Assuntos
Infecções por Coronavirus , Deltacoronavirus , Evasão da Resposta Imune , Doenças dos Suínos , Vacinas Virais , Animais , Suínos , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Infecções por Coronavirus/epidemiologia , Deltacoronavirus/patogenicidade , Deltacoronavirus/imunologia , Deltacoronavirus/genética , Doenças dos Suínos/virologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/epidemiologia , Vacinas Virais/imunologia , Desenvolvimento de Vacinas , Humanos
2.
J Virol ; 98(2): e0168223, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289117

RESUMO

Porcine deltacoronavirus (PDCoV) has caused enormous economic losses to the global pig industry. However, the immune escape mechanism of PDCoV remains to be fully clarified. Transcriptomic analysis revealed a high abundance of interferon (IFN)-induced protein with tetratricopeptide repeats 3 (IFIT3) transcripts after PDCoV infection, which initially implied a correlation between IFIT3 and PDCoV. Further studies showed that PDCoV nsp5 could antagonize the host type I interferon signaling pathway by cleaving IFIT3. We demonstrated that PDCoV nsp5 cleaved porcine IFIT3 (pIFIT3) at Gln-406. Similar cleavage of endogenous IFIT3 has also been observed in PDCoV-infected cells. The pIFIT3-Q406A mutant was resistant to nsp5-mediated cleavage and exhibited a greater ability to inhibit PDCoV infection than wild-type pIFIT3. Furthermore, we found that cleavage of IFIT3 is a common characteristic of nsp5 proteins of human coronaviruses, albeit not alphacoronavirus. This finding suggests that the cleavage of IFIT3 is an important mechanism by which PDCoV nsp5 antagonizes IFN signaling. Our study provides new insights into the mechanisms by which PDCoV antagonizes the host innate immune response.IMPORTANCEPorcine deltacoronavirus (PDCoV) is a potential emerging zoonotic pathogen, and studies on the prevalence and pathogenesis of PDCoV are ongoing. The main protease (nsp5) of PDCoV provides an excellent target for antivirals due to its essential and conserved function in the viral replication cycle. Previous studies have revealed that nsp5 of PDCoV antagonizes type I interferon (IFN) production by targeting the interferon-stimulated genes. Here, we provide the first demonstration that nsp5 of PDCoV antagonizes IFN signaling by cleaving IFIT3, which affects the IFN response after PDCoV infection. Our findings reveal that PDCoV nsp5 is an important interferon antagonist and enhance the understanding of immune evasion by deltacoronaviruses.


Assuntos
Proteases 3C de Coronavírus , Infecções por Coronavirus , Deltacoronavirus , Interferon Tipo I , Peptídeos e Proteínas de Sinalização Intracelular , Doenças dos Suínos , Suínos , Animais , Humanos , Proteases 3C de Coronavírus/metabolismo , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Deltacoronavirus/enzimologia , Deltacoronavirus/metabolismo , Deltacoronavirus/patogenicidade , Imunidade Inata , Interferon Tipo I/antagonistas & inibidores , Interferon Tipo I/biossíntese , Interferon Tipo I/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteólise , Transdução de Sinais/imunologia , Suínos/imunologia , Suínos/virologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/metabolismo , Doenças dos Suínos/virologia , Fatores de Transcrição/metabolismo , Zoonoses Virais/imunologia , Zoonoses Virais/virologia , Replicação Viral
3.
Arch Virol ; 167(11): 2249-2262, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36029354

RESUMO

Porcine deltacoronavirus (PDCoV) is an enteric virus that was first identified in 2012. Although PDCoV has been detected worldwide, there is little information about its circulation in western China. In this study, fecal samples were collected from piglets with watery diarrhea in western China between 2015 and 2018 for the detection of PDCoV. The positive rate was 29.9%. A PDCoV strain (CHN/CQ/BN23/2016, BN23) was isolated and selected for further investigation. Phylogenetic analysis showed that this strain formed an individual cluster between the early Chinese lineage and the Chinese lineage. RDP4 and SimPlot analysis demonstrated that strain BN23 is a recombinant of Thailand/S5015L/2015 and CHN-AH-2004. The pathogenicity of BN23 was evaluated in 3-day-old piglets. Challenged piglets developed serious clinical signs and died at 3 days post-inoculation. Our data show that PDCoV is prevalent in western China and that strain BN23 is highly pathogenic to newborn piglets. Therefore, more attention should be paid to emerging PDCoV strains in western China.


Assuntos
Deltacoronavirus , Animais , China , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Deltacoronavirus/genética , Deltacoronavirus/isolamento & purificação , Deltacoronavirus/patogenicidade , Diarreia/veterinária , Genômica , Filogenia , Suínos , Doenças dos Suínos/virologia , Virulência
4.
Virology ; 567: 26-33, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34952414

RESUMO

Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus that cause severe diarrhea, resulting in high mortality in neonatal piglets. Little is known regarding the pathogenicity of PDCoV in different infective dose and the dynamic changes in the composition of the gut microbiota in PDCoV-induced diarrhea piglets. In this study, 5-day-old piglets were experimentally infected with different dose of PDCoV. The challenged piglets developed typical symptoms, characterized by acute and severe watery diarrhea from 1 to 8 days post-inoculation (DPI), and viral shedding was detected in rectal swab until 11 DPI. Tissues of small intestines displayed significant macroscopic and microscopic lesions with clear viral antigen expression. However, no significant differences among groups were found in challenged piglets. Then alteration in gut microbiota in the jejunum and colon of PDCoV infected-piglets were analyzed using 16S rRNA sequencing. PDCoV infection reduced bacterial diversity and richness, and significantly altered the structure and abundance of the microbiota from the phylum to genus. Fusobacterium, and Proteobacteria was significantly increased (P < 0.05), while the abundance of Bacteroidota was markedly decreased in the infected-piglets. Furthermore, microbial function prediction indicated that the changes in intestinal bacterial also affected the immune system, excretory system, circulatory system, neurodegenerative disease, cardiovascular disease, xenobiotics biodegradation and metabolism, etc. These findings suggest that regulating gut microbiota community may be an effective approach for preventing PDCoV infection.


Assuntos
Infecções por Coronavirus/veterinária , Deltacoronavirus/patogenicidade , Microbioma Gastrointestinal , Doenças dos Suínos/virologia , Animais , Antígenos Virais/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Colo/microbiologia , Infecções por Coronavirus/microbiologia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Diarreia/patologia , Diarreia/veterinária , Diarreia/virologia , Intestino Delgado/metabolismo , Intestino Delgado/patologia , Jejuno/microbiologia , Suínos , Doenças dos Suínos/microbiologia , Doenças dos Suínos/patologia , Virulência , Eliminação de Partículas Virais , Aumento de Peso
5.
Nature ; 600(7887): 133-137, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34789872

RESUMO

Coronaviruses have caused three major epidemics since 2003, including the ongoing SARS-CoV-2 pandemic. In each case, the emergence of coronavirus in our species has been associated with zoonotic transmissions from animal reservoirs1,2, underscoring how prone such pathogens are to spill over and adapt to new species. Among the four recognized genera of the family Coronaviridae, human infections reported so far have been limited to alphacoronaviruses and betacoronaviruses3-5. Here we identify porcine deltacoronavirus strains in plasma samples of three Haitian children with acute undifferentiated febrile illness. Genomic and evolutionary analyses reveal that human infections were the result of at least two independent zoonoses of distinct viral lineages that acquired the same mutational signature in the genes encoding Nsp15 and the spike glycoprotein. In particular, structural analysis predicts that one of the changes in the spike S1 subunit, which contains the receptor-binding domain, may affect the flexibility of the protein and its binding to the host cell receptor. Our findings highlight the potential for evolutionary change and adaptation leading to human infections by coronaviruses outside of the previously recognized human-associated coronavirus groups, particularly in settings where there may be close human-animal contact.


Assuntos
Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Deltacoronavirus/isolamento & purificação , Suínos/virologia , Zoonoses Virais/epidemiologia , Zoonoses Virais/virologia , Sequência de Aminoácidos , Animais , Teorema de Bayes , Criança , Chlorocebus aethiops , Sequência Conservada , Infecções por Coronavirus/sangue , Deltacoronavirus/classificação , Deltacoronavirus/genética , Deltacoronavirus/patogenicidade , Feminino , Haiti/epidemiologia , Humanos , Masculino , Modelos Moleculares , Mutação , Filogenia , Células Vero , Zoonoses Virais/sangue
6.
Arch Virol ; 166(11): 2975-2988, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34524535

RESUMO

Porcine deltacoronavirus (PDCoV) is one of the most important enteropathogenic pathogens, and it causes enormous economic losses to the global commercial pork industry. PDCoV was initially reported in Hong Kong (China) in 2012 and subsequently emerged in swine herds with diarrhea in Ohio (USA) in 2014. Since then, it has spread to Canada, South Korea, mainland China, and several Southeast Asian countries. Information about the epidemiology, evolution, prevention, and control of PDCoV and its prevalence in China has not been comprehensively reported, especially in the last five years. This review is an update of current information on the general characteristics, epidemiology, geographical distribution, and evolutionary relationships, and the status of PDCoV vaccine development, focusing on the prevalence of PDCoV in China and vaccine research in particular. Together, this information will provide us with a greater understanding of PDCoV infection and will be helpful for establishing new strategies for controlling this virus worldwide.


Assuntos
Infecções por Coronavirus/veterinária , Deltacoronavirus/genética , Deltacoronavirus/patogenicidade , Doenças dos Suínos/epidemiologia , Vacinas Virais/farmacologia , Animais , Evolução Biológica , China/epidemiologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Especificidade de Hospedeiro , Filogenia , Prevalência , Suínos , Doenças dos Suínos/transmissão , Doenças dos Suínos/virologia
7.
Vet Res Commun ; 45(2-3): 75-86, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34251560

RESUMO

The recent prevalence of coronavirus (CoV) poses a serious threat to animal and human health. Currently, porcine enteric coronaviruses (PECs), including the transmissible gastroenteritis virus (TGEV), the novel emerging swine acute diarrhoea syndrome coronavirus (SADS-CoV), porcine delta coronavirus (PDCoV), and re-emerging porcine epidemic diarrhoea virus (PEDV), which infect pigs of different ages, have caused more frequent occurrences of diarrhoea, vomiting, and dehydration with high morbidity and mortality in piglets. PECs have the potential for cross-species transmission and are causing huge economic losses in the pig industry in China and the world, which therefore needs to be urgently addressed. Accordingly, this article summarises the pathogenicity, prevalence, and diagnostic methods of PECs and provides an important reference for their improved diagnosis, prevention, and control.


Assuntos
Infecções por Coronavirus/veterinária , Doenças dos Suínos/virologia , Alphacoronavirus/genética , Alphacoronavirus/patogenicidade , Animais , China/epidemiologia , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Deltacoronavirus/genética , Deltacoronavirus/patogenicidade , Humanos , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/patogenicidade , Prevalência , Suínos , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/prevenção & controle , Vírus da Gastroenterite Transmissível/genética , Vírus da Gastroenterite Transmissível/patogenicidade
8.
Biomed Res Int ; 2021: 6689471, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307666

RESUMO

This article is aimed at analyzing the structure and function of the spike (S) proteins of porcine enteric coronaviruses, including transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and swine acute diarrhea syndrome coronavirus (SADS-CoV) by applying bioinformatics methods. The physical and chemical properties, hydrophilicity and hydrophobicity, transmembrane region, signal peptide, phosphorylation and glycosylation sites, epitope, functional domains, and motifs of S proteins of porcine enteric coronaviruses were predicted and analyzed through online software. The results showed that S proteins of TGEV, PEDV, SADS-CoV, and PDCoV all contained transmembrane regions and signal peptide. TGEV S protein contained 139 phosphorylation sites, 24 glycosylation sites, and 53 epitopes. PEDV S protein had 143 phosphorylation sites, 22 glycosylation sites, and 51 epitopes. SADS-CoV S protein had 109 phosphorylation sites, 20 glycosylation sites, and 43 epitopes. PDCoV S protein had 124 phosphorylation sites, 18 glycosylation sites, and 52 epitopes. Moreover, TGEV, PEDV, and PDCoV S proteins all contained two functional domains and two motifs, spike_rec_binding and corona_S2. The corona_S2 consisted of S2 subunit heptad repeat 1 (HR1) and S2 subunit heptad repeat 2 (HR2) region profiles. Additionally, SADS-CoV S protein was predicted to contain only one functional domain, the corona_S2. This analysis of the biological functions of porcine enteric coronavirus spike proteins can provide a theoretical basis for the design of antiviral drugs.


Assuntos
Infecções por Coronavirus/epidemiologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/ultraestrutura , Alphacoronavirus/metabolismo , Alphacoronavirus/patogenicidade , Animais , Biologia Computacional/métodos , Coronavirus/imunologia , Coronavirus/ultraestrutura , Bases de Dados Genéticas , Deltacoronavirus/metabolismo , Deltacoronavirus/patogenicidade , Epitopos/imunologia , Vírus da Diarreia Epidêmica Suína/metabolismo , Vírus da Diarreia Epidêmica Suína/patogenicidade , Glicoproteína da Espícula de Coronavírus/metabolismo , Suínos/virologia , Doenças dos Suínos/virologia , Vírus da Gastroenterite Transmissível/metabolismo , Vírus da Gastroenterite Transmissível/patogenicidade
9.
Virology ; 558: 119-125, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33756424

RESUMO

Coinfection of porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV) is one of common findings in diarrheal piglets that cause massive economic losses to the pig industry globally. However, the mechanism of the co-infection is unclear. In this study, neonatal non-colostrum-fed piglets were exposed orally with a single infection of PDCoV or PEDV, or coinfection of PDCoV and PEDV. Clinically all viral infected piglets developed watery diarrhea and dehydration in 24 h post-exposure (hpe) and were succumbed to viral diarrhea disease and euthanized at 72 hpe. Histopathologically, acute gastroenteritis is evident in all viral infected piglet. Immunohistochemistry, RNAscope and RT-qPCR demonstrated that PEDV tropism changes from epithelial cells of small intestine to gastric epithelial cells and macrophages in Peyer's patches in the ileum. These findings suggest that coinfection of PDCoV and PEDV can alter PEDV tropism that may affect the outcome of viral disease in piglets. This animal model can be used for the pathogenesis and vaccination of viral coinfection in piglet in the future.


Assuntos
Coinfecção/virologia , Infecções por Coronavirus/veterinária , Deltacoronavirus/patogenicidade , Trato Gastrointestinal/virologia , Vírus da Diarreia Epidêmica Suína/patogenicidade , Tropismo Viral , Animais , Infecções por Coronavirus/virologia , Diarreia/virologia , Modelos Animais de Doenças , Células Epiteliais/virologia , Íleo/virologia , Suínos
10.
Sci Rep ; 11(1): 3040, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542409

RESUMO

Porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV) cause an enteric disease characterized by diarrhea clinically indistinguishable. Both viruses are simultaneously detected in clinical cases, but a study involving the co-infection has not been reported. The study was therefore conducted to investigate the disease severity following a co-infection with PEDV and PDCoV. In the study, 4-day-old pigs were orally inoculated with PEDV and PDCoV, either alone or in combination. Following challenge, fecal score was monitored on a daily basis. Fecal swabs were collected and assayed for the presence of viruses. Three pigs per group were necropsied at 3 and 5 days post inoculation (dpi). Microscopic lesions and villous height to crypt depth (VH:CD) ratio, together with the presence of PEDV and PDCoV antigens, were evaluated in small intestinal tissues. Expressions of interferon alpha (IFN-α) and interleukin 12 (IL12) were investigated in small intestinal mucosa. The findings indicated that coinoculation increased the disease severity, demonstrated by significantly prolonged fecal score and virus shedding and decreasing VH:CD ratio in the jejunum compared with pigs inoculated with either PEDV or PDCoV alone. Notably, in single-inoculated groups, PEDV and PDCoV antigens were detected only in villous enterocytes wile in the coinoculated group, PDCoV antigen was detected in both villous enterocytes and crypts. IFN-α and IL12 were significantly up-regulated in coinoculated groups in comparison with single-inoculated groups. In conclusion, co-infection with PEDV and PDCoV exacerbate clinical signs and have a synergetic on the regulatory effect inflammatory cytokines compared to a single infection with either virus.


Assuntos
Deltacoronavirus/patogenicidade , Diarreia/genética , Interferon-alfa/genética , Interleucina-12/genética , Vírus da Diarreia Epidêmica Suína/patogenicidade , Animais , Coinfecção/genética , Coinfecção/veterinária , Coinfecção/virologia , Infecções por Coronavirus/genética , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Deltacoronavirus/genética , Deltacoronavirus/isolamento & purificação , Diarreia/veterinária , Diarreia/virologia , Fezes/virologia , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/isolamento & purificação , Índice de Gravidade de Doença , Suínos , Doenças dos Suínos/genética , Doenças dos Suínos/virologia
11.
Viruses ; 13(1)2021 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-33477379

RESUMO

Porcine deltacoronavirus (PDCoV) strain OH-FD22 infects poultry and shares high nucleotide identity with sparrow-origin deltacoronaviruses (SpDCoV) ISU73347 and HKU17 strains. We hypothesized that the spike (S) protein or receptor-binding domain (RBD) from these SpDCoVs would alter the host and tissue tropism of PDCoV. First, an infectious cDNA clone of PDCoV OH-FD22 strain (icPDCoV) was generated and used to construct chimeric icPDCoVs harboring the S protein of HKU17 (icPDCoV-SHKU17) or the RBD of ISU73347 (icPDCoV-RBDISU). To evaluate their pathogenesis, neonatal gnotobiotic pigs were inoculated orally/oronasally with the recombinant viruses or PDCoV OH-FD22. All pigs inoculated with icPDCoV or OH-FD22 developed severe diarrhea and shed viral RNA at moderate-high levels (7.62-10.56 log10 copies/mL) in feces, and low-moderate levels in nasal swabs (4.92-8.48 log10 copies/mL). No pigs in the icPDCoV-SHKU17 and icPDCoV-RBDISU groups showed clinical signs. Interestingly, low-moderate levels (5.07-7.06 log10 copies/mL) of nasal but not fecal viral RNA shedding were detected transiently at 1-4 days post-inoculation in 40% (2/5) of icPDCoV-SHKU17- and 50% (1/2) of icPDCoV-RBDISU-inoculated pigs. These results confirm that PDCoV infected both the upper respiratory and intestinal tracts of pigs. The chimeric viruses displayed an attenuated phenotype with the loss of tropism for the pig intestine. The SpDCoV S protein and RBD reduced viral replication in pigs, suggesting limited potential for cross-species spillover upon initial passage.


Assuntos
Infecções por Coronavirus/patologia , Deltacoronavirus/genética , Intestinos/patologia , Sistema Respiratório/patologia , Glicoproteína da Espícula de Coronavírus/genética , Tropismo Viral/genética , Motivos de Aminoácidos , Animais , Doenças das Aves/virologia , Linhagem Celular , Deltacoronavirus/patogenicidade , Intestinos/virologia , Proteínas Recombinantes/genética , Sistema Respiratório/virologia , Pardais , Suínos , Doenças dos Suínos/virologia , Virulência/genética
12.
Virology ; 553: 35-45, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33220618

RESUMO

We report the generation of a full-length infectious cDNA clone for porcine deltacoronavirus strain USA/IL/2014/026. Similar to the parental strain, the infectious clone virus (icPDCoV) replicated efficiently in cell culture and caused mild clinical symptoms in piglets. To investigate putative viral interferon (IFN) antagonists, we generated two mutant viruses: a nonstructural protein 15 mutant virus that encodes a catalytically-inactive endoribonuclease (icEnUmut), and an accessory gene NS6-deletion virus in which the NS6 gene was replaced with the mNeonGreen sequence (icDelNS6/nG). By infecting PK1 cells with these recombinant PDCoVs, we found that icDelNS6/nG elicited similar levels of type I IFN responses as icPDCoV, however icEnUmut stimulated robust type I IFN responses, demonstrating that the deltacoronavirus endoribonuclease, but not NS6, functions as an IFN antagonist in PK1 cells. Collectively, the construction of a full-length infectious clone and the identification of an IFN-antagonistic endoribonuclease will aid in the development of live-attenuated deltacoronavirus vaccines.


Assuntos
DNA Complementar/isolamento & purificação , Deltacoronavirus/genética , Suínos/virologia , Animais , Células Clonais , Infecções por Coronavirus/patologia , Deltacoronavirus/patogenicidade , Deltacoronavirus/fisiologia , Endorribonucleases/fisiologia , Interferons/antagonistas & inibidores , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA