Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 869
Filtrar
1.
Angew Chem Int Ed Engl ; 63(8): e202314566, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-37947487

RESUMO

Production of commodity chemicals, such as benzene, toluene, ethylbenzene, and xylenes (BTEX), from renewable resources is key for a sustainable society. Biocatalysis enables one-pot multistep transformation of bioresources under mild conditions, yet it is often limited to biochemicals. Herein, we developed a non-natural three-enzyme cascade for one-pot conversion of biobased l-phenylalanine into ethylbenzene. The key rate-limiting photodecarboxylase was subjected to structure-guided semirational engineering, and a triple mutant CvFAP(Y466T/P460A/G462I) was obtained with a 6.3-fold higher productivity. With this improved photodecarboxylase, an optimized two-cell sequential process was developed to convert l-phenylalanine into ethylbenzene with 82 % conversion. The cascade reaction was integrated with fermentation to achieve the one-pot bioproduction of ethylbenzene from biobased glycerol, demonstrating the potential of cascade biocatalysis plus enzyme engineering for the production of biobased commodity chemicals.


Assuntos
Derivados de Benzeno , Tolueno , Biocatálise , Derivados de Benzeno/metabolismo , Tolueno/metabolismo , Benzeno/metabolismo , Xilenos , Fenilalanina/metabolismo
2.
Molecules ; 28(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38138607

RESUMO

This study demonstrates rapid photocatalytic oxidation of a benzene, toluene, ethylbenzene, and xylene (BTEX) mixture over TiO2/volcanic glass. The assessment of the photocatalytic oxidation of BTEX was conducted under conditions simulating those found in indoor environments affected by aromatic hydrocarbon release. We show, under UV-A intensities of 15 mW/cm2 and an air flow rate of 55 m3/h, that low ppmv levels of BTEX concentrations can be reduced to below detectable levels. Solid-phase microextraction technique was employed to monitor the levels of BTEX in the test chamber throughout the photocatalytic oxidation, lasting approximately 21 h. Destruction of BTEX from the gas phase was observed in the following sequence: o-xylene, ethylbenzene, toluene, and benzene. This study identified sequential degradation of BTEX, in combination with the stringent regulatory level set for benzene, resulted in the air quality hazard indexes (Total Hazard Index and Hazard Quotient) remaining relatively high during the process of photocatalytic oxidation. In the practical application of photocatalytic purification, it is crucial to account for the slower oxidation kinetics of benzene. This is of particular importance due to not only its extremely low exposure limits, but also due to the classification of benzene as a Group 1 carcinogenic compound by the International Agency for Research on Cancer (IARC). Our study underscores the importance of taking regulatory considerations into account when using photocatalytic purification technology.


Assuntos
Benzeno , Tolueno , Humanos , Xilenos/análise , Derivados de Benzeno/metabolismo , Medição de Risco , Monitoramento Ambiental/métodos
3.
Environ Pollut ; 335: 122303, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37558195

RESUMO

Monoaromatic hydrocarbons such as benzene, toluene, ethylbenzene, and o, m, and p-xylenes (BTEX) are high-risk pollutants because of their mutagenic and carcinogenic nature. These pollutants are found with elevated levels in groundwater and soil in Canada at several contaminated sites. The intrinsic microbes present in the subsurface have the potential to degrade pollutants by their metabolic pathways and convert them to non-toxic products. However, the low subsurface temperature (5-10 °C) limits their growth and degradation ability. This study examined the feasibility of subsurface heat augmentation using geothermal heating for BTEX bioremediation. Novel potent BTEX-degrading bacterial strains were isolated from soil at 3.0, 42.6, and 73.2 m depths collected from a geothermal borehole during installation and screened using an enrichment technique. The selected strains were identified with Sanger sequencing and phylogenetic tree analysis, revealing that all the strains except Bacillus subtilis are novel with respective to BTEX degradation. The isolates, Microbacterium esteraromaticum and Bacillus infantis showed the highest degradation with 67.98 and 65.2% for benzene, 72.8 and 71.02% for toluene, 77.52 and 76.44% for ethylbenzene, and 74.58 and 74.04% for xylenes respectively. Further, temperature influence at 15 ± 1 °C, 28 ± 1 °C and 40 ± 1 °C was observed, which showed increased growth by two-fold and on average 35-49% more biodegradation at higher temperatures. Results showed that temperature is a positive stimulant for bioremediation, hence geothermal heating could also be a stimulant for in-situ bioremediation.


Assuntos
Poluentes Ambientais , Xilenos , Xilenos/metabolismo , Benzeno/metabolismo , Filogenia , Derivados de Benzeno/metabolismo , Tolueno/metabolismo , Biodegradação Ambiental
4.
Environ Pollut ; 335: 122248, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37490964

RESUMO

Aromatic compounds have received widespread attention because of their threat to ecosystem and human health. However, traditional physical and chemical methods are criticized due to secondary pollution and high cost. As a result of ecological security and the ability of carbon sequestration, biodegradation approach based on microalgae has emerged as a promising alternative treatment for aromatic pollutants. In light of the current researches, the degradation efficiency of BTEX (benzene, toluene, ethylbenzene, and xylene), polycyclic aromatic hydrocarbons (PAHs), and phenolic compounds by microalgae was reviewed in this study. We summarized the degradation pathways and metabolites of p-xylene, benzo [a]pyrene, fluorene, phenol, bisphenol A, and nonylphenol by microalgae. The influence factors on the degradation of aromatic compounds by microalgae were also discussed. The integrated technologies based on microalgae for degradation of aromatic compounds were reviewed. Finally, this study discussed the limitations and future research needs of the degradation of these compounds by microalgae.


Assuntos
Microalgas , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Microalgas/metabolismo , Ecossistema , Derivados de Benzeno/metabolismo , Tolueno/metabolismo , Benzeno/metabolismo , Biodegradação Ambiental , Hidrocarbonetos Policíclicos Aromáticos/metabolismo
5.
Biodegradation ; 34(5): 461-475, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37329399

RESUMO

The degradation of the prevalent environmental contaminants benzene, toluene, ethylbenzene, and xylenes (BTEX) along with a common co-contaminant methyl tert-butyl ether (MTBE) by Rhodococcus rhodochrous ATCC Strain 21198 was investigated. The ability of 21198 to degrade these contaminants individually and in mixtures was evaluated with resting cells grown on isobutane, 1-butanol, and 2-butanol. Growth of 21198 in the presence of BTEX and MTBE was also studied to determine the growth substrate that best supports simultaneous microbial growth and contaminants degradation. Cells grown on isobutane, 1-butanol, and 2-butanol were all capable of degrading the contaminants, with isobutane grown cells exhibiting the most rapid degradation rates and 1-butanol grown cells exhibiting the slowest. However, in conditions where BTEX and MTBE were present during microbial growth, 1-butanol was determined to be an effective substrate for supporting concurrent growth and contaminant degradation. Contaminant degradation was found to be a combination of metabolic and cometabolic processes. Evidence for growth of 21198 on benzene and toluene is presented along with a possible transformation pathway. MTBE was cometabolically transformed to tertiary butyl alcohol, which was also observed to be transformed by 21198. This work demonstrates the possible utility of primary and secondary alcohols to support biodegradation of monoaromatic hydrocarbons and MTBE. Furthermore, the utility of 21198 for bioremediation applications has been expanded to include BTEX and MTBE.


Assuntos
Benzeno , Éteres Metílicos , Benzeno/metabolismo , Tolueno/metabolismo , Xilenos/metabolismo , 1-Butanol , Derivados de Benzeno/metabolismo , Éteres Metílicos/metabolismo , Biodegradação Ambiental
6.
J Microbiol Biotechnol ; 33(7): 875-885, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37100759

RESUMO

Volatile organic compounds such as benzene, toluene, ethylbenzene, and isomers of xylenes (BTEX) constitute a group of monoaromatic compounds that are found in petroleum and have been classified as priority pollutants. In this study, based on its newly sequenced genome, we reclassified the previously identified BTEX-degrading thermotolerant strain Ralstonia sp. PHS1 as Cupriavidus cauae PHS1. Also presented are the complete genome sequence of C. cauae PHS1, its annotation, species delineation, and a comparative analysis of the BTEX-degrading gene cluster. Moreover, we cloned and characterized the BTEX-degrading pathway genes in C. cauae PHS1, the BTEX-degrading gene cluster of which consists of two monooxygenases and meta-cleavage genes. A genome-wide investigation of the PHS1 coding sequence and the experimentally confirmed regioselectivity of the toluene monooxygenases and catechol 2,3-dioxygenase allowed us to reconstruct the BTEX degradation pathway. The degradation of BTEX begins with aromatic ring hydroxylation, followed by ring cleavage, and eventually enters the core carbon metabolism. The information provided here on the genome and BTEX-degrading pathway of the thermotolerant strain C. cauae PHS1 could be useful in constructing an efficient production host.


Assuntos
Benzeno , Cupriavidus , Benzeno/metabolismo , Tolueno , Xilenos/metabolismo , Cupriavidus/genética , Cupriavidus/metabolismo , Biodegradação Ambiental , Derivados de Benzeno/metabolismo , Genômica
7.
Environ Sci Pollut Res Int ; 29(12): 17617-17625, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34669137

RESUMO

The effective approaches to eliminate impacts of ethanol on the biodegradation of benzene, toluene, ethylbenzene, and xylene (BTEX) are concerned in the bioremediation of groundwater contaminated with ethanol-blended gasoline. In situ chemical oxidation (ISCO) is a common technique widely used for the remediation of contaminated groundwater. However, the selectivity of ISCO for BTEX and ethanol removal is poorly understood. Therefore, a batch experiment was performed with different aquifer materials, including calcareous soil, basalt soil, granite soil, dolomite, and sand. Gasoline was used to provide dissolved BTEX and ethanol reagent was used as additive to improve the quality of gasoline and to reduce the possibility of air pollution caused by gasoline. Persulfate (PS) was used as a chemical oxidant to oxidize organic contaminants. The target concentrations of BTEX and ethanol were 20 mg/L and 1000 mg/L, respectively. The results showed that ethanol could be preferentially degraded in the absence of PS and inhibit BTEX biodegradation. However, BTEX could be preferentially removed prior to ethanol in all aquifer materials used at ambient temperature, when PS was added at a PS/BTEX molar ratio of 150. Over 94% BTEX in sand, dolomite, and granite soil was preferentially removed with the first-order decay rate constants of 0.890-2.703 day-1 within the first ~ 10 days, followed by calcareous and basalt soil at the constants of 0.123-0.371 day-1. Ethanol could compete with BTEX for sulfate radical at the first-order decay rate constants of 0.005-0.060 day-1 for the first 25 days, which was slower than that of BTEX. The pH quickly decreased to < 2.5 in dolomite, sand, and granite soil, but maintained > 6.2 in calcareous soil. Rich organic matter in calcareous and basalt soil had an inhibition effect on BTEX oxidation by PS. The pH buffer in calcareous soil may imply the potential of PS oxidation combined with bioremediation in carbonate rock regions.


Assuntos
Água Subterrânea , Xilenos , Benzeno/metabolismo , Derivados de Benzeno/metabolismo , Biodegradação Ambiental , Etanol/farmacologia , Tolueno/metabolismo , Xilenos/metabolismo
8.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638861

RESUMO

Among organic-inorganic hybrid molecules consisting of organic structure(s) and metal(s), only few studies are available on the cytotoxicity of nucleophilic molecules. In the present study, we investigated the cytotoxicity of a nucleophilic organotellurium compound, diphenyl ditelluride (DPDTe), using a cell culture system. DPDTe exhibited strong cytotoxicity against vascular endothelial cells and fibroblasts along with high intracellular accumulation but showed no cytotoxicity and had less accumulation in vascular smooth muscle cells and renal epithelial cells. The cytotoxicity of DPDTe decreased when intramolecular tellurium atoms were replaced with selenium or sulfur atoms. Electronic state analysis revealed that the electron density between tellurium atoms in DPDTe was much lower than those between selenium atoms of diphenyl diselenide and sulfur atoms of diphenyl disulfide. Moreover, diphenyl telluride did not accumulate and exhibit cytotoxicity. The cytotoxicity of DPDTe was also affected by substitution. p-Dimethoxy-DPDTe showed higher cytotoxicity, but p-dichloro-DPDTe and p-methyl-DPDTe showed lower cytotoxicity than that of DPDTe. The subcellular distribution of the compounds revealed that the compounds with stronger cytotoxicity showed higher accumulation rates in the mitochondria. Our findings suggest that the electronic state of tellurium atoms in DPDTe play an important role in accumulation and distribution of DPDTe in cultured cells. The present study supports the hypothesis that nucleophilic organometallic compounds, as well as electrophilic organometallic compounds, exhibit cytotoxicity by particular mechanisms.


Assuntos
Derivados de Benzeno/farmacologia , Células Endoteliais/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Compostos Organosselênicos/farmacologia , Telúrio/farmacologia , Animais , Derivados de Benzeno/química , Derivados de Benzeno/metabolismo , Bovinos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Células LLC-PK1 , Modelos Químicos , Estrutura Molecular , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Compostos Organometálicos/química , Compostos Organometálicos/metabolismo , Compostos Organosselênicos/química , Compostos Organosselênicos/metabolismo , Suínos , Telúrio/química
9.
World J Microbiol Biotechnol ; 37(7): 122, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34151386

RESUMO

The contamination of the environment by crude oil and its by-products, mainly composed of aliphatic and aromatic hydrocarbons, is a widespread problem. Biodegradation by bacteria is one of the processes responsible for the removal of these pollutants. This study was conducted to determine the abilities of Burkholderia sp. B5, Cupriavidus sp. B1, Pseudomonas sp. T1, and another Cupriavidus sp. X5 to degrade binary mixtures of octane (representing aliphatic hydrocarbons) with benzene, toluene, ethylbenzene, or xylene (BTEX as aromatic hydrocarbons) at a final concentration of 100 ppm under aerobic conditions. These strains were isolated from an enriched bacterial consortium (Yabase or Y consortium) that prefer to degrade aromatic hydrocarbon over aliphatic hydrocarbons. We found that B5 degraded all BTEX compounds more rapidly than octane. In contrast, B1, T1 and X5 utilized more of octane over BTX compounds. B5 also preferred to use benzene over octane with varying concentrations of up to 200 mg/l. B5 possesses alkane hydroxylase (alkB) and catechol 2,3-dioxygenase (C23D) genes, which are responsible for the degradation of alkanes and aromatic hydrocarbons, respectively. This study strongly supports our notion that Burkholderia played a key role in the preferential degradation of aromatic hydrocarbons over aliphatic hydrocarbons in the previously characterized Y consortium. The preferential degradation of more toxic aromatic hydrocarbons over aliphatics is crucial in risk-based bioremediation.


Assuntos
Burkholderia/metabolismo , Cupriavidus/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Octanos/metabolismo , Pseudomonas/metabolismo , Técnicas de Tipagem Bacteriana , Benzeno/metabolismo , Derivados de Benzeno/metabolismo , Biodegradação Ambiental , Burkholderia/classificação , Burkholderia/genética , Catecol 2,3-Dioxigenase/genética , Cupriavidus/classificação , Cupriavidus/genética , Citocromo P-450 CYP4A/genética , DNA Bacteriano , Microbiologia Ambiental , Poluentes Ambientais/metabolismo , Campos de Petróleo e Gás/microbiologia , Petróleo/microbiologia , Pseudomonas/classificação , Pseudomonas/genética , RNA Ribossômico 16S , Tolueno/metabolismo , Xilenos/metabolismo
10.
Eur J Med Chem ; 223: 113601, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34153575

RESUMO

Syntenin stimulates exosome production and its expression is upregulated in many cancers and implicated in the spread of metastatic tumor. These effects are supported by syntenin PDZ domains interacting with syndecans. We therefore aimed to develop, through a fragment-based drug design approach, novel inhibitors targeting syntenin-syndecan interactions. We describe here the optimization of a fragment, 'hit' C58, identified by in vitro screening of a PDZ-focused fragment library, which binds specifically to the syntenin-PDZ2 domain at the same binding site as the syndecan-2 peptide. X-ray crystallographic structures and computational docking were used to guide our optimization process and lead to compounds 45 and 57 (IC50 = 33 µM and 47 µM; respectively), two representatives of syntenin-syndecan interactions inhibitors, that selectively affect the syntenin-exosome release. These findings demonstrate that it is possible to identify small molecules inhibiting syntenin-syndecan interaction and exosome release that may be useful for cancer therapy.


Assuntos
Aminoácidos/farmacologia , Antineoplásicos/farmacologia , Derivados de Benzeno/farmacologia , Exossomos/metabolismo , Sinteninas/metabolismo , Aminoácidos/síntese química , Aminoácidos/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Derivados de Benzeno/síntese química , Derivados de Benzeno/metabolismo , Desenho de Fármacos , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , Estrutura Molecular , Domínios PDZ , Ligação Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Sindecanas/metabolismo , Sinteninas/química
11.
Biochem Biophys Res Commun ; 559: 62-69, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33932901

RESUMO

p-Terphenyls represent a unique family of aromatic natural products generated by nonribosomal peptide synthetase-like (NRPS-like) enzyme. After formation of p-terphenyl skeleton, tailoring modifications will give rise to structural diversity and various biological activities. Here we demonstrated a two-enzyme (EchB, a short-chain dehydrogenase/reductase (SDR), and EchC, a nuclear transport factor 2 (NTF2)-like dehydratase) participated transformation from dihydroxybenzoquinone core to 2',3',5'-trihydroxy-benzene in the biosynthesis of echosides. Beginning with polyporic acid as substrate, successive steps of reduction-dehydration-reduction cascade catalyzed by EchB-EchC-EchB were concluded after in vivo gene disruption and in vitro bioassay experiments. These findings demonstrated a conserved synthesis pathway of 2',3',5'-trihydroxy-p-terphenyls in bacteria, such as Actinomycetes and Burkholderia. The parallel pathway in fungi has yet to be explored.


Assuntos
Proteínas de Bactérias/metabolismo , Derivados de Benzeno/metabolismo , Produtos Biológicos/metabolismo , Streptomyces/metabolismo , Compostos de Terfenil/metabolismo , Vias Biossintéticas , Hidroliases/metabolismo , Oxirredutases/metabolismo , Streptomyces/enzimologia
12.
J Med Chem ; 64(9): 5667-5688, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33949859

RESUMO

Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system (CNS) that causes severe motor, sensory, and cognitive impairments. Kallikrein-related peptidase (KLK)6 is the most abundant serine protease secreted in the CNS, mainly by oligodendrocytes, the myelin-producing cells of the CNS, and KLK6 is assumed to be a robust biomarker of MS, since it is highly increased in the cerebrospinal fluid (CSF) of MS patients. Here, we report the design and biological evaluation of KLK6's low-molecular-weight inhibitors, para-aminobenzyl derivatives. Interestingly, selected hit compounds were selective of the KLK6 proteolytic network encompassing KLK1 and plasmin that also participate in the development of MS physiopathology. Moreover, hits were found noncytotoxic on primary cultures of murine neurons and oligodendrocyte precursor cells (OPCs). Among them, two compounds (32 and 42) were shown to promote the differentiation of OPCs into mature oligodendrocytes in vitro constituting thus emerging leads for the development of regenerative therapies.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Calicreínas/antagonistas & inibidores , Inibidores de Serina Proteinase/farmacologia , Animais , Derivados de Benzeno/química , Derivados de Benzeno/metabolismo , Derivados de Benzeno/farmacologia , Sítios de Ligação , Domínio Catalítico , Células Cultivadas , Desenho de Fármacos , Fibrinolisina/antagonistas & inibidores , Fibrinolisina/metabolismo , Humanos , Calicreínas/metabolismo , Cinética , Camundongos , Simulação de Acoplamento Molecular , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Neurônios/citologia , Neurônios/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Relação Estrutura-Atividade
13.
J Med Chem ; 64(8): 4762-4786, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33835811

RESUMO

A benzo[6]annulene, 4-(tert-butyl)-N-(3-methoxy-5,6,7,8-tetrahydronaphthalen-2-yl) benzamide (1a), was identified as an inhibitor against Chikungunya virus (CHIKV) with antiviral activity EC90 = 1.45 µM and viral titer reduction (VTR) of 2.5 log at 10 µM with no observed cytotoxicity (CC50 = 169 µM) in normal human dermal fibroblast cells. Chemistry efforts to improve potency, efficacy, and drug-like properties of 1a resulted in a novel lead compound 8q, which possessed excellent cellular antiviral activity (EC90 = 270 nM and VTR of 4.5 log at 10 µM) and improved liver microsomal stability. CHIKV resistance to an analog of 1a, compound 1c, tracked to a mutation in the nsP3 macrodomain. Further mechanism of action studies showed compounds working through inhibition of human dihydroorotate dehydrogenase in addition to CHIKV nsP3 macrodomain. Moderate efficacy was observed in an in vivo CHIKV challenge mouse model for compound 8q as viral replication was rescued from the pyrimidine salvage pathway.


Assuntos
Antivirais/farmacologia , Derivados de Benzeno/química , Vírus Chikungunya/fisiologia , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/química , Antivirais/farmacocinética , Antivirais/uso terapêutico , Derivados de Benzeno/metabolismo , Derivados de Benzeno/farmacologia , Derivados de Benzeno/uso terapêutico , Sítios de Ligação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Febre de Chikungunya/tratamento farmacológico , Di-Hidro-Orotato Desidrogenase , Modelos Animais de Doenças , Feminino , Meia-Vida , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Relação Estrutura-Atividade
14.
Plant Physiol ; 186(2): 891-909, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33723573

RESUMO

Benzenoids (C6-C1 aromatic compounds) play important roles in plant defense and are often produced upon herbivory. Black cottonwood (Populus trichocarpa) produces a variety of volatile and nonvolatile benzenoids involved in various defense responses. However, their biosynthesis in poplar is mainly unresolved. We showed feeding of the poplar leaf beetle (Chrysomela populi) on P. trichocarpa leaves led to increased emission of the benzenoid volatiles benzaldehyde, benzylalcohol, and benzyl benzoate. The accumulation of salicinoids, a group of nonvolatile phenolic defense glycosides composed in part of benzenoid units, was hardly affected by beetle herbivory. In planta labeling experiments revealed that volatile and nonvolatile poplar benzenoids are produced from cinnamic acid (C6-C3). The biosynthesis of C6-C1 aromatic compounds from cinnamic acid has been described in petunia (Petunia hybrida) flowers where the pathway includes a peroxisomal-localized chain shortening sequence, involving cinnamate-CoA ligase (CNL), cinnamoyl-CoA hydratase/dehydrogenase (CHD), and 3-ketoacyl-CoA thiolase (KAT). Sequence and phylogenetic analysis enabled the identification of small CNL, CHD, and KAT gene families in P. trichocarpa. Heterologous expression of the candidate genes in Escherichia coli and characterization of purified proteins in vitro revealed enzymatic activities similar to those described in petunia flowers. RNA interference-mediated knockdown of the CNL subfamily in gray poplar (Populus x canescens) resulted in decreased emission of C6-C1 aromatic volatiles upon herbivory, while constitutively accumulating salicinoids were not affected. This indicates the peroxisomal ß-oxidative pathway participates in the formation of volatile benzenoids. The chain shortening steps for salicinoids, however, likely employ an alternative pathway.


Assuntos
Derivados de Benzeno/metabolismo , Besouros/fisiologia , Hidrocarbonetos Aromáticos/metabolismo , Proteínas de Plantas/metabolismo , Populus/metabolismo , Acil Coenzima A/metabolismo , Animais , Derivados de Benzeno/química , Cinamatos/metabolismo , Herbivoria , Hidrocarbonetos Aromáticos/química , Óleos Voláteis/química , Óleos Voláteis/metabolismo , Oxirredução , Peroxissomos/metabolismo , Proteínas de Plantas/genética , Populus/química , Populus/genética , Interferência de RNA
15.
Carbohydr Res ; 502: 108272, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33711724

RESUMO

Simple protocols for attaching and detaching carbobenzyloxy (Cbz) groups at the reducing end of sugars was developed. Briefly, lactose was converted into its glycosylamine, which was then acylated with carbobenzyloxy chloride in high overall yield. The obtained lactose Cbz derivative was used in sequential glycosylations using glycosyltransferases and nucleotide sugars in aqueous buffers. Isolation of the reaction products after each step was by simple C-18 solid-phase extraction. The Cbz group was removed by catalytic hydrogenolysis or catalytic transfer hydrogenation followed by in situ glycosylamine hydrolysis. In this way, a trisaccharide (GlcNAc-lactose), a human milk tetrasaccharide (LNnT), and a human milk pentasaccharide (LNFPIII) were prepared in a simple and efficient way.


Assuntos
Derivados de Benzeno/metabolismo , Fucosiltransferases/metabolismo , Oligossacarídeos/biossíntese , Açúcares/metabolismo , Derivados de Benzeno/química , Glucosamina/química , Glucosamina/metabolismo , Helicobacter mustelae/enzimologia , Humanos , Hidrólise , Oligossacarídeos/química , Oligossacarídeos/isolamento & purificação , Açúcares/química
16.
Angew Chem Int Ed Engl ; 60(13): 6965-6969, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33529432

RESUMO

Controlling the selectivity of a chemical reaction with external stimuli is common in thermal processes, but rare in visible-light photocatalysis. Here we show that the redox potential of a carbon nitride photocatalyst (CN-OA-m) can be tuned by changing the irradiation wavelength to generate electron holes with different oxidation potentials. This tuning was the key to realizing photo-chemo-enzymatic cascades that give either the (S)- or the (R)-enantiomer of phenylethanol. In combination with an unspecific peroxygenase from Agrocybe aegerita, green light irradiation of CN-OA-m led to the enantioselective hydroxylation of ethylbenzene to (R)-1-phenylethanol (99 % ee). In contrast, blue light irradiation triggered the photocatalytic oxidation of ethylbenzene to acetophenone, which in turn was enantioselectively reduced with an alcohol dehydrogenase from Rhodococcus ruber to form (S)-1-phenylethanol (93 % ee).


Assuntos
Acetofenonas/química , Álcool Desidrogenase/química , Derivados de Benzeno/química , Oxigenases de Função Mista/química , Nitrilas/química , Álcool Feniletílico/química , Acetofenonas/metabolismo , Agrocybe/enzimologia , Álcool Desidrogenase/metabolismo , Derivados de Benzeno/metabolismo , Catálise , Luz , Oxigenases de Função Mista/metabolismo , Estrutura Molecular , Nitrilas/metabolismo , Oxirredução , Álcool Feniletílico/metabolismo , Processos Fotoquímicos , Rhodococcus/enzimologia , Estereoisomerismo
17.
Microb Physiol ; 31(1): 16-35, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33477134

RESUMO

The betaproteobacterial genus Aromatoleum comprises facultative denitrifiers specialized in the anaerobic degradation of recalcitrant organic compounds (aromatic and terpenoid). This study reports on the complete and manually annotated genomes of Ar. petrolei ToN1T (5.41 Mbp) and Ar. bremense PbN1T (4.38 Mbp), which cover the phylogenetic breadth of the genus Aromatoleum together with previously genome sequenced Ar. aromaticum EbN1T [Rabus et al., Arch Microbiol. 2005 Jan;183(1):27-36]. The gene clusters for the anaerobic degradation of aromatic and terpenoid (strain ToN1T only) compounds are scattered across the genomes of strains ToN1T and PbN1T. The richness in mobile genetic elements is shared with other Aromatoleum spp., substantiating that horizontal gene transfer should have been a major driver in shaping the genomes of this genus. The composite catabolic network of strains ToN1T and PbN1T comprises 88 proteins, the coding genes of which occupy 86.1 and 76.4 kbp (1.59 and 1.75%) of the respective genome. The strain-specific gene clusters for anaerobic degradation of ethyl-/propylbenzene (strain PbN1T) and toluene/monoterpenes (strain ToN1T) share high similarity with their counterparts in Ar. aromaticum strains EbN1T and pCyN1, respectively. Glucose is degraded via the ED-pathway in strain ToN1T, while gluconeogenesis proceeds via the reverse EMP-pathway in strains ToN1T, PbN1T, and EbN1T. The diazotrophic, endophytic lifestyle of closest related genus Azoarcus is known to be associated with nitrogenase and type-6 secretion system (T6SS). By contrast, strains ToN1T, PbN1T, and EbN1T lack nif genes for nitrogenase (including cofactor synthesis and enzyme maturation). Moreover, strains PbN1T and EbN1T do not possess tss genes for T6SS, while strain ToN1T does and facultative endophytic "Aromatoleum" sp. CIB is known to even have both. These findings underpin the functional heterogeneity among Aromatoleum members, correlating with the high plasticity of their genomes.


Assuntos
Anaerobiose/genética , Metabolismo Energético/genética , Genoma Bacteriano/genética , Rhodocyclaceae/genética , Rhodocyclaceae/metabolismo , Derivados de Benzeno/metabolismo , Metabolismo dos Carboidratos/genética , Técnicas Genéticas , Gluconeogênese/genética , Hidrocarbonetos Aromáticos/metabolismo , Sequências Repetitivas Dispersas/genética , Família Multigênica/genética , Nitrogenase/genética , Filogenia , Rhodocyclaceae/classificação , Terpenos/metabolismo , Sistemas de Secreção Tipo VI/genética , Sequenciamento Completo do Genoma
18.
Artigo em Inglês | MEDLINE | ID: mdl-33198342

RESUMO

Isopropylbenzene (cumene) is commonly encountered in groundwater at petroleum release sites due to its natural occurrence in crude oil and historical use as a fuel additive. The cumene concentrations detected at these sites often exceed regulatory guidelines or standards for states with stringent groundwater regulations. Recent laboratory analytical data collected at historical petroleum underground storage tank (UST) release sites have revealed that cumene persists at concentrations exceeding the default cleanup criterion, while other common petroleum constituents are below detection limits or low enough to allow natural attenuation as a remediation strategy. This effectively makes cumene the driver for active remediation at some sites. An insignificant amount of research has been conducted for the in-situ remediation of cumene. Sulfate Enhanced Biodegradation (SEB) is evaluated in a field case study. The results from the field case study show an approximate 92% decrease in plume area following three rounds of SEB injections. An additional objective of this research was to determine the cumene concentration in fuels currently being used to determine future impacts. A review of safety data sheets from several fuel suppliers revealed that cumene concentrations in gasoline are reported typically as wide ranges due to the proprietary formulations. Several fuels from different suppliers were analyzed to determine a baseline of cumene concentration in modern fuels. The results of the analysis indicated that cumene accounts for approximately 0.01% (diesel) to 0.13% (premium gasoline) of the overall fuel composition. Cumene generally is considered to be of low human health toxicity, with the principal concern being eye, skin, and respiratory irritation following inhalation of vapors in an occupational setting, but it has been regulated in Florida at very low concentrations based on organoleptic considerations.


Assuntos
Derivados de Benzeno , Biodegradação Ambiental , Monitoramento Ambiental , Água Subterrânea , Saúde Pública , Sulfatos , Derivados de Benzeno/análise , Derivados de Benzeno/metabolismo , Florida , Água Subterrânea/química , Humanos , Sulfatos/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
19.
Sci Rep ; 10(1): 17408, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060819

RESUMO

Benzene, toluene, ethylbenzene and (p-, m- and o-) xylene (BTEX) are classified as main pollutants by several environmental protection agencies. In this study, a non-pathogenic, Gram-positive rod-shape bacterium with an ability to degrade all six BTEX compounds, employed as an individual substrate or as a mixture, was isolated. The bacterial isolate was identified as Bacillus amyloliquefaciens subsp. plantarum strain W1. An overall BTEX biodegradation (as individual substrates) by strain W1 could be ranked as: toluene > benzene, ethylbenzene, p-xylene > m-xylene > o-xylene. When presented in a BTEX mixture, m-xylene and o-xylene biodegradation was slightly improved suggesting an induction effect by other BTEX components. BTEX biodegradation pathways of strain W1 were proposed based on analyses of its metabolic intermediates identified by LC-MS/MS. Detected activity of several putative monooxygenases and dioxygenases suggested the versatility of strain W1. Thus far, this is the first report of biodegradation pathways for all of the six BTEX compounds by a unique bacterium of the genus Bacillus. Moreover, B. amyloliquefaciens subsp. plantarum W1 could be a good candidate for an in situ bioremediation considering its Generally Recognized as Safe (GRAS) status and a possibility to serve as a plant growth-promoting rhizobacterium (PGPR).


Assuntos
Bacillus/metabolismo , Derivados de Benzeno/metabolismo , Benzeno/metabolismo , Biodegradação Ambiental , Tolueno/metabolismo , Xilenos/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem
20.
ChemMedChem ; 15(24): 2513-2520, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-32812371

RESUMO

Combined photochemical arylation, "nuisance effect" (SN Ar) reaction sequences have been employed in the design of small arrays for immediate deployment in medium-throughput X-ray protein-ligand structure determination. Reactions were deliberately allowed to run "out of control" in terms of selectivity; for example the ortho-arylation of 2-phenylpyridine gave five products resulting from mono- and bisarylations combined with SN Ar processes. As a result, a number of crystallographic hits against NUDT7, a key peroxisomal CoA ester hydrolase, have been identified.


Assuntos
Derivados de Benzeno/síntese química , Inibidores Enzimáticos/síntese química , Bibliotecas de Moléculas Pequenas/síntese química , Derivados de Benzeno/metabolismo , Catálise , Técnicas de Química Sintética/métodos , Complexos de Coordenação/química , Cristalografia por Raios X , Desenho de Fármacos , Inibidores Enzimáticos/metabolismo , Estudos de Viabilidade , Humanos , Paládio/química , Estudo de Prova de Conceito , Ligação Proteica , Piridinas/síntese química , Piridinas/metabolismo , Pirofosfatases/metabolismo , Pirrolidinonas/síntese química , Pirrolidinonas/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Nudix Hidrolases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA