Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
1.
Cell Commun Signal ; 22(1): 348, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961488

RESUMO

BACKGROUND: Primary cilia on the surface of eukaryotic cells serve as sensory antennas for the reception and transmission in various cell signaling pathways. They are dynamic organelles that rapidly form during differentiation and cell cycle exit. Defects in these organelles cause a group of wide-ranging disorders called ciliopathies. Tonicity-responsive enhancer-binding protein (TonEBP) is a pleiotropic stress protein that mediates various physiological and pathological cellular responses. TonEBP is well-known for its role in adaptation to a hypertonic environment, to which primary cilia have been reported to contribute. Furthermore, TonEBP is involved in a wide variety of other signaling pathways, such as Sonic Hedgehog and WNT signaling, that promote primary ciliogenesis, suggesting a possible regulatory role. However, the functional relationship between TonEBP and primary ciliary formation remains unclear. METHODS: TonEBP siRNAs and TonEBP-mCherry plasmids were used to examine their effects on cell ciliation rates, assembly and disassembly processes, and regulators. Serum starvation was used as a condition to induce ciliogenesis. RESULTS: We identified a novel pericentriolar localization for TonEBP. The results showed that TonEBP depletion facilitates the formation of primary cilia, whereas its overexpression results in fewer ciliated cells. Moreover, TonEBP controlled the expression and activity of aurora kinase A, a major negative regulator of ciliogenesis. Additionally, TonEBP overexpression inhibited the loss of CP110 from the mother centrioles during the early stages of primary cilia assembly. Finally, TonEBP regulated the localization of PCM1 and AZI1, which are necessary for primary cilia formation. CONCLUSIONS: This study proposes a novel role for TonEBP as a pericentriolar protein that regulates the integrity of centriolar satellite components. This regulation has shown to have a negative effect on ciliogenesis. Investigations into cilium assembly and disassembly processes suggest that TonEBP acts upstream of the aurora kinase A - histone deacetylase 6 signaling pathway and affects basal body formation to control ciliogenesis. Taken together, our data proposes previously uncharacterized regulation of primary cilia assembly by TonEBP.


Assuntos
Aurora Quinase A , Centríolos , Cílios , Cílios/metabolismo , Humanos , Aurora Quinase A/metabolismo , Aurora Quinase A/genética , Centríolos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Desacetilase 6 de Histona/metabolismo , Desacetilase 6 de Histona/genética , Animais , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética
2.
Sci Rep ; 14(1): 14666, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918466

RESUMO

Due to its involvement in physiological and pathological processes, histone deacetylase 6 (HDAC6) is considered a promising pharmaceutical target for several neurological manifestations. However, the exact regulatory role of HDAC6 in the central nervous system (CNS) is still not fully understood. Hence, using a semi-automated literature screening technique, we systematically collected HDAC6-protein interactions that are experimentally validated and reported in the CNS. The resulting HDAC6 network encompassed 115 HDAC6-protein interactions divided over five subnetworks: (de)acetylation, phosphorylation, protein complexes, regulatory, and aggresome-autophagy subnetworks. In addition, 132 indirect interactions identified through HDAC6 inhibition were collected and categorized. Finally, to display the application of our HDAC6 network, we mapped transcriptomics data of Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis on the network and highlighted that in the case of Alzheimer's disease, alterations predominantly affect the HDAC6 phosphorylation subnetwork, whereas differential expression within the deacetylation subnetwork is observed across all three neurological disorders. In conclusion, the HDAC6 network created in the present study is a novel and valuable resource for the understanding of the HDAC6 regulatory mechanisms, thereby providing a framework for the integration and interpretation of omics data from neurological disorders and pharmacodynamic assessments.


Assuntos
Desacetilase 6 de Histona , Mapas de Interação de Proteínas , Desacetilase 6 de Histona/metabolismo , Desacetilase 6 de Histona/genética , Humanos , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Fosforilação , Acetilação , Doença de Parkinson/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia
3.
Exp Cell Res ; 440(1): 114126, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38857838

RESUMO

Microtubules are components of the cytoskeleton that perform essential functions in eukaryotes, such as those related to shape change, motility and cell division. In this context some characteristics of these filaments are essential, such as polarity and dynamic instability. In trypanosomatids, microtubules are integral to ultrastructure organization, intracellular transport and mitotic processes. Some species of trypanosomatids co-evolve with a symbiotic bacterium in a mutualistic association that is marked by extensive metabolic exchanges and a coordinated division of the symbiont with other cellular structures, such as the nucleus and the kinetoplast. It is already established that the bacterium division is microtubule-dependent, so in this work, it was investigated whether the dynamism and remodeling of these filaments is capable of affecting the prokaryote division. To this purpose, Angomonas deanei was treated with Trichostatin A (TSA), a deacetylase inhibitor, and mutant cells for histone deacetylase 6 (HDAC6) were obtained by CRISPR-Cas9. A decrease in proliferation, an enhancement in tubulin acetylation, as well as morphological and ultrastructural changes, were observed in TSA-treated protozoa and mutant cells. In both cases, symbiont filamentation occurred, indicating that prokaryote cell division is dependent on microtubule dynamism.


Assuntos
Divisão Celular , Microtúbulos , Simbiose , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Microtúbulos/efeitos dos fármacos , Trypanosomatina/genética , Trypanosomatina/metabolismo , Trypanosomatina/ultraestrutura , Trypanosomatina/fisiologia , Ácidos Hidroxâmicos/farmacologia , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/genética , Bactérias/metabolismo , Bactérias/genética , Acetilação , Inibidores de Histona Desacetilases/farmacologia , Desacetilase 6 de Histona/metabolismo , Desacetilase 6 de Histona/genética , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura
4.
Life Sci Alliance ; 7(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38719753

RESUMO

We recently reported that growth/differentiation factor 15 (GDF15) and its receptor GDNF family receptor alpha-like (GFRAL) are expressed in the periventricular germinal epithelium thereby regulating apical progenitor proliferation. However, the mechanisms are unknown. We now found GFRAL in primary cilia and altered cilia morphology upon GDF15 ablation. Mutant progenitors also displayed increased histone deacetylase 6 (Hdac6) and ciliary adenylate cyclase 3 (Adcy3) transcript levels. Consistently, microtubule acetylation, endogenous sonic hedgehog (SHH) activation and ciliary ADCY3 were all affected in this group. Application of exogenous GDF15 or pharmacological antagonists of either HDAC6 or ADCY3 similarly normalized ciliary morphology, proliferation and SHH signalling. Notably, Gdf15 ablation affected Hdac6 expression and cilia length only in the mutant periventricular niche, in concomitance with ciliary localization of GFRAL. In contrast, in the hippocampus, where GFRAL was not expressed in the cilium, progenitors displayed altered Adcy3 expression and SHH signalling, but Hdac6 expression, cilia morphology and ciliary ADCY3 levels remained unchanged. Thus, ciliary signalling underlies the effect of GDF15 on primary cilia elongation and proliferation in apical progenitors.


Assuntos
Adenilil Ciclases , Proliferação de Células , Cílios , Proteínas Hedgehog , Desacetilase 6 de Histona , Transdução de Sinais , Animais , Camundongos , Acetilação , Adenilil Ciclases/metabolismo , Adenilil Ciclases/genética , Proliferação de Células/genética , Cílios/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Desacetilase 6 de Histona/metabolismo , Desacetilase 6 de Histona/genética , Camundongos Knockout , Células-Tronco/metabolismo , Células-Tronco/citologia
5.
Theranostics ; 14(6): 2345-2366, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646645

RESUMO

Rationale: Primordial follicles are limited in number and cannot be regenerated, dormant primordial follicles cannot be reversed once they enter a growth state. Therefore, the length of the female reproductive lifespan depends on the orderly progression and selective activation of primordial follicles, the mechanism of which remains unclear. Methods: We used human ovarian cortical biopsy specimens, granulosa cells from diminished ovarian reserve (DOR) patients, Hdac6-overexpressing transgenic mouse model, and RNA sequencing to analyze the crucial roles of histone deacetylase 6 (HDAC6) in fertility preservation and primordial follicle activation. Results: In the present study, we found that HDAC6 was highly expressed in most dormant primordial follicles. The HDAC6 expression was reduced accompanying reproductive senescence in human and mouse ovaries. Overexpression of Hdac6 delayed the rate of primordial follicle activation, thereby prolonging the mouse reproductive lifespan. Short-term inhibition of HDAC6 promoted primordial follicle activation and follicular development in humans and mice. Mechanism studies revealed that HDAC6 directly interacted with NGF, reducing acetylation modification of NGF and thereby accelerating its ubiquitination degradation. Consequently, the reduced NGF protein level maintained the dormancy of primordial follicles. Conclusions: The physiological significance of the high expression of HDAC6 in most primordial follicles is to reduce NGF expression and prevent primordial follicle activation to maintain female fertility. Reduced HDAC6 expression increases NGF expression in primordial follicles, activating their development and contributing to reproduction. Our study provides a clinical reference value for fertility preservation.


Assuntos
Desacetilase 6 de Histona , Camundongos Transgênicos , Fator de Crescimento Neural , Folículo Ovariano , Ubiquitinação , Animais , Feminino , Humanos , Camundongos , Acetilação , Células da Granulosa/metabolismo , Desacetilase 6 de Histona/metabolismo , Desacetilase 6 de Histona/genética , Fator de Crescimento Neural/metabolismo , Folículo Ovariano/metabolismo
6.
J Peripher Nerv Syst ; 29(2): 213-220, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38551018

RESUMO

BACKGROUND: Inhibition of HDAC6 has been proposed as a broadly applicable therapeutic strategy for Charcot-Marie-Tooth disease (CMT). Inhibition of HDAC6 increases the acetylation of proteins important in axonal trafficking, such as α-tubulin and Miro, and has been shown to be efficacious in several preclinical studies using mouse models of CMT. AIMS: Here, we sought to expand on previous preclinical studies by testing the effect of genetic deletion of Hdac6 on mice carrying a humanized knockin allele of Gars1, a model of CMT-type 2D. METHODS: Gars1ΔETAQ mice were bred to an Hdac6 knockout strain, and the resulting offspring were evaluated for clinically relevant outcomes. RESULTS: The genetic deletion of Hdac6 increased α-tubulin acetylation in the sciatic nerves of both wild-type and Gars1ΔETAQ mice. However, when tested at 5 weeks of age, the Gars1ΔETAQ mice lacking Hdac6 showed no changes in body weight, muscle atrophy, grip strength or endurance, sciatic motor nerve conduction velocity, compound muscle action potential amplitude, or peripheral nerve histopathology compared to Gars1ΔETAQ mice with intact Hdac6. INTERPRETATION: Our results differ from those of two previous studies that demonstrated the benefit of the HDAC6 inhibitor tubastatin A in mouse models of CMT2D. While we cannot fully explain the different outcomes, our results offer a counterexample to the benefit of inhibiting HDAC6 in CMT2D, suggesting additional research is necessary.


Assuntos
Doença de Charcot-Marie-Tooth , Modelos Animais de Doenças , Desacetilase 6 de Histona , Animais , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/fisiopatologia , Desacetilase 6 de Histona/genética , Camundongos , Humanos , Nervo Isquiático , Camundongos Knockout , Deleção de Genes , Masculino , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/genética , Glicina-tRNA Ligase/genética , Condução Nervosa/fisiologia , Condução Nervosa/efeitos dos fármacos
7.
Virulence ; 15(1): 2327096, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38466143

RESUMO

Legionella pneumophila (L. pneumophila) is a prevalent pathogenic bacterium responsible for significant global health concerns. Nonetheless, the precise pathogenic mechanisms of L. pneumophila have still remained elusive. Autophagy, a direct cellular response to L. pneumophila infection and other pathogens, involves the recognition and degradation of these invaders in lysosomes. Histone deacetylase 6 (HDAC6), a distinctive member of the histone deacetylase family, plays a multifaceted role in autophagy regulation. This study aimed to investigate the role of HDAC6 in macrophage autophagy via the autophagolysosomal pathway, leading to alleviate L. pneumophila-induced pneumonia. The results revealed a substantial upregulation of HDAC6 expression level in murine lung tissues infected by L. pneumophila. Notably, mice lacking HDAC6 exhibited a protective response against L. pneumophila-induced pulmonary tissue inflammation, which was characterized by the reduced bacterial load and diminished release of pro-inflammatory cytokines. Transcriptomic analysis has shed light on the regulatory role of HDAC6 in L. pneumophila infection in mice, particularly through the autophagy pathway of macrophages. Validation using L. pneumophila-induced macrophages from mice with HDAC6 gene knockout demonstrated a decrease in cellular bacterial load, activation of the autophagolysosomal pathway, and enhancement of cellular autophagic flux. In summary, the findings indicated that HDAC6 knockout could lead to the upregulation of p-ULK1 expression level, promoting the autophagy-lysosomal pathway, increasing autophagic flux, and ultimately strengthening the bactericidal capacity of macrophages. This contributes to the alleviation of L. pneumophila-induced pneumonia.


Assuntos
Legionella pneumophila , Legionella , Doença dos Legionários , Pneumonia , Animais , Camundongos , Autofagia , Desacetilase 6 de Histona/genética , Legionella pneumophila/genética , Doença dos Legionários/genética , Macrófagos
8.
Nat Commun ; 15(1): 1352, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409164

RESUMO

Heart failure with preserved ejection fraction (HFpEF) poses therapeutic challenges due to the limited treatment options. Building upon our previous research that demonstrates the efficacy of histone deacetylase 6 (HDAC6) inhibition in a genetic cardiomyopathy model, we investigate HDAC6's role in HFpEF due to their shared mechanisms of inflammation and metabolism. Here, we show that inhibiting HDAC6 with TYA-018 effectively reverses established heart failure and its associated symptoms in male HFpEF mouse models. Additionally, in male mice lacking Hdac6 gene, HFpEF progression is delayed and they are resistant to TYA-018's effects. The efficacy of TYA-018 is comparable to a sodium-glucose cotransporter 2 (SGLT2) inhibitor, and the combination shows enhanced effects. Mechanistically, TYA-018 restores gene expression related to hypertrophy, fibrosis, and mitochondrial energy production in HFpEF heart tissues. Furthermore, TYA-018 also inhibits activation of human cardiac fibroblasts and enhances mitochondrial respiratory capacity in cardiomyocytes. In this work, our findings show that HDAC6 impacts on heart pathophysiology and is a promising target for HFpEF treatment.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Animais , Humanos , Masculino , Camundongos , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/diagnóstico , Desacetilase 6 de Histona/genética , Miócitos Cardíacos/metabolismo , Volume Sistólico/fisiologia
9.
Cancer Lett ; 586: 216666, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38311053

RESUMO

Glioblastoma (GBM) is a highly aggressive and treatment-resistant brain tumor, necessitating novel therapeutic strategies. In this study, we present a mechanistic breakthrough by designing and evaluating a series of abiraterone-installed hydroxamic acids as potential dual inhibitors of CYP17A1 and HDAC6 for GBM treatment. We established the correlation of CYP17A1/HDAC6 overexpression with tumor recurrence and temozolomide resistance in GBM patients. Compound 12, a dual inhibitor, demonstrated significant anti-GBM activity in vitro, particularly against TMZ-resistant cell lines. Mechanistically, compound 12 induced apoptosis, suppressed recurrence-associated genes, induced oxidative stress and initiated DNA damage response. Furthermore, molecular modeling studies confirmed its potent inhibitory activity against CYP17A1 and HDAC6. In vivo studies revealed that compound 12 effectively suppressed tumor growth in xenograft and orthotopic mouse models without inducing significant adverse effects. These findings highlight the potential of dual CYP17A1 and HDAC6 inhibition as a promising strategy for overcoming treatment resistance in GBM and offer new hope for improved therapeutic outcomes.


Assuntos
Androstenos , Neoplasias Encefálicas , Glioblastoma , Esteroide 17-alfa-Hidroxilase , Animais , Humanos , Camundongos , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Dano ao DNA , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Desacetilase 6 de Histona/genética , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Estresse Oxidativo , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
10.
J Biol Chem ; 300(2): 105638, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199570

RESUMO

The inflammasome is a large multiprotein complex that assembles in the cell cytoplasm in response to stress or pathogenic infection. Its primary function is to defend the cell and promote the secretion of pro-inflammatory cytokines, including IL-1ß and IL-18. Previous research has shown that in immortalized bone marrow-derived macrophages (iBMDMs) inflammasome assembly is dependent on the deacetylase HDAC6 and the aggresome processing pathway (APP), a cellular pathway involved in the disposal of misfolded proteins. Here we used primary BMDMs from mice in which HDAC6 is ablated or impaired and found that inflammasome activation was largely normal. We also used human peripheral blood mononuclear cells and monocyte cell lines expressing a synthetic protein blocking the HDAC6-ubiquitin interaction and impairing the APP and found that inflammasome activation was moderately affected. Finally, we used a novel HDAC6 degrader and showed that inflammasome activation was partially impaired in human macrophage cell lines with depleted HDAC6. Our results therefore show that HDAC6 importance in inflammasome activation is context-dependent.


Assuntos
Inflamassomos , Leucócitos Mononucleares , Animais , Humanos , Camundongos , Linhagem Celular , Desacetilase 6 de Histona/genética , Desacetilase 6 de Histona/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Leucócitos Mononucleares/metabolismo , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transporte Proteico/fisiologia
11.
Adv Sci (Weinh) ; 11(6): e2305068, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38088586

RESUMO

Primary cilia are conserved organelles in most mammalian cells, acting as "antennae" to sense external signals. Maintaining a physiological cilium length is required for cilium function. MicroRNAs (miRNAs) are potent gene expression regulators, and aberrant miRNA expression is closely associated with ciliopathies. However, how miRNAs modulate cilium length remains elusive. Here, using the calcium-shock method and small RNA sequencing, a miRNA is identified, namely, miR-669a-5p, that is highly expressed in the cilia-enriched noncellular fraction. It is shown that miR-669a-5p promotes cilium elongation but not cilium formation in cultured cells. Mechanistically, it is demonstrated that miR-669a-5p represses ras-GTPase-activating protein SH3-domain-binding protein (G3BP) expression to inhibit histone deacetylase 6 (HDAC6) expression, which further upregulates A-kinase anchor protein 12 (AKAP12) expression. This effect ultimately blocks cilia disassembly and leads to greater cilium length, which can be restored to wild-type lengths by either upregulating HDAC6 or downregulating AKAP12. Collectively, these results elucidate a previously unidentified miR-669a-5p/G3BP/HDAC6/AKAP12 signaling pathway that regulates cilium length, providing potential pharmaceutical targets for treating ciliopathies.


Assuntos
Ciliopatias , MicroRNAs , Animais , Desacetilase 6 de Histona/genética , Desacetilase 6 de Histona/metabolismo , Cílios/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Ciliopatias/metabolismo , Mamíferos/metabolismo
12.
Kaohsiung J Med Sci ; 40(1): 23-34, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37916740

RESUMO

Docetaxel-based chemotherapy has generally been considered as one of the effective treatments for castration-resistant prostate cancer (PCa). However, clinical treatment with docetaxel often encounters a number of undesirable effects, including drug resistance. Tubulin isoforms have been previously examined for their resistance to docetaxel in many cancers, but their real mechanisms remained unclear. In this study, a series of docetaxel-resistant PC/DX cell sublines were established by chronically exposing PC3 to progressively increased concentrations of docetaxel. Western blotting results showed significantly higher expression of acetyl-tubulin, α-tubulin, ß-tubulin, γ-tubulin, and ßIII-tubulin in PC/DX25 than in parental PC3 cells. PC/DX25 with greater resistance to docetaxel had higher levels of acetyl-tubulin and mitotic centromere-associated kinesin (MCAK) than PC3 cells. This study found that docetaxel induced the expression of acetyl-tubulin and MCAK in PC3 cells at a dose- and time-dependent manner. Both mRNA and protein levels of histone deacetylase 6 (HDAC6) were significantly decreased in PC/DX25 compared with PC3 cells. PC3 increased the resistance to docetaxel by HDAC6 knockdown and Tubastatin A (HDAC6 inhibitor). Conversely, PC/DX25 reversed the sensitivity to docetaxel by MCAK knockdown. Notably, flow cytometry analysis revealed that MCAK knockdown induced significantly sub G1 fraction in PC/DX cells. Overexpression of polo-like kinase-1 increased the cell survival rate and resistance to docetaxel in PC3 cells. Moreover, epidermal growth factor receptor (EGFR) activation induced the upregulation of acetyl-tubulin in docetaxel-resistant PCa cells. These findings demonstrated that the EGFR-mediated upregulated expression of acetyl-tubulin played an important role in docetaxel-resistant PCa.


Assuntos
Neoplasias da Próstata , Tubulina (Proteína) , Masculino , Humanos , Docetaxel/farmacologia , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Regulação para Cima , Regulação para Baixo , Desacetilase 6 de Histona/genética , Desacetilase 6 de Histona/metabolismo , Desacetilase 6 de Histona/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo
13.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119628, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37949303

RESUMO

Endogenous electric fields (EFs) have been demonstrated to facilitate wound healing by directing the migration of epidermal cells. Despite the identification of numerous molecules and signaling pathways that are crucial for the directional migration of keratinocytes under EFs, the underlying molecular mechanisms remain undefined. Previous studies have indicated that microtubule (MT) acetylation is linked to cell migration, while Paxillin exerts a significant influence on cell motility. Therefore, we postulated that Paxillin could enhance EF-induced directional migration of keratinocytes by modulating MT acetylation. In the present study, we observed that EFs (200 mV/mm) induced migration of human immortalized epidermal cells (HaCaT) towards the anode, while upregulating Paxillin, downregulating HDAC6, and increasing the level of microtubule acetylation. Our findings suggested that Paxillin plays a pivotal role in inhibiting HDAC6-mediated microtubule acetylation during directional migration under EF regulation. Conversely, downregulation of Paxillin decreased microtubule acetylation and electrotaxis of epidermal cells by promoting HDAC6 expression, and this effect could be reversed by the addition of tubacin, an HDAC6-specific inhibitor. Furthermore, we observed that EFs also mediated the polarization of Paxillin and acetylated α-tubulin, which is critical for directional migration. In conclusion, our study revealed that MT acetylation in EF-guided keratinocyte migration is regulated by the Paxillin/HDAC6 signaling pathway, providing a novel theoretical foundation for the molecular mechanism of EF-guided directional migration of keratinocytes.


Assuntos
Queratinócitos , Microtúbulos , Humanos , Paxilina/metabolismo , Desacetilase 6 de Histona/genética , Desacetilase 6 de Histona/metabolismo , Acetilação , Microtúbulos/metabolismo , Queratinócitos/metabolismo
14.
Nat Commun ; 14(1): 6547, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848409

RESUMO

PACS1 syndrome is a neurodevelopmental disorder (NDD) caused by a recurrent de novo missense mutation in PACS1 (p.Arg203Trp (PACS1R203W)). The mechanism by which PACS1R203W causes PACS1 syndrome is unknown, and no curative treatment is available. Here, we use patient cells and PACS1 syndrome mice to show that PACS1 (or PACS-1) is an HDAC6 effector and that the R203W substitution increases the PACS1/HDAC6 interaction, aberrantly potentiating deacetylase activity. Consequently, PACS1R203W reduces acetylation of α-tubulin and cortactin, causing the Golgi ribbon in hippocampal neurons and patient-derived neural progenitor cells (NPCs) to fragment and overpopulate dendrites, increasing their arborization. The dendrites, however, are beset with varicosities, diminished spine density, and fewer functional synapses, characteristic of NDDs. Treatment of PACS1 syndrome mice or patient NPCs with PACS1- or HDAC6-targeting antisense oligonucleotides, or HDAC6 inhibitors, restores neuronal structure and synaptic transmission in prefrontal cortex, suggesting that targeting PACS1R203W/HDAC6 may be an effective therapy for PACS1 syndrome.


Assuntos
Histona Desacetilases , Tubulina (Proteína) , Humanos , Camundongos , Animais , Desacetilase 6 de Histona/genética , Desacetilase 6 de Histona/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Tubulina (Proteína)/metabolismo , Neurônios/metabolismo , Processamento de Proteína Pós-Traducional , Síndrome , Acetilação , Inibidores de Histona Desacetilases/farmacologia , Proteínas de Transporte Vesicular/genética
15.
EMBO Rep ; 24(10): e56009, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37642636

RESUMO

Hematopoietic stem and progenitor cells (HSPCs) are cells mainly present in the bone marrow and capable of forming mature blood cells. However, the epigenetic mechanisms governing the homeostasis of HSPCs remain elusive. Here, we demonstrate an important role for histone deacetylase 6 (HDAC6) in regulating this process. Our data show that the percentage of HSPCs in Hdac6 knockout mice is lower than in wild-type mice due to decreased HSPC proliferation. HDAC6 interacts with isocitrate dehydrogenase 1 (IDH1) and deacetylates IDH1 at lysine 233. The deacetylation of IDH1 inhibits its catalytic activity and thereby decreases the 5-hydroxymethylcytosine level of ten-eleven translocation 2 (TET2) target genes, changing gene expression patterns to promote the proliferation of HSPCs. These findings uncover a role for HDAC6 and IDH1 in regulating the homeostasis of HSPCs and may have implications for the treatment of hematological diseases.


Assuntos
Medula Óssea , Células-Tronco Hematopoéticas , Animais , Camundongos , Desacetilase 6 de Histona/genética , Desacetilase 6 de Histona/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células da Medula Óssea/metabolismo , Homeostase
16.
Sci Rep ; 13(1): 12433, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528157

RESUMO

Low-grade and secondary high-grade gliomas frequently contain mutations in the IDH1 or IDH2 metabolic enzymes that are hypothesized to drive tumorigenesis by inhibiting many of the chromatin-regulating enzymes that regulate DNA structure. Histone deacetylase inhibitors are promising anti-cancer agents and have already been used in clinical trials. However, a clear understanding of their mechanism or gene targets is lacking. In this study, the authors genetically dissect patient-derived IDH1 mutant cultures to determine which HDAC enzymes drive growth in IDH1 mutant gliomas. A panel of patient-derived gliomasphere cell lines (2 IDH1 mutant lines, 3 IDH1 wildtype lines) were subjected to a drug-screen of epigenetic modifying drugs from different epigenetic classes. The effect of LBH (panobinostat) on gene expression and chromatin structure was tested on patient-derived IDH1 mutant lines. The role of each of the highly expressed HDAC enzymes was molecularly dissected using lentiviral RNA interference knock-down vectors and a patient-derived IDH1 mutant in vitro model of glioblastoma (HK252). These results were then confirmed in an in vivo xenotransplant model (BT-142). The IDH1 mutation leads to gene down-regulation, DNA hypermethylation, increased DNA accessibility and H3K27 hypo-acetylation in two distinct IDH1 mutant over-expression models. The drug screen identified histone deacetylase inhibitors (HDACi) and panobinostat (LBH) more specifically as the most selective compounds to inhibit growth in IDH1 mutant glioma lines. Of the eleven annotated HDAC enzymes (HDAC1-11) only six are expressed in IDH1 mutant glioma tissue samples and patient-derived gliomasphere lines (HDAC1-4, HDAC6, and HDAC9). Lentiviral knock-down experiments revealed that HDAC1 and HDAC6 are the most consistently essential for growth both in vitro and in vivo and target very different gene modules. Knock-down of HDAC1 or HDAC6 in vivo led to a more circumscribed less invasive tumor. The gene dysregulation induced by the IDH1 mutation is wide-spread and only partially reversible by direct IDH1 inhibition. This study identifies HDAC1 and HDAC6 as important and drug-targetable enzymes that are necessary for growth and invasiveness in IDH1 mutant gliomas.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioma , Humanos , Panobinostat/farmacologia , Panobinostat/uso terapêutico , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Glioma/metabolismo , Antineoplásicos/uso terapêutico , Cromatina , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Mutação , Neoplasias Encefálicas/patologia , Histona Desacetilase 1/genética , Desacetilase 6 de Histona/genética
17.
Plant Physiol ; 193(4): 2711-2733, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37607253

RESUMO

Understanding the molecular regulation of plant response to drought is the basis of drought-resistance improvement through molecular strategies. Here, we characterized apple (Malus × domestica) histone deacetylase 6 (MdHDA6), which negatively regulates apple drought tolerance by catalyzing deacetylation on histones associated with drought-responsive genes. Transgenic apple plants over-expressing MdHDA6 were less drought-tolerant, while those with down-regulated MdHDA6 expression were more drought-resistant than nontransgenic apple plants. Transcriptomic and histone 3 acetylation (H3ac) Chromatin immunoprecipitation-seq analyses indicated that MdHDA6 could facilitate histone deacetylation on the drought-responsive genes, repressing gene expression. Moreover, MdHDA6 interacted with the abscisic acid (ABA) signaling transcriptional factor, ABSCISIC ACID-INSENSITIVE 5 (MdABI5), forming the MdHDA6-MdABI5 complex. Interestingly, MdHDA6 facilitated histone deacetylation on the drought-responsive genes regulated by MdABI5, resulting in gene repression. Furthermore, a dual-Luc experiment showed that MdHDA6 could repress the regulation of a drought-responsive gene, RESPONSIVE TO DESICCATION 29A (MdRD29A) activated by MdABI5. On the one hand, MdHDA6 can facilitate histone deacetylation and gene repression on the positive drought-responsive genes to negatively regulate drought tolerance in apple. On the other hand, MdHDA6 directly interacts with MdABI5 and represses the expression of genes downstream of MdABI5 via histone deacetylation around these genes to reduce drought tolerance. Our study uncovers a different drought response regulatory mechanism in apple based on the MdHDA6-MdABI5 complex function and provides the molecular basis for drought-resistance improvement in apple.


Assuntos
Malus , Proteínas de Plantas , Ácido Abscísico/metabolismo , Resistência à Seca , Secas , Regulação da Expressão Gênica de Plantas , Desacetilase 6 de Histona/genética , Histonas/genética , Histonas/metabolismo , Malus/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética
18.
Nucleic Acids Res ; 51(17): 9166-9182, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37503842

RESUMO

Histone deacetylase 6 (HDAC6) mediates DNA damage signaling by regulating the mismatch repair and nucleotide excision repair pathways. Whether HDAC6 also mediates DNA double-strand break (DSB) repair is unclear. Here, we report that HDAC6 negatively regulates DSB repair in an enzyme activity-independent manner. In unstressed cells, HDAC6 interacts with H2A/H2A.X to prevent its interaction with the E3 ligase RNF168. Upon sensing DSBs, RNF168 rapidly ubiquitinates HDAC6 at lysine 116, leading to HDAC6 proteasomal degradation and a restored interaction between RNF168 and H2A/H2A.X. H2A/H2A.X is ubiquitinated by RNF168, precipitating the recruitment of DSB repair factors (including 53BP1 and BRCA1) to chromatin and subsequent DNA repair. These findings reveal novel regulatory machinery based on an HDAC6-RNF168 axis that regulates the H2A/H2A.X ubiquitination status. Interfering with this axis might be leveraged to disrupt a key mechanism of cancer cell resistance to genotoxic damage and form a potential therapeutic strategy for cancer.


Assuntos
Reparo do DNA , Humanos , Linhagem Celular Tumoral , Dano ao DNA , Desacetilase 6 de Histona/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
19.
Pancreatology ; 23(6): 630-641, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37460341

RESUMO

BACKGROUND: Pancreatic cancer is a common digestive system cancer and one of the most lethal malignancies worldwide. Ataxin-3 (ATXN3) protein is a deubiquitinating enzyme implicated in the occurrence of diverse human cancers. The potential role of ATXN3 in pancreatic cancer still remains unclear. METHODS: ATXN3 was screened from differentially-upregulated genes of GSE71989, GSE27890 and GSE40098 datasets. The mRNA and protein levels of ATXN3 was evaluated in pancreatic cancer samples and cell lines. Through the gain- and loss-of-function experiments, the effects of ATXN3 on cell proliferation, migration and invasion were evaluated using cell counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU) staining, wound healing and Transwell assays. Subsequently, the interaction between ATXN3 and HDAC6 was confirmed using double immunofluorescence staining, co-immunoprecipitation (co-IP) and proximity ligation assay (PLA). The underlying mechanism of ATXN3 was determined by knockdown of HDAC6 in ATXN3-upregulated pancreatic cancer cells. The function of ATXN3 in vivo was verified through xenograft assay. RESULTS: High expression of ATXN3 was found in pancreatic cancer tissues. Increased ATXN3 expression dramatically promoted cell proliferation, migration, and invasion. The malignant phenotypes were suppressed in ATXN3-silenced pancreatic cancer cells. ATXN3 was proved to interact with HDAC6 and regulate its degradation through deubiquitination. Downregulation of HDAC6 inhibited ATXN3-induced development of pancreatic cancer cells through regulating the expression of PCNA, vimentin and E-cadherin. ATXN3 facilitated tumor growth of pancreatic cancer and increased HDAC6 expression in vivo. CONCLUSIONS: This study confirmed that ATXN3 facilitated malignant phenotypes of pancreatic cancer via reducing the ubiquitination of HDAC6.


Assuntos
Ataxina-3 , Desacetilase 6 de Histona , Neoplasias Pancreáticas , Humanos , Ataxina-3/genética , Ataxina-3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação para Baixo , Desacetilase 6 de Histona/genética , Desacetilase 6 de Histona/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas Repressoras/genética , Neoplasias Pancreáticas
20.
Int J Mol Sci ; 24(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37373121

RESUMO

Histone deacetylase 6 (HDAC6) is involved in the regulation of protein aggregation and neuroinflammation, but its role in Parkinson's disease (PD) remains controversial. In this study, Hdac6-/- mice were generated by CRISPR-Cas9 technology for exploring the effect of HDAC6 on the pathological progression of PD. We found that male Hdac6-/- mice exhibit hyperactivity and certain anxiety. In the acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice, though motor injury was slightly alleviated by HDAC6 deficiency, dopamine (DA) depletion in the striatum, the decrease in the number of DA neurons in the substantia nigra (SN) and the reduction in DA neuronal terminals were not affected. In addition, activation of glial cells and the expression of α-synuclein, as well as the levels of apoptosis-related proteins in the nigrostriatal pathway, were not changed in MPTP-injected wild-type and Hdac6-/- mice. Therefore, HDAC6 deficiency leads to moderate alterations of behaviors and Parkinson's disease pathology in mice.


Assuntos
Doença de Parkinson , Animais , Masculino , Camundongos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Desacetilase 6 de Histona/genética , Desacetilase 6 de Histona/metabolismo , Camundongos Endogâmicos C57BL , Doença de Parkinson/metabolismo , Substância Negra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA