Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
1.
Int J Syst Evol Microbiol ; 71(11)2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34739365

RESUMO

A novel mesophilic, strictly anaerobic, chemolithoautotrophic sulphate-reducing bacterium, designated strain KT2T, was isolated from a deep-sea hydrothermal vent chimney at the Suiyo Seamount in the Izu-Bonin Arc. Strain KT2T grew at 25-40 °C (optimum 35 °C) and pH 5.5-7.0 (optimum 6.6) in the presence of 25-45 g l-1 NaCl (optimum 30 g l-1). Growth occurred with molecular hydrogen as the electron donor and sulphate, thiosulphate, and sulphite as the electron acceptors. The isolate utilized CO2 as the sole carbon source for chemolithoautotrophic growth on H2. Glycerol, succinate, fumarate, malate, glutamate, or casamino acids could serve as an alternative electron donor in the presence of CO2. Malate, citrate, glutamate, and casamino acids were used as fermentative substrates for weak growth. The G+C content of genomic DNA was 46.1 %. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain KT2T is a member of the family Desulfobulbaceae, showing a sequence similarity of 94.3 % with Desulforhopalus singaporensis. Phylogenomic analysis based on concatenated 156 single-copy marker genes confirmed the same topology as the 16S rRNA gene phylogeny. The ANI and AAI values between strain KT2T and related genera of the family Desulfobulbaceae were 65.6-68.6 % and 53.1-62.9 %. Based on the genomic, molecular, and physiological characteristics, strain KT2T represents a novel genus and species within the family Desulfobulbaceae, for which the name Desulfomarina profundi gen. nov., sp. nov. is proposed, with KT2T (=JCM 34118T = DSM 111364T) as the type strain.


Assuntos
Deltaproteobacteria/classificação , Fontes Hidrotermais , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Deltaproteobacteria/isolamento & purificação , Ácidos Graxos/química , Hidrogênio , Fontes Hidrotermais/microbiologia , Oxirredução , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA , Sulfatos , Bactérias Redutoras de Enxofre/classificação , Bactérias Redutoras de Enxofre/isolamento & purificação
2.
Syst Appl Microbiol ; 44(5): 126233, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34311149

RESUMO

Bacteria in the family Geobacteraceae have been proven to fill important niches in a diversity of anaerobic environments and global biogeochemical processes. Here, three bacterial strains in this family, designated Red875T, Red259T, and Red421T were isolated from river sediment and paddy soils in Japan. All of them are Gram-staining-negative, strictly anaerobic, motile, flagellum-harboring cells that form red colonies on agar plates and are capable of utilizing Fe(III)-NTA, Fe(III) citrate, ferrihydrite, MnO2, fumarate, and nitrate as electron acceptors with acetate, propionate, pyruvate, and glucose as electron donors. Phylogenetic analysis based on the 16S rRNA gene and 92 concatenated core proteins sequences revealed that strains Red259T and Red421T clustered with the type strains of Geomonas species, whereas strain Red875T formed an independent lineage within the family Geobacteraceae. Genome comparison based on  average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values clearly distinguished these three strains from other Geobacteraceae members, with lower values than the thresholds for species delineation. Moreover, strain Red875T also shared low average amino acid identity (AAI) and percentage of conserved proteins (POCP) values with the type species of the family Geobacteraceae. Based on these physiological, chemotaxonomic, and phylogenetic distinctions, we propose that strain Red875T (=NBRC 114290T = MCCC 1K04407T) represents a novel genus in the family Geobacteraceae, namely, Geomesophilobacter sediminis gen. nov., sp. nov., and strains Red259T (=NBRC 114288T = MCCC 1K05016T) and Red421T (=NBRC 114289T = MCCC 1K06216T) represent two novel independent species in the genus Geomonas, namely, Geomonas propionica sp. nov. and Geomonas anaerohicana sp. nov., respectively.


Assuntos
Deltaproteobacteria/classificação , Sedimentos Geológicos/microbiologia , Filogenia , Rios/microbiologia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Deltaproteobacteria/isolamento & purificação , Compostos Férricos , Japão , Compostos de Manganês , Óxidos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
3.
Artigo em Inglês | MEDLINE | ID: mdl-33877046

RESUMO

A novel mesophilic, anaerobic, mixotrophic bacterium, with designated strains EPR-MT and HR-1, was isolated from a semi-extinct hydrothermal vent at the East Pacific Rise and from an Fe-mat at Lo'ihi Seamount, respectively. The cells were Gram-negative, pleomorphic rods of about 2.0 µm in length and 0.5 µm in width. Strain EPR-MT grew between 25 and 45 °C (optimum, 37.5-40 °C), 10 and 50 g l-1 NaCl (optimum, 15-20 g l-1) and pH 5.5 and 8.6 (optimum, pH 6.4). Strain HR-1 grew between 20 and 45 °C (optimum, 37.5-40 °C), 10 and 50 g l-1 NaCl (optimum, 15-25 g l-1) and pH 5.5 and 8.6 (optimum, pH 6.4). Shortest generation times with H2 as the primary electron donor, CO2 as the carbon source and ferric citrate as terminal electron acceptor were 6.7 and 5.5 h for EPR-MT and HR-1, respectively. Fe(OH)3, MnO2, AsO4 3-, SO4 2-, SeO4 2-, S2O3 2-, S0 and NO3 - were also used as terminal electron acceptors. Acetate, yeast extract, formate, lactate, tryptone and Casamino acids also served as both electron donors and carbon sources. G+C content of the genomic DNA was 59.4 mol% for strain EPR-MT and 59.2 mol% for strain HR-1. Phylogenetic and phylogenomic analyses indicated that both strains were closely related to each other and to Geothermobacter ehrlichii, within the class δ-Proteobacteria (now within the class Desulfuromonadia). Based on phylogenetic and phylogenomic analyses in addition to physiological and biochemical characteristics, both strains were found to represent a novel species within the genus Geothermobacter, for which the name Geothermobacter hydrogeniphilus sp. nov. is proposed. Geothermobacter hydrogeniphilus is represented by type strain EPR-MT (=JCM 32109T=KCTC 15831T=ATCC TSD-173T) and strain HR-1 (=JCM 32110=KCTC 15832).


Assuntos
Deltaproteobacteria/classificação , Compostos Férricos/metabolismo , Filogenia , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Deltaproteobacteria/isolamento & purificação , Ácidos Graxos/química , Compostos de Manganês/análise , Oceano Pacífico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
4.
Artigo em Inglês | MEDLINE | ID: mdl-33295856

RESUMO

Three bacterial strains, designated Red330T, Red736T and Red745T, were isolated from forest and paddy soils in Japan. Strains Red330T, Red736T and Red745T are flagella-harbouring and strictly anaerobic bacteria forming red colonies. A 16S rRNA gene sequence-based phylogenetic tree showed that all three strains were located in a cluster, including the type strains of Geomonas species, which were recently separated from the genus Geobacter within the family Geobacteraceae. Similarities of the 16S rRNA gene sequences among the three strains and Geomonas oryzae S43T, the type species of the genus Geomonas, were 96.3-98.5 %. The genome-related indexes, average nucleotide identity, digital DNA-DNA hybridization, and average amino acid identity, among the three strains and G. oryzae S43T were 74.7-86.8 %, 21.2-33.3 % and 70.4-89.8 %, respectively, which were lower than the species delineation thresholds. Regarding the phylogenetic relationships based on genome sequences, the three strains clustered with the type strains of Geomonas species, which were independent from the type strains of Geobacter species. The distinguishableness of the three isolated strains was supported by physiological and chemotaxonomic properties, with the profile of availability of electron donors and cellular fatty acids composition being particularly different among them. Based on genetic, phylogenetic and phenotypic properties, the three isolates represent three novel independent species in the genus Geomonas, for which the names Geomonas silvestris sp. nov., Geomonas paludis sp. nov. and Geomonas limicola sp. nov. are proposed. The type strains are Red330T (=NBRC 114028T=MCCC 1K03949T), Red736T (=NBRC 114029T=MCCC 1K03950T) and Red745T (=NBRC 114030T=MCCC 1K03951T), respectively.


Assuntos
Deltaproteobacteria/classificação , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Deltaproteobacteria/isolamento & purificação , Ácidos Graxos/química , Florestas , Japão , Hibridização de Ácido Nucleico , Oryza , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
5.
Syst Appl Microbiol ; 43(5): 126109, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32847784

RESUMO

Strain 28bB2TT is a sulfate-reducing bacterium isolated in a previous study, obtained from a p-xylene-degrading enrichment culture. Physiological, phylogenetic and genomic characterizations of strain 28bB2TT were performed to establish the taxonomic status of the strain. Cells of strain 28bB2TT were short oval-shaped (0.8-1.2×1.2-2.7µm), motile, and Gram-negative. For growth, the optimum pH was pH 6.5-7.0 and the optimum temperature was 28-32°C. Strain 28bB2TT oxidized toluene but could not utilize p-xylene. Sulfate and thiosulfate were used as electron acceptors. The G+C content of the genomic DNA was 53.8mol%. The genome consisted of an approximately 8.3 Mb of chromosome and two extrachromosomal elements. On the basis of 16S rRNA gene analysis, strain 28bB2TT was revealed to belong to the genus Desulfosarcina, with high sequence identities to Desulfosarcina ovata oXyS1T (99.5%) and Desulfosarcina cetonica DSM 7267T (98.7%). Results of Average Nucleotide Identity (ANI) calculation and digital DNA-DNA hybridization (dDDH) analysis showed that the strain 28bB2TT should be classified as a subspecies under D. ovata. Based on physiological and phylogenetic data, strain 28bB2TT (=NBRC 106234 =DSM 23484) is proposed as the type strain of a novel species in genus Desulfosarcina, Desulfosarcina ovata subsp. sediminis subsp. nov.


Assuntos
Baías , Deltaproteobacteria/classificação , Deltaproteobacteria/metabolismo , Sedimentos Geológicos/microbiologia , Sulfatos/metabolismo , Tolueno/metabolismo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/química , DNA Bacteriano/genética , Deltaproteobacteria/genética , Deltaproteobacteria/isolamento & purificação , Genes Bacterianos , Genes de RNAr , Genoma Bacteriano , Concentração de Íons de Hidrogênio , Hibridização de Ácido Nucleico , Oxirredução , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Temperatura , Tóquio
6.
Artigo em Inglês | MEDLINE | ID: mdl-32657213

RESUMO

An understanding of microbial communities present in anaerobic bioreactors can strongly facilitate the development of approaches to control undesirable microorganisms, such as sulfate-reducing bacteria (SRB), in the system. In this study, overall microbial communities present in anaerobic bioreactors from seven industrial wastewater treatment plants (including food, pulp and paper industries) were investigated using 16S rRNA gene amplicon sequencing (MiSeq, Illumina). The dominant methanogens identified in the anaerobic bioreactors treating industrial wastewater were Methanobacterium and Methanosaeta; Methanospirillum was a predominant methanogen in the anaerobic sludge digester. Hydrogenotrophic and acetoclastic methanogens were detected at similar relative abundances in the anaerobic covered lagoons treating starch wastewater, whereas hydrogenotrophic methanogens were the predominant methanogens present in the sludge digester. SRB communities were further investigated using dsrB gene clone libraries. The results indicated the presence of SRB, such as uncultured Desulfobulbus sp., Syntrophobacter fumaroxidans, Syntrophorhabdus sp. PtaB.Bin027, and Desulfovibrio fructosivarans JJ. Incomplete-oxidizing SRB were the predominant SRB in all of the anaerobic bioreactors treating wastewater. In contrast, similar relative abundances of complete and incomplete-oxidizing SRB were observed in the sludge digester. The results of this study can further facilitate the development of SRB-controlling strategies to improve the efficiency of wastewater treatment.


Assuntos
Biocombustíveis/análise , Reatores Biológicos/microbiologia , Metagenoma/genética , Microbiota/genética , Purificação da Água/métodos , Anaerobiose , Deltaproteobacteria/genética , Deltaproteobacteria/isolamento & purificação , Desulfovibrio/genética , Desulfovibrio/isolamento & purificação , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Oxirredução , RNA Ribossômico 16S/genética , Esgotos/microbiologia , Águas Residuárias/microbiologia
7.
Sci Rep ; 10(1): 6746, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32317769

RESUMO

With the increase in iron/steel production, the higher volume of by-products (slag) generated necessitates its efficient recycling. Because the Linz-Donawitz (LD) slag is rich in silicon (Si) and other fertilizer components, we aim to evaluate the impact of the LD slag amendment on soil quality (by measuring soil physicochemical and biological properties), plant nutrient uptake, and strengthens correlations between nutrient uptake and soil bacterial communities. We used 16 S rRNA illumine sequencing to study soil bacterial community and APIZYM assay to study soil enzymes involved in C, N, and P cycling. The LD slag was applied at 2 Mg ha-1 to Japonica and Indica rice cultivated under flooded conditions. The LD slag amendment significantly improved soil pH, plant photosynthesis, soil nutrient availability, and the crop yield, irrespective of cultivars. It significantly increased N, P, and Si uptake of rice straw. The slag amendment enhanced soil microbial biomass, soil enzyme activities and enriched certain bacterial taxa featuring copiotrophic lifestyles and having the potential role for ecosystem services provided to the benefit of the plant. The study evidenced that the short-term LD slag amendment in rice cropping systems is useful to improve soil physicochemical and biological status, and the crop yield.


Assuntos
Fertilizantes/análise , Consórcios Microbianos/efeitos dos fármacos , Oryza/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Resíduos/análise , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Alphaproteobacteria/isolamento & purificação , Betaproteobacteria/classificação , Betaproteobacteria/genética , Betaproteobacteria/isolamento & purificação , Ciclo do Carbono/fisiologia , Deltaproteobacteria/classificação , Deltaproteobacteria/genética , Deltaproteobacteria/isolamento & purificação , Firmicutes/classificação , Firmicutes/genética , Firmicutes/isolamento & purificação , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Humanos , Concentração de Íons de Hidrogênio , Ferro/metabolismo , Ferro/farmacologia , Metalurgia/métodos , Consórcios Microbianos/fisiologia , Ciclo do Nitrogênio/fisiologia , Oryza/microbiologia , Oryza/fisiologia , Fósforo/fisiologia , Fotossíntese/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , RNA Ribossômico 16S/genética , Silício/metabolismo , Silício/farmacologia , Solo/química , Microbiologia do Solo , Aço/química
8.
Int J Syst Evol Microbiol ; 70(5): 3219-3225, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32271141

RESUMO

A novel Gram-negative, non-spore-forming, vibrio-shaped, anaerobic, alkaliphilic, sulfate-reducing bacterium, designated strain PAR22NT, was isolated from sediment samples collected at an alkaline crater lake in Guanajuato (Mexico). Strain PAR22NT grew at temperatures between 15 and 37 °C (optimum, 32 °C), at pH between pH 8.3 and 10.1 (optimum, pH 9.0-9.6), and in the presence of NaCl up to 10 %. Pyruvate, 2-methylbutyrate and fatty acids (4-18 carbon atoms) were used as electron donors in the presence of sulfate as a terminal electron acceptor and were incompletely oxidized to acetate and CO2. Besides sulfate, both sulfite and elemental sulfur were also used as terminal electron acceptors and were reduced to sulfide. The predominant fatty acids were summed feature 10 (C18 : 1 ω7c and/or C18 : 1 ω9t and/or C18 : 1 ω12t), C18 : 1 ω9c and C16 : 0. The genome size of strain PAR22NT was 3.8 Mb including 3391 predicted genes. The genomic DNA G+C content was 49.0 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that it belongs to the genus Desulfobotulus within the class Deltaproteobacteria. Its closest phylogenetic relatives are Desulfobotulus alkaliphilus (98.4 % similarity) and Desulfobotulus sapovorans (97.9 % similarity). Based on phylogenetic, phenotypic and chemotaxonomic characteristics, we propose that the isolate represents a novel species of the genus Desulfobotulus with the name Desulfobotulus mexicanus sp. nov. The type strain is PAR22NT (=DSM 105758T=JCM 32146T).


Assuntos
Deltaproteobacteria/classificação , Lagos/microbiologia , Filogenia , Sulfatos/metabolismo , Álcalis , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Deltaproteobacteria/isolamento & purificação , Ácidos Graxos/química , Sedimentos Geológicos/microbiologia , México , Oxirredução , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Bactérias Redutoras de Enxofre/classificação , Bactérias Redutoras de Enxofre/isolamento & purificação
9.
Environ Microbiol Rep ; 12(3): 277-287, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32090489

RESUMO

Methylmercury is a neurotoxin that bioaccumulates from seawater to high concentrations in marine fish, putting human and ecosystem health at risk. High methylmercury levels have been found in the oxic subsurface waters of all oceans, but only anaerobic microorganisms have been shown to efficiently produce methylmercury in anoxic environments. The microaerophilic nitrite-oxidizing bacteria Nitrospina have previously been suggested as possible mercury methylating bacteria in Antarctic sea ice. However, the microorganisms responsible for processing inorganic mercury into methylmercury in oxic seawater remain unknown. Here, we show metagenomic and metatranscriptomic evidence that the genetic potential for microbial methylmercury production is widespread in oxic seawater. We find high abundance and expression of the key mercury methylating genes hgcAB across all ocean basins, corresponding to the taxonomic relatives of known mercury methylating bacteria from Deltaproteobacteria, Firmicutes and Chloroflexi. Our results identify Nitrospina as the predominant and widespread microorganism carrying and actively expressing hgcAB. The highest hgcAB abundance and expression occurs in the oxic subsurface waters of the global ocean where the highest MeHg concentrations are typically observed.


Assuntos
Bactérias , Compostos de Metilmercúrio/metabolismo , Água do Mar , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Chloroflexi/classificação , Chloroflexi/genética , Chloroflexi/isolamento & purificação , Chloroflexi/metabolismo , Deltaproteobacteria/classificação , Deltaproteobacteria/genética , Deltaproteobacteria/isolamento & purificação , Deltaproteobacteria/metabolismo , Firmicutes/classificação , Firmicutes/genética , Firmicutes/isolamento & purificação , Firmicutes/metabolismo , Genes Bacterianos , Mercúrio/metabolismo , Metagenômica , Metilação , Microbiota , Oceanos e Mares , Filogenia , Água do Mar/química , Água do Mar/microbiologia , Transcriptoma
10.
Appl Environ Microbiol ; 86(8)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32060020

RESUMO

The deep-sea hydrothermal vent shrimp Rimicaris exoculata largely depends on a dense epibiotic chemoautotrophic bacterial community within its enlarged cephalothoracic chamber. However, our understanding of shrimp-bacterium interactions is limited. In this report, we focused on the deltaproteobacterial epibiont of R. exoculata from the relatively unexplored South Mid-Atlantic Ridge. A nearly complete genome of a Deltaproteobacteria epibiont was binned from the assembled metagenome. Whole-genome phylogenetic analysis reveals that it is affiliated with the genus Desulfobulbus, representing a potential novel species for which the name "Candidatus Desulfobulbus rimicarensis" is proposed. Genomic and transcriptomic analyses reveal that this bacterium utilizes the Wood-Ljungdahl pathway for carbon assimilation and harvests energy via sulfur disproportionation, which is significantly different from other shrimp epibionts. Additionally, this epibiont has putative nitrogen fixation activity, but it is extremely active in directly taking up ammonia and urea from the host or vent environments. Moreover, the epibiont could be distinguished from its free-living relatives by various features, such as the lack of chemotaxis and motility traits, a dramatic reduction in biosynthesis genes for capsular and extracellular polysaccharides, enrichment of genes required for carbon fixation and sulfur metabolism, and resistance to environmental toxins. Our study highlights the unique role and symbiotic adaptation of Deltaproteobacteria in deep-sea hydrothermal vent shrimps.IMPORTANCE The shrimp Rimicaris exoculata represents the dominant faunal biomass at many deep-sea hydrothermal vent ecosystems along the Mid-Atlantic Ridge. This organism harbors dense bacterial epibiont communities in its enlarged cephalothoracic chamber that play an important nutritional role. Deltaproteobacteria are ubiquitous in epibiotic communities of R. exoculata, and their functional roles as epibionts are based solely on the presence of functional genes. Here, we describe "Candidatus Desulfobulbus rimicarensis," an uncultivated deltaproteobacterial epibiont. Compared to campylobacterial and gammaproteobacterial epibionts of R. exoculata, this bacterium possessed unique metabolic pathways, such as the Wood-Ljungdahl pathway, as well as sulfur disproportionation and nitrogen fixation pathways. Furthermore, this epibiont can be distinguished from closely related free-living Desulfobulbus strains by its reduced genetic content and potential loss of functions, suggesting unique adaptations to the shrimp host. This study is a genomic and transcriptomic analysis of a deltaproteobacterial epibiont and largely expands the understanding of its metabolism and adaptation to the R. exoculata host.


Assuntos
Adaptação Biológica , Decápodes/microbiologia , Deltaproteobacteria/isolamento & purificação , Genoma Bacteriano , Fontes Hidrotermais/microbiologia , Simbiose , Animais , Oceano Atlântico , Deltaproteobacteria/classificação , Deltaproteobacteria/genética , Deltaproteobacteria/fisiologia , Características de História de Vida , Filogenia
11.
Antonie Van Leeuwenhoek ; 113(5): 707-717, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31950303

RESUMO

Here we investigated the diversity of bacterial communities from deep-sea surface sediments under influence of asphalt seeps at the Sao Paulo Plateau using next-generation sequencing method. Sampling was performed at North São Paulo Plateau using the human occupied vehicle Shinkai 6500 and her support vessel Yokosuka. The microbial diversity was studied at two surficial sediment layers (0-1 and 1-4 cm) of five samples collected in cores in water depths ranging from 2456 to 2728 m. Bacterial communities were studied through sequencing of 16S rRNA gene on the Ion Torrent platform and clustered in operational taxonomic units. We observed high diversity of bacterial sediment communities as previously described by other studies. When we considered community composition, the most abundant classes were Alphaproteobacteria (27.7%), Acidimicrobiia (20%), Gammaproteobacteria (11.3%) and Deltaproteobacteria (6.6%). Most abundant OTUs at family level were from two uncultured bacteria from Actinomarinales (5.95%) and Kiloniellaceae (3.17%). The unexpected high abundance of Alphaproteobacteria and Acidimicrobiia in our deep-sea microbial communities may be related to the presence of asphalt seep at North São Paulo Plateau, since these bacterial classes contain bacteria that possess the capability of metabolizing hydrocarbon compounds.


Assuntos
Bactérias/isolamento & purificação , Sedimentos Geológicos/microbiologia , Metagenoma , Microbiota/genética , Água do Mar/microbiologia , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Alphaproteobacteria/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Biodiversidade , DNA Bacteriano/genética , Deltaproteobacteria/classificação , Deltaproteobacteria/genética , Deltaproteobacteria/isolamento & purificação , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Hidrocarbonetos/metabolismo , Metagenômica/métodos , RNA Ribossômico 16S/genética , Microbiologia da Água
12.
ISME J ; 14(3): 815-827, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31896791

RESUMO

The genus Desulfoluna comprises two anaerobic sulfate-reducing strains, D. spongiiphila AA1T and D. butyratoxydans MSL71T, of which only the former was shown to perform organohalide respiration (OHR). Here we isolated a third strain, designated D. spongiiphila strain DBB, from marine intertidal sediment using 1,4-dibromobenzene and sulfate as the electron acceptors and lactate as the electron donor. Each strain harbors three reductive dehalogenase gene clusters (rdhABC) and corrinoid biosynthesis genes in their genomes, and dehalogenated brominated but not chlorinated organohalogens. The Desulfoluna strains maintained OHR in the presence of 20 mM sulfate or 20 mM sulfide, which often negatively affect other organohalide-respiring bacteria. Strain DBB sustained OHR with 2% oxygen in the gas phase, in line with its genetic potential for reactive oxygen species detoxification. Reverse transcription-quantitative PCR revealed differential induction of rdhA genes in strain DBB in response to 1,4-dibromobenzene or 2,6-dibromophenol. Proteomic analysis confirmed expression of rdhA1 with 1,4-dibromobenzene, and revealed a partially shared electron transport chain from lactate to 1,4-dibromobenzene and sulfate, which may explain accelerated OHR during concurrent sulfate reduction. Versatility in using electron donors, de novo corrinoid biosynthesis, resistance to sulfate, sulfide and oxygen, and concurrent sulfate reduction and OHR may confer an advantage to marine Desulfoluna strains.


Assuntos
Deltaproteobacteria/isolamento & purificação , Deltaproteobacteria/metabolismo , Água do Mar/microbiologia , Sulfatos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Corrinoides/biossíntese , Deltaproteobacteria/classificação , Deltaproteobacteria/genética , Halogenação , Família Multigênica , Oxirredução , Proteômica
13.
Genes (Basel) ; 12(1)2020 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396721

RESUMO

The elevated NH3-N and NO2-N pollution problems in mariculture have raised concerns because they pose threats to animal health and coastal and offshore environments. Supplement of Marichromatium gracile YL28 (YL28) into polluted shrimp rearing water and sediment significantly decreased ammonia and nitrite concentrations, showing that YL28 functioned as a novel safe marine probiotic in the shrimp culture industry. The diversity of aquatic bacteria in the shrimp mariculture ecosystems was studied by sequencing the V4 region of 16S rRNA genes, with respect to additions of YL28 at the low and high concentrations. It was revealed by 16S rRNA sequencing analysis that Proteobacteria, Planctomycete and Bacteroidetes dominated the community (>80% of operational taxonomic units (OTUs)). Up to 41.6% of the predominant bacterial members were placed in the classes Gammaproteobacteria (14%), Deltaproteobacteria (14%), Planctomycetacia (8%) and Alphaproteobacteria (5.6%) while 40% of OTUs belonged to unclassified ones or others, indicating that the considerable bacterial populations were novel in our shrimp mariculture. Bacterial communities were similar between YL28 supplements and control groups (without addition of YL28) revealed by the ß-diversity using PCoA, demonstrating that the additions of YL28 did not disturb the microbiota in shrimp mariculture ecosystems. Instead, the addition of YL28 increased the relative abundance of ammonia-oxidizing and denitrifying bacteria. The quantitative PCR analysis further showed that key genes including nifH and amoA involved in nitrification and nitrate or nitrite reduction significantly increased with YL28 supplementation (p < 0.05). The supplement of YL28 decreased the relative abundance of potential pathogen Vibrio. Together, our studies showed that supplement of YL28 improved the water quality by increasing the relative abundance of ammonia-oxidizing and denitrifying bacteria while the microbial community structure persisted in shrimp mariculture ecosystems.


Assuntos
Amônia/metabolismo , Aquicultura/métodos , Chromatiaceae/metabolismo , Genes Bacterianos , Nitratos/metabolismo , Penaeidae/fisiologia , Poluentes Químicos da Água/metabolismo , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Alphaproteobacteria/isolamento & purificação , Animais , Bacteroidetes/classificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Biodegradação Ambiental , Chromatiaceae/genética , Deltaproteobacteria/classificação , Deltaproteobacteria/genética , Deltaproteobacteria/isolamento & purificação , Ecossistema , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Humanos , Consórcios Microbianos/genética , Planctomycetales/classificação , Planctomycetales/genética , Planctomycetales/isolamento & purificação , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Poluição da Água/prevenção & controle , Qualidade da Água
14.
FEMS Microbiol Lett ; 366(22)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31855240

RESUMO

Magnetotactic bacteria (MTB) are a group of microorganisms that have the ability to synthesize intracellular magnetic crystals (magnetosomes). They prefer microaerobic or anaerobic aquatic sediments. Thus, there is growing interest in their ecological roles in various habitats. In this study we found co-occurrence of a large rod-shaped deltaproteobacterial magnetotactic bacterium (tentatively named LR-1) in the sediment of a brackish lagoon with algal bloom. Electron microscopy observations showed that they were ovoid to slightly curved rods having a mean length of 6.3 ± 1.1 µm and a mean width of 4.1 ± 0.4 µm. Each cell had a single polar flagellum. They contained hundreds of bullet-shaped intracellular magnetite magnetosomes. Phylogenetic analysis revealed that they were most closely related to Desulfamplus magnetovallimortis strain BW-1, and belonged to the Deltaproteobacteria. Our findings indicate that LR-1 may be a new species of MTB. We propose that deltaproteobacterial MTB may play an important role in iron cycling and so may represent a reservoir of iron, and be an indicator species for monitoring algal blooms in such eutrophic ecosystems. These observations provide new clues to the cultivation of magnetotactic Deltaproteobacteria and the control of algal blooms, although further studies are needed.


Assuntos
Deltaproteobacteria/classificação , Deltaproteobacteria/isolamento & purificação , Eutrofização , Sedimentos Geológicos/microbiologia , Magnetismo , Filogenia , Resposta Táctica , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Deltaproteobacteria/genética , Deltaproteobacteria/ultraestrutura , Flagelos/ultraestrutura , Magnetossomos/ultraestrutura , Microscopia Eletrônica , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
15.
Sci Rep ; 9(1): 11692, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406214

RESUMO

Benthic foraminifera are known to play an important role in marine carbon and nitrogen cycles. Here, we report an enrichment of sulphur cycle -associated bacteria inside intertidal benthic foraminifera (Ammonia sp. (T6), Haynesina sp. (S16) and Elphidium sp. (S5)), using a metabarcoding approach targeting the 16S rRNA and aprA -genes. The most abundant intracellular bacterial groups included the genus Sulfurovum and the order Desulfobacterales. The bacterial 16S OTUs are likely to originate from the sediment bacterial communities, as the taxa found inside the foraminifera were also present in the sediment. The fact that 16S rRNA and aprA -gene derived intracellular bacterial OTUs were species-specific and significantly different from the ambient sediment community implies that bacterivory is an unlikely scenario, as benthic foraminifera are known to digest bacteria only randomly. Furthermore, these foraminiferal species are known to prefer other food sources than bacteria. The detection of sulphur-cycle related bacterial genes in this study suggests a putative role for these bacteria in the metabolism of the foraminiferal host. Future investigation into environmental conditions under which transcription of S-cycle genes are activated would enable assessment of their role and the potential foraminiferal/endobiont contribution to the sulphur-cycle.


Assuntos
Deltaproteobacteria/genética , Epsilonproteobacteria/genética , Foraminíferos/microbiologia , Gammaproteobacteria/genética , Enxofre/metabolismo , Simbiose/fisiologia , Bacteroidaceae/classificação , Bacteroidaceae/genética , Bacteroidaceae/isolamento & purificação , Campylobacter/classificação , Campylobacter/genética , Campylobacter/isolamento & purificação , Código de Barras de DNA Taxonômico/métodos , DNA Bacteriano/genética , Deltaproteobacteria/classificação , Deltaproteobacteria/isolamento & purificação , Epsilonproteobacteria/classificação , Epsilonproteobacteria/isolamento & purificação , Foraminíferos/fisiologia , Gammaproteobacteria/classificação , Gammaproteobacteria/isolamento & purificação , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Mar do Norte , Filogenia , Análise de Componente Principal , RNA Ribossômico 16S/genética , Água do Mar/química , Água do Mar/microbiologia , Serina Endopeptidases/genética , Enxofre/química
16.
Int J Syst Evol Microbiol ; 69(9): 2767-2774, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31237538

RESUMO

In this study, two bacterial strains designated B210T and SEH01T, isolated from coastal sediment sampled in Weihai, PR China, were characterized using a polyphasic approach. Strains were Gram-stain-negative, facultative anaerobic, rod-shaped and motile. According to the results of phylogenetic analyses based on their 16S rRNA genes, these two strains should be classified under the order Bradymonadales and they both show <90 % sequence similarities with Bradymonas sediminis FA350T. Moreover, strain B210T showed 98.6 % sequence similarity to strain SEH01T. Genomic characteristics including average nucleotide identity and in silico DNA-DNA hybridization values clearly separated strain B210T from strain SEH01T. The sole quinone of these two strains was menaquinone MK-7, and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified lipid. Iso-C15 : 0 was the major fatty acid in both strains B210T and SEH01T, and iso-C14 : 0 3-OH was also a major fatty acid for strain SEH01T. Based on the polyphasic analysis, these two strains represent two novel species of a new genus within the family Bradymonadaceae. Consequently, the novel genus Lujinxingia gen. nov. is proposed, containing two new species Lujinxingia litoralis gen. nov. sp. nov. and Lujinxingia sediminis sp. nov., with strain B210T (=KCTC 42951T=CGMCC 1.16770T) and strain SEH01T (=KCTC 42950T=DSM 101859T) as the type strains, respectively.


Assuntos
Deltaproteobacteria/classificação , Sedimentos Geológicos/microbiologia , Filogenia , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Deltaproteobacteria/isolamento & purificação , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
17.
FEMS Microbiol Ecol ; 95(6)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31054245

RESUMO

Cable bacteria belonging to the family Desulfobulbaceae couple sulfide oxidation and oxygen reduction by long-distance electron transfer over centimeter distances in marine and freshwater sediments. In such habitats, aquatic plants can release oxygen into the rhizosphere. Hence, the rhizosphere constitutes an ideal habitat for cable bacteria, which have been reported on seagrass roots recently. Here, we employ experimental approaches to investigate activity, abundance, and spatial orientation of cable bacteria next to the roots of the freshwater plant Littorella uniflora. Fluorescence in situ hybridization (FISH), in combination with oxygen-sensitive planar optodes, demonstrated that cable bacteria densities are enriched at the oxic-anoxic transition zone next to roots compared to the bulk sediment in the same depth. Scanning electron microscopy showed cable bacteria along root hairs. Electric potential measurements showed a lateral electric field over centimeters from the roots, indicating cable bacteria activity. In addition, FISH revealed that cable bacteria were present in the rhizosphere of Oryza sativa (rice), Lobelia cardinalis and Salicornia europaea. Hence, the interaction of cable bacteria with aquatic plants of different growth forms and habitats indicates that the plant root-cable bacteria interaction might be a common property of aquatic plant rhizospheres.


Assuntos
Deltaproteobacteria/isolamento & purificação , Raízes de Plantas/microbiologia , Rizosfera , Deltaproteobacteria/genética , Transporte de Elétrons , Água Doce , Sedimentos Geológicos/microbiologia , Hibridização in Situ Fluorescente , Oxirredução
18.
ISME J ; 13(10): 2391-2402, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31118472

RESUMO

Oxygen minimum zones (OMZs) are marine regions where O2 is undetectable at intermediate depths. Within OMZs, the oxygen-depleted zone (ODZ) induces anaerobic microbial processes that lead to fixed nitrogen loss via denitrification and anammox. Surprisingly, nitrite oxidation is also detected in ODZs, although all known marine nitrite oxidizers (mainly Nitrospina) are aerobes. We used metagenomic binning to construct metagenome-assembled genomes (MAGs) of nitrite oxidizers from OMZs. These MAGs represent two novel Nitrospina-like species, both of which differed from all known Nitrospina species, including cultured species and published MAGs. Relative abundances of different Nitrospina genotypes in OMZ and non-OMZ seawaters were estimated by mapping metagenomic reads to newly constructed MAGs and published high-quality genomes of members from the Nitrospinae phylum. The two novel species were present in all major OMZs and were more abundant inside ODZs, which is consistent with the detection of higher nitrite oxidation rates in ODZs than in oxic seawaters and suggests novel adaptations to anoxic environments. The detection of a large number of unclassified nitrite oxidoreductase genes in the dataset implies that the phylogenetic diversity of nitrite oxidizers is greater than previously thought.


Assuntos
Bactérias/metabolismo , Deltaproteobacteria/metabolismo , Nitritos/metabolismo , Oxigênio/análise , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Deltaproteobacteria/classificação , Deltaproteobacteria/genética , Deltaproteobacteria/isolamento & purificação , Desnitrificação , Oxirredução , Oxigênio/metabolismo , Filogenia , Água do Mar/análise , Água do Mar/microbiologia
19.
Environ Microbiol Rep ; 11(2): 236-248, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30790444

RESUMO

Recent studies have shown that application of conductive materials including magnetite and carbon nanotubes (CNTs) can promote the methanogenic decomposition of short-chain fatty acids and even more complex organic matter in anaerobic digesters and natural habitats. The linkage to microbial identity and the mechanisms, however, remain poorly understood. Here, we evaluate the effects of nanoscale magnetite (nanoFe3 O4 ) and multiwalled CNTs on the syntrophic oxidation of propionate in an enrichment obtained from lake sediment. The microbial populations were composed mainly of Smithella, Syntrophomonas, Methanosaeta, Methanosarcina and Methanoregula. In addition to acetate, butyrate was transiently accumulated indicating that propionate was oxidized by Smithella via the dismutation pathway and part of the leaked butyrate was oxidized by Syntrophomonas. Propionate oxidation and CH4 production were significantly accelerated in the presence of nanoFe3 O4 and CNTs. While propionate oxidation was suppressed upon H2 application and suspended completely upon formate application in the control, this suppressive effect was substantially compromised in the presence of nanoFe3 O4 and CNTs. The tests on hydrogenotrophic methanogenesis of a pure culture methanogen and of the enrichment culture without propionate showed negative effect by both materials. The positive effect of nanoFe3 O4 disappeared when it was insulated by surface-coating with silica. Observations made with fluorescence in situ hybridization and scanning electron microscope indicated the extensive formation of microbial cell-conductive material mixture aggregates. Our results suggest that direct interspecies electron transfer is likely activated by the conductive materials and operates in concert with H2 /formate-dependent electron transfer for syntrophic propionate oxidation in the sediment enrichment.


Assuntos
Deltaproteobacteria/metabolismo , Óxido Ferroso-Férrico/análise , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Nanotubos de Carbono/análise , Propionatos/metabolismo , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Archaea/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Butiratos/metabolismo , Deltaproteobacteria/genética , Deltaproteobacteria/isolamento & purificação , Óxido Ferroso-Férrico/farmacologia , Formiatos/farmacologia , Hidrogênio/farmacologia , Metano/metabolismo , Oxirredução/efeitos dos fármacos , Filogenia , RNA Ribossômico 16S/genética , Simbiose
20.
ISME J ; 13(5): 1252-1268, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30647456

RESUMO

Syntrophorhabdus aromaticivorans is a syntrophically fermenting bacterium that can degrade isophthalate (3-carboxybenzoate). It is a xenobiotic compound which has accumulated in the environment for more than 50 years due to its global industrial usage and can cause negative effects on the environment. Isophthalate degradation by the strictly anaerobic S. aromaticivorans was investigated to advance our understanding of the degradation of xenobiotics introduced into nature, and to identify enzymes that might have ecological significance for bioremediation. Differential proteome analysis of isophthalate- vs benzoate-grown cells revealed over 400 differentially expressed proteins of which only four were unique to isophthalate-grown cells. The isophthalate-induced proteins include a phenylacetate:CoA ligase, a UbiD-like decarboxylase, a UbiX-like flavin prenyltransferase, and a hypothetical protein. These proteins are encoded by genes forming a single gene cluster that putatively codes for anaerobic conversion of isophthalate to benzoyl-CoA. Subsequently, benzoyl-CoA is metabolized by the enzymes of the anaerobic benzoate degradation pathway that were identified in the proteomic analysis. In vitro enzyme assays with cell-free extracts of isophthalate-grown cells indicated that isophthalate is activated to isophthalyl-CoA by an ATP-dependent isophthalate:CoA ligase (IPCL), and subsequently decarboxylated to benzoyl-CoA by a UbiD family isophthalyl-CoA decarboxylase (IPCD) that requires a prenylated flavin mononucleotide (prFMN) cofactor supplied by UbiX to effect decarboxylation. Phylogenetic analysis revealed that IPCD is a novel member of the functionally diverse UbiD family (de)carboxylases. Homologs of the IPCD encoding genes are found in several other bacteria, such as aromatic compound-degrading denitrifiers, marine sulfate-reducers, and methanogenic communities in a terephthalate-degrading reactor. These results suggest that metabolic strategies adapted for degradation of isophthalate and other phthalate are conserved between microorganisms that are involved in the anaerobic degradation of environmentally relevant aromatic compounds.


Assuntos
Deltaproteobacteria/metabolismo , Ácidos Ftálicos/metabolismo , Xenobióticos/metabolismo , Acil Coenzima A/metabolismo , Anaerobiose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Benzoatos/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Deltaproteobacteria/classificação , Deltaproteobacteria/genética , Deltaproteobacteria/isolamento & purificação , Fermentação , Filogenia , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA