Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Exp Appl Acarol ; 80(3): 363-380, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32072355

RESUMO

The two common species of house dust mites (HDMs), Dermatophagoides farinae and D. pteronyssinus, are major sources of allergens in human dwellings worldwide. Many allergens from HDMs have been described, but their extracts vary in immunogens. Mite strains may differ in their microbiomes, which affect mite allergen expression and contents of bacterial endotoxins. Some bacteria, such as the intracellular symbiont Cardinium, can affect both the sex ratio and biochemical pathways of mites, resulting in abundance variations of mite allergens/immunogens. Here, we investigated the bacterial microbiomes of D. farinae and D. pteronyssinus males and females using barcode 16S rDNA sequencing, qPCR, and genomic data analysis. We found a single species of Cardinium associated with D. farinae strains from the USA, China and Europe. Cardinium had high abundance relative to other bacterial taxa and represented 99% of all bacterial DNA reads from female mites from the USA. Cardinium was also abundant with respect to the number of host cells-we estimated 10.4-11.8 cells of Cardinium per single female mite cell. In a European D. farinae strain, Cardinium was more prevalent in females than in males (representing 92 and 67% of all bacterial taxa in females and males, respectively). In contrast, D. pteronyssinus lacked any Cardinium species, and the microbiomes of male and female mites were similar. We produced a Cardinium genome assembly (1.48 Mb; GenBank: PRJNA555788, GCA_007559345.1) associated with D. farinae. The ascertained ubiquity and abundance of Cardinium strongly suggest that this intracellular bacterium plays an important biological role in D. farinae.


Assuntos
Bacteroidetes/isolamento & purificação , Dermatophagoides farinae/microbiologia , Genoma Bacteriano , Animais , China , Dermatophagoides pteronyssinus/microbiologia , Europa (Continente) , Feminino , Masculino , Microbiota , Simbiose , Estados Unidos , Sequenciamento Completo do Genoma
2.
Insect Sci ; 27(2): 266-275, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30102013

RESUMO

The interaction of house dust mites (HDM) and microorganisms is the key factor in the survival of these mites in human-made environments. Spent growth medium (SPGM) provides the rest of the diet, along with dead mite bodies and microorganisms. SPGM represents a source of microorganisms for the recolonization of mite food and the mite digestive tract. An experiment was performed to observe how adding SPGM to the HDM diet affects HDM population growth, the microbiome composition and the microbial respiration in microcosms. We analyzed American house dust mite (Dermatophagoides farinae) and European house dust mite (Dermatophagoides pteronyssinus) originating from control diets and diets treated with an extract of SPGM from 1- and 3-month-old mite cultures. The microbiome was described using 16S and 18S barcode sequencing. The composition of the bacterial and fungal microbiomes differed between the HDM species, but the SPGM treatment influenced only the bacterial profile of D. farinae. In the D. farinae microbiome of specimens on SPGM-treated diets compared to those of the control situation, the Lactobacillus profile decreased, while the Cardinium, Staphylococcus, Acinetobacter, and Sphingomonas profiles increased. The addition of SPGM extract decreased the microbial respiration in the microcosms with and without mites in almost all cases. Adding SPGM did not influence the population growth of D. farinae, but it had a variable effect on D. pteronyssinus. The results indicated that the HDM are marginally influenced by the microorganisms in their feces.


Assuntos
Dermatophagoides pteronyssinus/microbiologia , Microbiota , Animais , Meios de Cultura , Feminino , Aptidão Genética , Masculino , Crescimento Demográfico
3.
Exp Appl Acarol ; 61(4): 431-47, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23783892

RESUMO

Dust mites produce bacteriolytic enzymes, one of which belongs to the NlpC/P60 superfamily comprising bacterial and fungal proteins. Whether this enzyme is derived from the mite or from mite-associated microbes is unclear. To this end, the bacteriology of mites per se, and carpet and mattress dust from a group of asthmatic children and their parents was investigated. Dust from parents' and children's mattresses yielded significantly more colony forming units compared with dust from their corresponding carpets. Zymography demonstrated some dusts contained bacteriolytic enzymes, and in nine of the twelve dust samples from three of five houses examined, a prominent bacteriolytic band was obtained that corresponded to the mite band, although in one home, other lytic bands were detected. Fifty bacterial isolates were obtained from surface-sterilised, commercially obtained Dermatophagoides pteronyssinus. 16S rRNA, tuf and rpoB gene sequencing of nine Gram-positive isolates identified them as Bacillus cereus, B. licheniformis, Staphylococcus aureus, S. epidermidis, S. capitis and Micrococcus luteus, known human skin commensals. 16S rRNA sequence homologies of four of the nine isolates identified as B. licheniformis formed a distinct phylogenetic cluster. All species secreted lytic enzymes during culture although the lytic profiles obtained differed between the rods and the cocci, and none of the bands detected corresponded to those observed in dust or mites. In conclusion, mites harbour a variety of bacterial species often associated with human skin and house dusts contain bacteriolytic enzymes that may be mite-derived. The identification of a novel cluster of B. licheniformis isolates suggests an ecological adaptation to laboratory-reared D. pteronyssinus. It remains to be determined whether the previously described mite-associated 14 K lytic enzyme is derived from a microbial source.


Assuntos
Bacillus/isolamento & purificação , Dermatophagoides pteronyssinus/microbiologia , Pyroglyphidae/microbiologia , Pele/microbiologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA