Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.475
Filtrar
1.
Carbohydr Polym ; 337: 122163, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710557

RESUMO

Prion diseases are fatal transmissible neurodegenerative disorders. Among known anti-prions, hydroxypropyl methylcellulose compounds (HPMCs) are unique in their chemical structure and action. They have several excellent anti-prion properties but the effectiveness depends on the prion-infected mouse model. In the present study, we investigated the effects of stearoxy-modified HPMCs on prion-infected cells and mice. Stearoxy modification improved the anti-prion efficacy of HPMCs in prion-infected cells and significantly prolonged the incubation period in a lower HPMC-responding mouse model. However, stearoxy modification showed no improvement over nonmodified HPMCs in an HPMC-responding mouse model. These results offer a new line of inquiry for use with prion-infected mice that do not respond well to HPMCs.


Assuntos
Derivados da Hipromelose , Doenças Priônicas , Animais , Derivados da Hipromelose/química , Camundongos , Doenças Priônicas/tratamento farmacológico , Modelos Animais de Doenças
2.
Molecules ; 29(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731432

RESUMO

Dairy products are highly susceptible to contamination from microorganisms. This study aimed to evaluate the efficacy of hydroxypropyl methylcellulose (HPMC) and propolis film as protective coatings for cheese. For this, microbiological analyses were carried out over the cheese' ripening period, focusing on total mesophilic bacteria, yeasts and moulds, lactic acid bacteria, total coliforms, Escherichia coli, and Enterobacteriaceae. Physicochemical parameters (pH, water activity, colour, phenolic compounds content) were also evaluated. The statistical analysis (conducted using ANOVA and PERMANOVA) showed a significant interaction term between the HPMC film and propolis (factor 1) and storage days (factor 2) with regard to the dependent variables: microbiological and physicochemical parameters. A high level of microbial contamination was identified at the baseline. However, the propolis films were able to reduce the microbial count. Physicochemical parameters also varied with storage time, with no significant differences found for propolis-containing films. Overall, the addition of propolis to the film influenced the cheeses' colour and the quantification of phenolic compounds. Regarding phenolic compounds, their loss was verified during storage, and was more pronounced in films with a higher percentage of propolis. The study also showed that, of the three groups of phenolic compounds (hydroxybenzoic acids, hydroxycinnamic acids, and flavonoids), hydroxycinnamic acids showed the most significant losses. Overall, this study reveals the potential of using HPMC/propolis films as a coating for cheese in terms of microbiological control and the preservation of physicochemical properties.


Assuntos
Queijo , Conservação de Alimentos , Derivados da Hipromelose , Própole , Queijo/microbiologia , Queijo/análise , Própole/química , Derivados da Hipromelose/química , Conservação de Alimentos/métodos , Fenóis/química , Fenóis/análise , Microbiologia de Alimentos , Escherichia coli/efeitos dos fármacos
3.
Int J Pharm Compd ; 28(3): 249-259, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38768505

RESUMO

Since ancient times, mouth fresheners in many different forms have been used throughout the world. Traditional knowledge describes the health benefits of mouth fresheners, and contemporary science is now investigating their benefits. Claims have been made that mouth fresheners not only improve digestion but also promote oral health. Similar, but in a more profound sense, probiotics offer astounding advantages in treating many disorders. In certain cases, probiotics also offer prophylactic effects. Numerous benefits for dental health are being studied for B. coagulans (MB-BCM9) and B. subtilis (MB-BSM12). In this current study, a probiotic and a mouth freshener were combined to ameliorate the impacts of both. The oral residence of probiotics was enhanced by employing mucoadhesive polymers. Numerous compositions were developed and evaluated for the unaltered growth of probiotics, along with other evaluations like microscopy, in vitro mucoadhesive strength, and stability studies. Xanthan gum and hydroxypropyl methylcellulose were used in the development of mucoadhesive probiotic powder by employing the lyophilization technique. More than five hours of residence time were observed in the in vitro study with goat oral mucosa. The enumeration study validated the label claims of MB-BCM9 and MB-BSM12. It also concluded that none of the components of the formulation had a detrimental effect on probiotics. In essence, the present work discloses the novel and stable formulation of a probiotic-based mouth freshener.


Assuntos
Derivados da Hipromelose , Mucosa Bucal , Polissacarídeos Bacterianos , Probióticos , Probióticos/administração & dosagem , Animais , Derivados da Hipromelose/química , Polissacarídeos Bacterianos/química , Cabras , Adesividade , Liofilização , Composição de Medicamentos , Pós , Estabilidade de Medicamentos
4.
AAPS PharmSciTech ; 25(5): 116, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769223

RESUMO

Oral dispersible films have received broad interest due to fast drug absorption and no first-path metabolism, leading to high bioavailability and better patient compliance. Saxagliptin (SXG) is an antidiabetic drug that undergoes first-path metabolism, resulting in a less active metabolite, so the development of SXG oral dispersible films (SXG-ODFs) improves SXG bioavailability. The formula optimisation included a response surface experimental design and the impact of three formulation factors, the type and concentration of polymer and plasticiser concentration on in-vitro disintegration time and folding endurance. Two optimised SXG-ODFs prepared using either polyvinyl alcohol (PVA) or hydroxypropyl methylcellulose were investigated. SXG-ODFs prepared with PVA demonstrated a superior rapid disintegration time, ranging from 17 to 890 s, with the fastest disintegration time recorded at 17 s. These short durations can be attributed to the hydrophilic nature of PVA, facilitating rapid hydration and disintegration upon contact with saliva. Additionally, PVA-based films displayed remarkable folding endurance, surpassing 200 folds without rupture, indicating flexibility and stability. The high tensile strength of PVA-based films further underscores their robust mechanical properties, with tensile strength values reaching up to 4.53 MPa. SXG exhibits a UV absorption wavelength of around 212 nm, posing challenges for traditional quantitative spectrophotometric analysis, so a polyaniline nanoparticles-based solid-contact screen-printed ion-selective electrode (SP-ISE) was employed for the determination of SXG release profile effectively in comparison to HPLC. SP-ISE showed a better real-time release profile of SXG-ODFs, and the optimised formula showed lower blood glucose levels than commercial tablets.


Assuntos
Adamantano , Compostos de Anilina , Dipeptídeos , Liberação Controlada de Fármacos , Nanopartículas , Álcool de Polivinil , Adamantano/química , Adamantano/análogos & derivados , Dipeptídeos/química , Dipeptídeos/farmacocinética , Dipeptídeos/administração & dosagem , Compostos de Anilina/química , Nanopartículas/química , Administração Oral , Álcool de Polivinil/química , Hipoglicemiantes/química , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacocinética , Humanos , Derivados da Hipromelose/química , Resistência à Tração , Química Farmacêutica/métodos , Disponibilidade Biológica , Solubilidade , Eletrodos
5.
Int J Biol Macromol ; 268(Pt 1): 131744, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38663711

RESUMO

Herpetrione(HPE) is an effective compound that has been used in the treatment of liver diseases. To improve its dissolution and absorption, herpetrione nanosuspensions was prepared. Nanosuspensions were proved to achieve intact absorption in vivo. However, the transport mechanisms are not fully understood, especially lack of direct evidence of translocation of particulates. In this study, an environment-responsive dye, P4, was loaded into herpetrione amorphous nanoparticles (HPE-ANPs) to elucidate the absorption and transport mechanism of the nanoparticles. And the amount of HPE and nanoparticles in the samples were quantified using HPLC/LC-MS/MS and IVIS with the model of Caco-2 and Caco-2/HT29-MTX. Results demonstrated that HPE is mainly taken up by passive diffusion in the form of free drugs, while HPE-ANPs are internalized by an energy dependent active transport pathway or intracellular endocytosis. It is speculated that HPE-ANPs may change the original entry pathway of drug molecules. Furthermore, the presence of mucus layer and the use of HPMC E15 may contribute to drug absorption to some extent. Transcellular transport study indicates that HPE-ANPs has a poor absorption. In conclusion, the differences in the absorption behavior trends of HPE-ANPs are caused by the difference in particle properties and the form of existence of the drug.


Assuntos
Derivados da Hipromelose , Nanopartículas , Nanopartículas/química , Humanos , Células CACO-2 , Derivados da Hipromelose/química , Portadores de Fármacos/química , Transporte Biológico
6.
Int J Biol Macromol ; 267(Pt 1): 131580, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38688788

RESUMO

Despite the clinical success of tricalcium silicate (TCS)-based materials in endodontics, the inferior handling characteristic, poor anti-washout property and slow setting kinetics hindered their wider applications. To solve these problems, an injectable fast-setting TCS/ß-tricalcium phosphate/monocalcium phosphate anhydrous (ß-TCP/MCPA) cement was developed for the first time by incorporation of hydroxypropyl methylcellulose (HPMC) and ß-TCP/MCPA. The physical-chemical characterization (setting time, anti-washout property, injectability, compressive strength, apatite mineralization and sealing property) of TCS/(ß-TCP/MCPA) were conducted. Its hydration mechanism was also investigated. Furthermore, the cytocompatibility and osteogenic/odontogenic differentiation of stem cells isolated from human exfoliated deciduous teeth (SHED) treated with TCS/ß-TCP/MCPA were studied. The results showed that HPMC could provide TCS with good anti-washout ability and injectability but slow hydration process. However, ß-TCP/MCPA effectively enhanced anti-washout characteristics and reduced setting time due to faster hydration kinetics. TCS/(ß-TCP/MCPA) obtained around 90 % of injection rate and high compressive strength whereas excessive additions of ß-TCP/MCPA compromised its injectability and compressive strength. TCS/(ß-TCP/MCPA) can induce apatite deposition and form a tight marginal sealing at the dentin-cement interface. Additionally, TCS/(ß-TCP/MCPA) showed good biocompatibility and promoted osteo/odontogenic differentiation of SHED. In general, our results indicated that TCS/(ß-TCP/MCPA) may be particularly promising as an injectable bioactive cements for endodontic treatment.


Assuntos
Compostos de Cálcio , Fosfatos de Cálcio , Derivados da Hipromelose , Silicatos , Silicatos/química , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Compostos de Cálcio/química , Humanos , Derivados da Hipromelose/química , Osteogênese/efeitos dos fármacos , Teste de Materiais , Diferenciação Celular/efeitos dos fármacos , Força Compressiva , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Cimentos Dentários/química , Cimentos Dentários/farmacologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/citologia
7.
J Chromatogr A ; 1722: 464874, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598893

RESUMO

Hydroxypropyl methyl cellulose (HPMC) is a type of cellulose derivative with properties that render it useful in e.g. food, cosmetics, and pharmaceutical industry. The substitution degree and composition of the ß-glucose subunits of HPMC affect its physical and functional properties, but HPMC characterization is challenging due to its high structural heterogeneity, including many isomers. In this study, comprehensive two-dimensional liquid chromatography-mass spectrometry was used to examine substituted glucose monomers originating from complete acid hydrolysis of HPMC. Resolution between the different monomers was achieved using a C18 and cyano column in the first and second LC dimension, respectively. The data analysis process was structured to obtain fingerprints of the monomers of interest. The results revealed that isomers of the respective monomers could be selectively separated based on the position of substituents. The examination of two industrial HPMC products revealed differences in overall monomer composition. While both products contained monomers with a similar degree of substitution, they exhibited distinct regioselectivity.


Assuntos
Derivados da Hipromelose , Espectrometria de Massas , Hidrólise , Derivados da Hipromelose/química , Espectrometria de Massas/métodos , Cromatografia Líquida/métodos , Isomerismo , Glucose/química , Glucose/análise , Espectrometria de Massa com Cromatografia Líquida
8.
Int J Pharm ; 654: 123965, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38442796

RESUMO

The oral bioavailability of paclitaxel is limited due to low solubility and high affinity for the P-glycoprotein (P-gp) efflux transporter. Here we hypothesized that maximizing the intestinal paclitaxel levels through apparent solubility enhancement and controlling thesimultaneous release of both paclitaxel and the P-gp inhibitor encequidar from amorphous solid dispersions (ASDs) would increase the oral bioavailability of paclitaxel. ASDs of paclitaxel and encequidar in polyvinylpyrrolidone K30 (PVP-K30), hydroxypropylmethylcellulose 5 (HPMC-5), and hydroxypropylmethylcellulose 4 K (HPMC-4K) were hence prepared by freeze-drying. In vitro dissolution studies showed that both compounds were released fastest from PVP-K30, then from HPMC-5, and slowest from HPMC-4K ASDs. The dissolution of paclitaxel from all polymers resulted in stable concentration levels above the apparent solubility. The pharmacokinetics of paclitaxel after oral administration to male Sprague-Dawley rats was investigated with or without 1 mg/kg encequidar, as amorphous solids or polymer-based ASDs. The bioavailability of paclitaxel increased 3- to 4-fold when administered as polymer-based ASDs relative to solid amorphous paclitaxel. However, when amorphous paclitaxel was co-administered with encequidar, either as an amorphous powder or as a polymer-based ASD, the bioavailability increased 2- to 4-fold, respectively. Interestingly, a noticeable increase in paclitaxel bioavailability of 24-fold was observed when paclitaxel and encequidar were co-administered as HPMC-5-based ASDs. We, therefore, suggest that controlling the dissolution rate of paclitaxel and encequidar in order to obtain simultaneous and timed release from polymer-based ASDs is a strategy to increase oral paclitaxel bioavailability.


Assuntos
Polímeros , Povidona , Ratos , Masculino , Animais , Disponibilidade Biológica , Ratos Sprague-Dawley , Derivados da Hipromelose , Solubilidade
9.
Int J Biol Macromol ; 263(Pt 2): 130539, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432263

RESUMO

Hydroxypropyl methylcellulose (HPMC) was employed as an intermediate layer to enhance interfacial interaction between chitosan (CS) coating and tangerine fruits, thereby improving the preservation effect. Owing to the low surface tension of tangerine fruit (26.04 mN/m), CS coating solutions showed poor wetting properties on fruit peels (contact angle > 100°). However, by applying a 1.0 % (w/v) HPMC coating on fruits, the contact angle of CS solutions with concentrations of 0.5 %, 1.0 %, and 1.5 % (w/v) decreased to 47.0°, 47.4°, and 48.5°, respectively, whereas the spreading coefficient increased to -16.0 mN/m, -17.6 mN/m and -19.8 mN/m, respectively. Subsequently, the effects of the coatings on fruit quality were investigated. The results demonstrated the promising performance of HPMC-CS two-layer coating in inhibiting fruit respiration, reducing decay rate, and maintaining nutrient content. Notably, HPMC-1.5%CS coating not only reduced the decay rate of tangerine fruit by 45 % and 31 %, in comparison to the uncoated group (CK) and pure CS coating respectively, but also maintained a high content of ascorbic acid. Therefore, this study confirmed that the use of amphiphilic polymers for improving the surface properties of fruits can effectively facilitate the wetting of hydrophilic coatings on fruits, and significantly improve the fresh-keeping performance of edible coatings.


Assuntos
Quitosana , Citrus , Molhabilidade , Derivados da Hipromelose , Frutas , Conservação de Alimentos/métodos , Metilcelulose
10.
J Food Sci ; 89(5): 2857-2866, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38532702

RESUMO

The separation sheets for fruit leather are traditionally made of plastic film or wax paper, which not only leads to environmental issues but also is inconvenience to consumers. This study evaluated edible fruit leather separation sheets using food polymers, including hydroxypropyl methyl cellulose (HPMC) and incorporation of cranberry pomace water extract (CPE) for providing natural fruit pigment, flavor, and phenolics. HPMCCPE film was then further improved by incorporating hydrophobic compound (oleic acid, OA) and vitamin E (VE) via cellulose nanocrystal (CNC) Pickering emulsion (CNCP) for enhancing film hydrophobicity and nutritional benefit, respectively. The CNCP-HPMCCPE film exhibited reduced water vapor permeability (∼0.033 g mm/m2 d Pa) compared to HPMCCPE film (∼0.59 g mm/m2 d Pa) and had the least change in mass and moisture content when wrapping fruit leather for up to 2 weeks of ambient storage. The fruit leather wrapped by CNCP-HPMCCPE film showed lower weight change than those by films without CNCP due to low mass transfer between film and fruit leather. CNCP resulted in controlled release of VE into a food simulating solvent (ethanol). The developed colorful and edible fruit leather separation sheet satisfied the increased market demands on sustainable food packaging. PRACTICAL APPLICATION: Colorful and flavorful edible films made of edible polymers, fruit pomace water extract, and emulsified hydrophobic compounds with vitamin E were created. The films have the satisfactory performance to replace the conventional fruit leather separation sheet made of plastic or wax paper. The edible films can be eaten with packaged fruit leather for not only reducing packaging waste but also providing convenience and nutritional benefit to consumers. These functional edible films may also be utilized to package other food products for promoting packaging sustainability and nutritional benefit.


Assuntos
Filmes Comestíveis , Embalagem de Alimentos , Frutas , Extratos Vegetais , Vaccinium macrocarpon , Vitamina E , Vaccinium macrocarpon/química , Vitamina E/análise , Extratos Vegetais/química , Frutas/química , Embalagem de Alimentos/métodos , Interações Hidrofóbicas e Hidrofílicas , Permeabilidade , Derivados da Hipromelose/química , Alimentos Fortificados/análise , Ácido Oleico/análise , Ácido Oleico/química
11.
Int J Biol Macromol ; 266(Pt 1): 131061, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521296

RESUMO

Edible films with modulated release of antimicrobial agents are important for food preservation. Herein, antimicrobial edible films were prepared using whey protein (WP) and hydroxypropyl methylcellulose (HM) as polymer matrix materials and cinnamaldehyde (CIN) as antimicrobial agent. The mass ratios of WP and HM were 100/0, 75/25, 50/50, 25/75 and 0/100. The release kinetics of CIN through the film was studied, applying the Fickian model, power law and Weibull model. The films were also characterized by physical and structural characteristics, and antibacterial activity. In comparison to other films, the CIN-loaded film with a WP/HM ratio of 50/50 had better moisture resistance, water vapor barrier properties and mechanical properties. High correlation factors were obtained by fitting the CIN release data with the power law (R2 > 0.96) and Weibull model (R2 > 0.97). The diffusion mechanism of CIN was pseudo-Fickian. The diffusion coefficients (D1 and D2) had a positive linear relationship with the HM ratio, suggesting that a high HM ratio was beneficial to the CIN release. Finally, the WH50-C film was successfully used to preserve Mongolian cheese. This research provides a new perspective on the design of active packaging film with sustained-release characteristics.


Assuntos
Acroleína , Acroleína/análogos & derivados , Queijo , Filmes Comestíveis , Derivados da Hipromelose , Proteínas do Soro do Leite , Proteínas do Soro do Leite/química , Acroleína/química , Cinética , Derivados da Hipromelose/química , Conservação de Alimentos/métodos , Antibacterianos/química , Antibacterianos/farmacologia , Embalagem de Alimentos/métodos
12.
Int J Biol Macromol ; 266(Pt 1): 131191, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552680

RESUMO

The excessive water sensitivity of hydroxypropyl methylcellulose (HPMC) films prevent them from being used extensively. In order to overcome this limitation, superhydrophobic HPMC films were meticulously crafted through the utilization of a composite of polydimethylsiloxane (PDMS) and ball-milled rice starch, corn starch, or potato starch (RS/CS/PS) for the coating process. Initially possessing hydrophilic properties, the HPMC Film (CA = 49.3 ± 1.8°) underwent a transformative hydrophobic conversion upon the application of PDMS, resulting in a static contact angle measuring up to 103.4 ± 2.0°. Notably, the synergistic combination of PDMS-coated HPMC with ball-milled starch demonstrated exceptional superhydrophobic attributes. Particularly, the treated HPMC-based film, specifically the HP-CS-2 h film, showcased an impressive contact angle of 170.5° alongside a minimal sliding angle of 5.2°. The impact of diverse starch types and the ball milling treatment on the PDMS/starch coatings and HPMC film was thoroughly examined using scanning electron microscopy (SEM), wide-angle X-ray diffraction (WAXS), and particle size analysis. These studies demonstrated that the low surface energy and roughness required for the creation of superhydrophobic HPMC-based films were imparted by the hierarchical structure formed by the application of PDMS/ball-milled starch. CHEMICAL COMPOUNDS STUDIED IN THIS ARTICLE: Polydimethylsiloxane (PubChem CID: 24764); Hydroxypropyl methylcellulose (PubChem CID: 671); Ethyl acetate (PubChem CID: 8857).


Assuntos
Dimetilpolisiloxanos , Interações Hidrofóbicas e Hidrofílicas , Derivados da Hipromelose , Amido , Amido/química , Dimetilpolisiloxanos/química , Derivados da Hipromelose/química , Água/química
13.
Int J Biol Macromol ; 264(Pt 1): 130270, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423423

RESUMO

Fire alarm systems are essential for protecting lives and properties from fire hazards. However, most of the existing fire alarm nanopapers rely on the resistance reduction after heating, which requires direct contact with the flame. In this study, we present a novel fire alarm nanopaper (CMPA) based on heat-triggered shape recovery. The CMPA is composed of hydroxypropyl methyl cellulose (HPMC) as the matrix and 2D nanomaterials M(OH)(OCH3) as fillers. When the temperature of CMPA exceeded the glass transition, the thrice-folded CMPA-1.0 flattened in 30s and connected to the alarm circuit based on its conductive surface. According to the results, the CMPA-1.0 with a thickness of about 0.2 mm had an efficient electromagnetic shielding of 42.1 dB. Moreover, the CMPA-1.0 self-extinguished rapidly after being ignited with its original shape preserved. The peak heat release rate of CMPA-1.0 was 108.9 W/g, which was 61.9 % lower than that of HPMC. Furthermore, the thermal conductivity of CMPA-1.0 reached to 0.317 W m-1 K-1, which was 40.8 % higher than that of HPMC, reducing the heat accumulation effectively. This work shows that CMPA is an ideal material for sensitive and safe early fire alarm, and the strategy based on heat-triggered shape recovery is promising in fire alarm application.


Assuntos
Celulose , Retardadores de Chama , Temperatura Alta , Dopamina , Derivados da Hipromelose
14.
Int J Biol Macromol ; 261(Pt 2): 129790, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307431

RESUMO

Cellulose nanofiber (CNF) reinforced hydroxypropyl methylcellulose (HPMC) films were functionalized with propolis-loaded zein nanoparticles (ZNP) to develop active, printable, and heat-sealable films. The films with 0, 0.10, 0.25, 0.50, or 0.75 mg/mL propolis-loaded ZNP, named 0ZNP, 0.10ZNP, 0.25ZNP, 0.50ZNP, and 0.75ZNP, respectively, were characterized for their mechanical, physicochemical, structural, functional and optical properties and antioxidant activity. The addition of propolis-loaded ZNP did not change tensile strength (P > 0.05), but increased elongation at break (from 24.72 to 36.58 %) (P < 0.05) for 0.25ZNP film. A water contact angle increased significantly (P < 0.05) for 0.50ZNP (~45 %) and 0.75ZNP (~137 %) films. The 0.25ZNP and 0.75ZNP films were evaluated for packaging cheddar cheese under refrigerated storage for 30 days, and resulted in comparable water activity, pH, titratable acidity, and lipid oxidation (P > 0.05) with those packaged by LDPE film and vacuum package. The developed films can function as eco-friendly alternatives to single-use plastic food packaging.


Assuntos
Queijo , Nanofibras , Nanopartículas , Compostos Organometálicos , Própole , Piridinas , Zeína , Derivados da Hipromelose , Zeína/química , Nanofibras/química , Embalagem de Alimentos/métodos , Água , Nanopartículas/química
15.
Int J Pharm ; 654: 123937, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38401873

RESUMO

The trial-and-error method currently used to create formulations with excellent printability demands considerable time and resources, primarily due to the increasing number of variables involved. Rheology serves as a relatively rapid and highly beneficial method for assessing materials and evaluating their effectiveness as 3D constructs. However, the data obtained can be overwhelming, especially for users lacking experience in this field. This study examined the rheological properties of formulations of agar, hydroxypropyl methylcellulose, and the model drug caffeine, alongside exploring their printability as gummy formulations. The gels' rheological properties were characterized using oscillatory and rotational experiments. The correlation between these gels' rheological properties and their printability was established, and three clusters were formed based on the rheological properties and printability of the samples using principal component analysis. Furthermore, the printability was predicted using the sample's rheological property that correlated most with printability, the phase angle δ, and the regression models resulted in an accuracy of over 80%. Although these relationships merit confirmation in later studies, this study suggests a quantitative definition of the relationship between printability and one rheological property and can be used for the development of formulations destined for extrusion 3D printing.


Assuntos
Impressão Tridimensional , Ágar , Derivados da Hipromelose , Géis , Composição de Medicamentos , Reologia
16.
Vet Med Sci ; 10(2): e1349, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38400687

RESUMO

BACKGROUND: Accurate dosing of feed additives is often required to evaluate their effects on rumen fermentation. This can be done using soluble but nonfermentable hydroxypropyl methylcellulose (HPMC) hard capsules. OBJECTIVES: The aim of the study was to evaluate the effect of HPMC hard capsules on the extent and rate of in vitro gas production in eleven feeds. METHODS: Six high-fibre feeds and five concentrates, were weighed into syringes either directly or into HPMC capsules and incubated anaerobically in 30 mL buffered rumen fluid at 39°C. Data obtained from gas production measurements were fitted using the Gompertz model to obtain kinetic parameters for gas production. RESULTS: HPMC hard capsules had no effect on the gas production of the blank sample and concentrate feeds. In contrast, high-fibre feeds weighed in HPMC showed a significant decrease (p < 0.05) in total gas production and gas produced within 24 h of incubation. CONCLUSIONS: The use of HPMC hard capsules was found to be inappropriate for determining gas production kinetics because fermentation subsides at a certain point when peak fermentation is reached (at TMFR), resulting in a decrease in both total potential gas production and gas production within 24 h of incubation. This is particularly evident when high-fibre feeds are incubated.


Assuntos
Rúmen , Ruminantes , Animais , Derivados da Hipromelose/metabolismo , Fermentação
17.
Medicina (Kaunas) ; 60(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38399574

RESUMO

Background and Objectives: Dry eye disease (DED) affects 5-50% of the global population and deeply influences everyday life activities. This study compared the efficacy, tolerability, and safety of novel Respilac artificial tears containing lipidure and hypromellose (HPMC) with the widely used Nextal artificial tears, which are also HPMC-based, for the treatment of moderate DED in contact lenses (CL) wearers. Materials and Methods: In a prospective, single-center, randomized investigation, 30 patients aged ≥18 years, diagnosed with moderate DED, and wearing CL were randomly assigned to the Respilac (n = 15) or Nextal group (n = 15). Patients self-administrated one drop of Respilac or Nextal in both eyes three times daily for 21 days. Changes in the endpoint (visual analogue scale (VAS) score for ocular tolerability, symptom assessment in dry eye (SANDE) score, non-invasive first break-up time (NIF-BUT) results, tear analysis value, meibography results, and CL tolerability results were assessed, comparing treatment groups and time-point evaluations. Adverse events (AEs) were also recorded and evaluated. Results: VAS scores decreased with time (p < 0.001) in both groups, showing no statistically significant difference among them (p = 0.13). Improvements were also detected from screening to end-of-treatment, which were indicated by the SANDE scores for severity and frequency (p < 0.001) and by tear analysis results (p < 0.001) with no observed difference between the Nextal and Respilac arms. NIF-BUT, meibography, and CL tolerability values were shown to be non-significantly affected by treatment and time. There were no AEs detected in this study cohort. Conclusions: Respilac was confirmed to be effective, safe, and well-tolerated. Lipidure-based ophthalmic solution was shown not to be inferior to the currently used Nextal, however, showing improvements in DED symptoms. Within the existing literature, our study is one of the first to report that MPC plus HPMC-containing eye drops are an effective option for the treatment of moderate dry eye disease and desiccation damage prevention in contact lens wearers.


Assuntos
Lentes de Contato , Síndromes do Olho Seco , Humanos , Adolescente , Adulto , Lubrificantes Oftálmicos/uso terapêutico , Derivados da Hipromelose , Estudos Prospectivos , Síndromes do Olho Seco/tratamento farmacológico , Síndromes do Olho Seco/etiologia , Lentes de Contato/efeitos adversos , Lágrimas
18.
Int J Biol Macromol ; 262(Pt 1): 130015, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331066

RESUMO

The intranasal administration of drugs using environmentally responsive formulations, employing a combination of hydroxypropyl methylcellulose (HPMC) and poloxamer 407 (P407), can result in release systems that may assist in the treatment of neurological diseases. Meloxicam, considered a potential adjuvant in the treatment of Alzheimer's disease, could be used in these platforms. The aim of this work was to develop a mucoadhesive, thermoresponsive, and nanostructured system containing HPMC for nose-to-brain administration of meloxicam. The initially selected systems were investigated for their rheological, mechanical, and micellar size characteristics. The systems were dilatant at 25 °C and pseudoplastic with a yield value at 37 °C, showing viscoelastic properties at both temperatures. The platform containing HPMC (0.1%, w/w) and P407 (17.5%, w/w) was selected and demonstrated good mucoadhesive properties, along with an appropriate in vitro release profile. HPMC could form a binary system with P407, displaying superior mucoadhesive and thermoresponsive properties for nose-to-brain meloxicam administration, indicating that the selected formulation is worthy of clinical studies.


Assuntos
Encéfalo , Poloxâmero , Administração Intranasal , Derivados da Hipromelose , Meloxicam , Encéfalo/metabolismo , Metilcelulose
19.
Int J Biol Macromol ; 261(Pt 2): 129611, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266840

RESUMO

Based on the key factor of spontaneous modified atmosphere packaging (MAP)-gas permeability, a spontaneous MAP film was created for the preservation of Agaricus bisporus by delaying the senescence of white mushrooms. Compared with other mixed films, hydroxypropyl methylcellulose (HPMC)/pueraria (P)-2 showed better mechanical properties, barrier properties and thermal stability energy. Applying the HPMC/P-2 film for preserving white mushrooms can spontaneously adjust the internal gas environment. Moreover, the O2 concentration in the package remained stable at 1-2 %, and the CO2 concentration was between 8 % and 14 %. The film can effectively reduce the respiration rate of white mushrooms, inhibit enzymatic browning, maintain their good color and texture, and delay their aging. In conclusion, the HPMC/P-2 film can be used not only for fruit and vegetables preservation but also provide theoretical basis for sustainable food packaging.


Assuntos
Agaricus , Pueraria , Derivados da Hipromelose , Embalagem de Alimentos , Atmosfera
20.
Int J Biol Macromol ; 259(Pt 1): 129159, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181905

RESUMO

Skin tissue is damaged by factors such as burns, physical injuries and diseases namely diabetes. Infection and non-healing of burn wounds and lack of angiogenesis in diabetic wounds lead to extensive injuries and death. Therefore, the design of wound dressings with antibacterial and restorative capabilities is very important. In this study, nanofibers (NFs) including polyurethane (PU) and hydroxypropyl methyl cellulose (HPMC) were prepared with different ratios and Mango peel extract (MPE) loaded into NFs by electrospinning method. The morphology, chemical structure, porosity, degradation, water vapor permeability, mechanical properties, wettability, antioxidant activity and some cell studies and evaluation of their antibacterial properties were investigated. The optimal mat (PU90/HPMC10) had a defect-free morphology with homogeneous NFs. Furthermore, it showed improved biodegradability, water vapor permeability and porosity compared to other Mats. All NFs were non-toxic with hydrophilic behavior in the cellular environment and had acceptable hemocompatibility. The PU90/HPMC10/20 % optimal scaffold had significantly higher cell viability and proliferation than other samples and also had a higher antibacterial ability against pathogenic bacteria S. aureus (17 mm) and E. coli (11 mm). All these findings confirm that the produced NF mats, especially those loaded with MPE, have a high potential to be used as an effective wound dressing.


Assuntos
Diabetes Mellitus , Mangifera , Nanofibras , Nanofibras/química , Derivados da Hipromelose , Vapor , Escherichia coli , Staphylococcus aureus , Diabetes Mellitus/tratamento farmacológico , Antibacterianos/química , Metilcelulose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA