Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
PLoS Genet ; 17(6): e1009605, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34081701

RESUMO

Homozygous mutation of the Csf1r locus (Csf1rko) in mice, rats and humans leads to multiple postnatal developmental abnormalities. To enable analysis of the mechanisms underlying the phenotypic impacts of Csf1r mutation, we bred a rat Csf1rko allele to the inbred dark agouti (DA) genetic background and to a Csf1r-mApple reporter transgene. The Csf1rko led to almost complete loss of embryonic macrophages and ablation of most adult tissue macrophage populations. We extended previous analysis of the Csf1rko phenotype to early postnatal development to reveal impacts on musculoskeletal development and proliferation and morphogenesis in multiple organs. Expression profiling of 3-week old wild-type (WT) and Csf1rko livers identified 2760 differentially expressed genes associated with the loss of macrophages, severe hypoplasia, delayed hepatocyte maturation, disrupted lipid metabolism and the IGF1/IGF binding protein system. Older Csf1rko rats developed severe hepatic steatosis. Consistent with the developmental delay in the liver Csf1rko rats had greatly-reduced circulating IGF1. Transfer of WT bone marrow (BM) cells at weaning without conditioning repopulated resident macrophages in all organs, including microglia in the brain, and reversed the mutant phenotypes enabling long term survival and fertility. WT BM transfer restored osteoclasts, eliminated osteopetrosis, restored bone marrow cellularity and architecture and reversed granulocytosis and B cell deficiency. Csf1rko rats had an elevated circulating CSF1 concentration which was rapidly reduced to WT levels following BM transfer. However, CD43hi non-classical monocytes, absent in the Csf1rko, were not rescued and bone marrow progenitors remained unresponsive to CSF1. The results demonstrate that the Csf1rko phenotype is autonomous to BM-derived cells and indicate that BM contains a progenitor of tissue macrophages distinct from hematopoietic stem cells. The model provides a unique system in which to define the pathways of development of resident tissue macrophages and their local and systemic roles in growth and organ maturation.


Assuntos
Fígado Gorduroso/genética , Macrófagos/metabolismo , Anormalidades Musculoesqueléticas/genética , Desenvolvimento Musculoesquelético/genética , Osteopetrose/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Animais , Medula Óssea/metabolismo , Medula Óssea/patologia , Transplante de Medula Óssea , Modelos Animais de Doenças , Embrião de Mamíferos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado Gorduroso/terapia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Genes Reporter , Humanos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/deficiência , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Fator de Crescimento Insulin-Like I/deficiência , Fator de Crescimento Insulin-Like I/genética , Metabolismo dos Lipídeos , Fígado/metabolismo , Fígado/patologia , Macrófagos/patologia , Masculino , Anormalidades Musculoesqueléticas/metabolismo , Anormalidades Musculoesqueléticas/patologia , Anormalidades Musculoesqueléticas/terapia , Osteopetrose/metabolismo , Osteopetrose/patologia , Osteopetrose/terapia , Ratos , Ratos Transgênicos , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/deficiência
2.
Curr Opin Genet Dev ; 69: 42-47, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33647833

RESUMO

Naturalists leading up to the early 20th century were captivated by the diversity of limb form and function and described its development in a variety of species. The advent of discoveries in genetics followed by molecular biology led to focused efforts in few 'model' species, namely mouse and chicken, to understand conserved mechanisms of limb axis specification and development of the musculoskeletal system. 'Non-traditional' species largely fell by the wayside until their recent resurgence into the spotlight with advances in next-generation sequencing technologies (NGS). In this review, we focus on how the use of NGS has provided insights into the development, loss, and diversification of amniote limbs. Coupled with advances in chromatin interrogation techniques and functional tests in vivo, NGS is opening possibilities to understand the genetic mechanisms that govern the remarkable radiation of vertebrate limb form and function.


Assuntos
Extremidades/crescimento & desenvolvimento , Variação Genética/genética , Desenvolvimento Musculoesquelético/genética , Animais , Galinhas/genética , Galinhas/crescimento & desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Sistema Musculoesquelético/metabolismo , Fenótipo , Vertebrados/genética , Vertebrados/crescimento & desenvolvimento
3.
Dev Biol ; 472: 98-114, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33484703

RESUMO

microRNAs (miRNAs) play a critical role in a variety of biological processes, including embryogenesis and the physiological functions of cells. Evolutionarily conserved microRNA-31 (miR-31) has been found to be involved in cancer, bone formation, and lymphatic development. We previously discovered that, in the sea urchin, miR-31 knockdown (KD) embryos have shortened dorsoventral connecting rods, mispatterned skeletogenic primary mesenchyme cells (PMCs) and shifted and expanded Vegf3 expression domain. Vegf3 itself does not contain miR-31 binding sites; however, we identified its upstream regulators Eve and Wnt1 to be directly suppressed by miR-31. Removal of miR-31's suppression of Eve and Wnt1 resulted in skeletal and PMC patterning defects, similar to miR-31 KD phenotypes. Additionally, removal of miR-31's suppression of Eve and Wnt1 results in an expansion and anterior shift in expression of Veg1 ectodermal genes, including Vegf3 in the blastulae. This indicates that miR-31 indirectly regulates Vegf3 expression through directly suppressing Eve and Wnt1. Furthermore, removing miR-31 suppression of Eve is sufficient to cause skeletogenic defects, revealing a novel regulatory role of Eve in skeletogenesis and PMC patterning. Overall, this study provides a proposed molecular mechanism of miR-31's regulation of skeletogenesis and PMC patterning through its cross-regulation of a Wnt signaling ligand and a transcription factor of the endodermal and ectodermal gene regulatory network.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , MicroRNAs/metabolismo , Desenvolvimento Musculoesquelético/genética , Strongylocentrotus purpuratus/embriologia , Strongylocentrotus purpuratus/genética , Proteína Wnt1/metabolismo , Animais , Animais Geneticamente Modificados , Padronização Corporal/genética , Desenvolvimento Embrionário/genética , Feminino , Técnicas de Silenciamento de Genes , Redes Reguladoras de Genes , Masculino , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Fenótipo , Transdução de Sinais/genética , Strongylocentrotus purpuratus/metabolismo , Fatores de Transcrição/metabolismo
4.
Methods Mol Biol ; 2230: 115-137, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33197012

RESUMO

The biological signals that coordinate the three-dimensional outgrowth and patterning of the vertebrate limb bud have been well delineated. These include a number of vital embryonic signaling pathways, including the fibroblast growth factor, WNT, transforming growth factor, and hedgehog. Collectively these signals converge on multiple progenitor populations to drive the formation of a variety of tissues that make up the limb musculoskeletal system, such as muscle, tendon, cartilage, stroma, and bone. The basic mechanisms regulating the commitment and differentiation of diverse limb progenitor populations has been successfully modeled in vitro using high density primary limb mesenchymal or micromass cultures. However, this approach is limited in its ability to more faithfully recapitulate the assembly of progenitors into organized tissues that span the entire musculoskeletal system. Other biological systems have benefitted from the development and availability of three-dimensional organoid cultures which have transformed our understanding of tissue development, homeostasis and regeneration. Such a system does not exist that effectively models the complexity of limb development. However, limb bud organ cultures while still necessitating the use of collected embryonic tissue have proved to be a powerful model system to elucidate the molecular underpinning of musculoskeletal development. In this methods article, the derivation and use of limb bud organ cultures from murine limb buds will be described, along with strategies to manipulate signaling pathways, examine gene expression and for longitudinal lineage tracking.


Assuntos
Hibridização In Situ/métodos , Mesoderma/crescimento & desenvolvimento , Desenvolvimento Musculoesquelético/genética , Técnicas de Cultura de Órgãos/métodos , Animais , Cartilagem/crescimento & desenvolvimento , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas Hedgehog/genética , Humanos , Botões de Extremidades/crescimento & desenvolvimento , Botões de Extremidades/metabolismo , Mesoderma/metabolismo , Camundongos , Transdução de Sinais/genética
5.
Development ; 147(3)2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31932350

RESUMO

Nascent myotubes undergo a dramatic morphological transformation during myogenesis, in which the myotubes elongate over several cell diameters and are directed to the correct muscle attachment sites. Although this process of myotube guidance is essential to pattern the musculoskeletal system, the mechanisms that control myotube guidance remain poorly understood. Using transcriptomics, we found that components of the Fibroblast Growth Factor (FGF) signaling pathway were enriched in nascent myotubes in Drosophila embryos. Null mutations in the FGF receptor heartless (htl), or its ligands, caused significant myotube guidance defects. The FGF ligand Pyramus is expressed broadly in the ectoderm, and ectopic Pyramus expression disrupted muscle patterning. Mechanistically, Htl regulates the activity of Rho/Rac GTPases in nascent myotubes and effects changes in the actin cytoskeleton. FGF signals are thus essential regulators of myotube guidance that act through cytoskeletal regulatory proteins to pattern the musculoskeletal system.


Assuntos
Padronização Corporal/genética , Drosophila/embriologia , Fatores de Crescimento de Fibroblastos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Animais Geneticamente Modificados , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ectoderma/metabolismo , Feminino , Fatores de Crescimento de Fibroblastos/genética , Ligantes , Masculino , Desenvolvimento Musculoesquelético/genética , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/genética , Proteínas rac de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
6.
FASEB J ; 33(8): 9116-9130, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31100023

RESUMO

Tendons are an essential part of the musculoskeletal system, connecting muscle and skeletal elements to enable force generation. The transcription factor scleraxis marks vertebrate tendons from early specification. Scleraxis-null mice are viable and have a range of tendon and bone defects in the trunk and limbs but no described cranial phenotype. We report the expression of zebrafish scleraxis orthologs: scleraxis homolog (scx)-a and scxb in cranial and intramuscular tendons and in other skeletal elements. Single mutants for either scxa or scxb, generated by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), are viable and fertile as adult fish. Although scxb mutants show no obvious phenotype, scxa mutant embryos have defects in cranial tendon maturation and muscle misalignment. Mutation of both scleraxis genes results in more severe defects in cranial tendon differentiation, muscle and cartilage dysmorphogenesis and paralysis, and lethality by 2-5 wk, which indicates an essential function of scleraxis for craniofacial development. At juvenile and adult stages, ribs in scxa mutants fail to mineralize and/or are small and heavily fractured. Scxa mutants also have smaller muscle volume, abnormal swim movement, and defects in bone growth and composition. Scleraxis function is therefore essential for normal craniofacial form and function and vital for fish development.-Kague, E., Hughes, S. M., Lawrence, E. A., Cross, S., Martin-Silverstone, E., Hammond, C. L., Hinits, Y. Scleraxis genes are required for normal musculoskeletal development and for rib growth and mineralization in zebrafish.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Desenvolvimento Musculoesquelético/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Desenvolvimento Ósseo/genética , Calcificação Fisiológica/genética , Regulação da Expressão Gênica no Desenvolvimento , Mutação , Costelas/anormalidades , Costelas/crescimento & desenvolvimento , Costelas/metabolismo , Tendões/anormalidades , Tendões/crescimento & desenvolvimento , Tendões/metabolismo , Peixe-Zebra/metabolismo
7.
Curr Top Dev Biol ; 132: 451-486, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30797517

RESUMO

The limb musculoskeletal system provides a primary means for locomotion, manipulation of objects and protection for most vertebrate organisms. Intricate integration of the bone, tendon and muscle tissues are required for function. These three tissues arise largely independent of one another, but the connections formed during later development are maintained throughout life and are re-established following injury. Each of these tissues also have mesenchymal stem/progenitor cells that function in maintenance and repair. Here in, we will review the major events in the development of limb skeleton, tendon, and muscle tissues, their response to injury, and discuss current knowledge regarding resident progenitor/stem cells within each tissue that participate in development, repair, and regeneration in vivo.


Assuntos
Extremidades/embriologia , Extremidades/fisiologia , Desenvolvimento Musculoesquelético/fisiologia , Regeneração/fisiologia , Animais , Osso e Ossos/citologia , Osso e Ossos/embriologia , Osso e Ossos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Músculos/citologia , Músculos/embriologia , Músculos/fisiologia , Desenvolvimento Musculoesquelético/genética , Regeneração/genética , Células-Tronco/metabolismo , Células-Tronco/fisiologia , Tendões/citologia , Tendões/embriologia , Tendões/fisiologia
8.
Ann N Y Acad Sci ; 1409(1): 67-78, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28990185

RESUMO

Postaxial limb hypoplasia (PALH) is a group of nonhereditary diseases with congenital lower limb deficiency affecting the fibular ray, including fibular hemimelia, proximal femoral focal deficiency, and tarsal coalition. The etiology and the developmental biology of the anomaly are still not fully understood. Here, we review the previous classification systems, present the clinical features, and discuss the developmental biology of PALH.


Assuntos
Predisposição Genética para Doença/genética , Deformidades Congênitas dos Membros/genética , Deformidades Congênitas dos Membros/patologia , Mutação , Ectromelia/embriologia , Ectromelia/genética , Ectromelia/patologia , Fíbula/anormalidades , Humanos , Deformidades Congênitas dos Membros/classificação , Desenvolvimento Musculoesquelético/genética , Transdução de Sinais/genética
9.
Nat Commun ; 8(1): 121, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28743860

RESUMO

Bone mineral density is known to be a heritable, polygenic trait whereas genetic variants contributing to lean mass variation remain largely unknown. We estimated the shared SNP heritability and performed a bivariate GWAS meta-analysis of total-body lean mass (TB-LM) and total-body less head bone mineral density (TBLH-BMD) regions in 10,414 children. The estimated SNP heritability is 43% (95% CI: 34-52%) for TBLH-BMD, and 39% (95% CI: 30-48%) for TB-LM, with a shared genetic component of 43% (95% CI: 29-56%). We identify variants with pleiotropic effects in eight loci, including seven established bone mineral density loci: WNT4, GALNT3, MEPE, CPED1/WNT16, TNFSF11, RIN3, and PPP6R3/LRP5. Variants in the TOM1L2/SREBF1 locus exert opposing effects TB-LM and TBLH-BMD, and have a stronger association with the former trait. We show that SREBF1 is expressed in murine and human osteoblasts, as well as in human muscle tissue. This is the first bivariate GWAS meta-analysis to demonstrate genetic factors with pleiotropic effects on bone mineral density and lean mass.Bone mineral density and lean skeletal mass are heritable traits. Here, Medina-Gomez and colleagues perform bivariate GWAS analyses of total body lean mass and bone mass density in children, and show genetic loci with pleiotropic effects on both traits.


Assuntos
Proteínas de Transporte/genética , Pleiotropia Genética , Estudo de Associação Genômica Ampla/métodos , Metanálise como Assunto , Desenvolvimento Musculoesquelético/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Peso Corporal , Densidade Óssea , Criança , Feminino , Expressão Gênica , Humanos , Masculino , Análise Multivariada , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética
10.
Sci Rep ; 7: 45010, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28327634

RESUMO

Scleraxis (Scx) is a basic helix-loop-helix transcription factor that is expressed persistently in tendons/ligaments, but transiently in entheseal cartilage. In this study, we generated a novel ScxCre knock-in (KI) allele, by in-frame replacement of most of Scx exon 1 with Cre recombinase (Cre), to drive Cre expression using Scx promoter and to inactivate the endogenous Scx. Reflecting the intensity and duration of endogenous expression, Cre-mediated excision occurs in tendinous and ligamentous tissues persistently expressing Scx. Expression of tenomodulin, a marker of mature tenocytes and ligamentocytes, was almost absent in tendons and ligaments of ScxCre/Cre KI mice lacking Scx to indicate defective maturation. In homozygotes, the transiently Scx-expressing entheseal regions such as the rib cage, patella cartilage, and calcaneus were small and defective and cartilaginous tuberosity was missing. Decreased Sox9 expression and phosphorylation of Smad1/5 and Smad3 were also observed in the developing entheseal cartilage, patella, and deltoid tuberosity of ScxCre/Cre KI mice. These results highlighted the functional importance of both transient and persistent expression domains of Scx for proper integration of the musculoskeletal components.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Desenvolvimento Musculoesquelético/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Doenças do Desenvolvimento Ósseo/genética , Doenças do Desenvolvimento Ósseo/patologia , Cartilagem/anormalidades , Cartilagem/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Ordem dos Genes , Marcação de Genes , Genes Reporter , Loci Gênicos , Recombinação Homóloga , Ligamentos/anormalidades , Ligamentos/crescimento & desenvolvimento , Ligamentos/metabolismo , Camundongos , Camundongos Knockout , Fosforilação , Fatores de Transcrição SOX9/genética , Proteínas Smad/genética , Proteínas Smad/metabolismo , Tendões/anormalidades , Tendões/crescimento & desenvolvimento , Tendões/metabolismo
11.
J Biomed Sci ; 21: 44, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24885110

RESUMO

BACKGROUND: Although runt-related transcription factor 2 (RUNX2) has been considered a determinant of cleidocranial dysplasia (CCD), some CCD patients were free of RUNX2 mutations. CCAAT/enhancer-binding protein beta (Cebpb) is a key factor of Runx2 expression and our previous study has reported two CCD signs including hyperdontia and elongated coronoid process of the mandible in Cebpb deficient mice. Following that, this work aimed to conduct a case-control study of thoracic, zygomatic and masticatory muscular morphology to propose an association between musculoskeletal phenotypes and deficiency of Cebpb, using a sample of Cebpb-/-, Cebpb+/- and Cebpb+/+ adult mice. Somatic skeletons and skulls of mice were inspected with soft x-rays and micro-computed tomography (µCT), respectively. Zygomatic inclination was assessed using methods of coordinate geometry and trigonometric function on anatomic landmarks identified with µCT. Masseter and temporal muscles were collected and weighed. Expression of Cebpb was examined with a reverse transcriptase polymerase chain reaction (RT-PCR) technique. RESULTS: Cebpb-/- mice displayed hypoplastic clavicles, a narrow thoracic cage, and a downward tilted zygomatic arch (p < 0.001). Although Cebpb+/- mice did not show the phenotypes above (p = 0.357), a larger mass percentage of temporal muscles over masseter muscles was seen in Cebpb+/- littermates (p = 0.012). The mRNA expression of Cebpb was detected in the clavicle, the zygoma, the temporal muscle and the masseter muscle, respectively. CONCLUSIONS: Prospective signs of CCD were identified in mice with Cebpb deficiency. These could provide an additional aetiological factor of CCD. Succeeding investigation into interactions among Cebpb, Runx2 and musculoskeletal development is indicated.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/genética , Displasia Cleidocraniana/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Desenvolvimento Musculoesquelético/genética , Animais , Proteína beta Intensificadora de Ligação a CCAAT/deficiência , Displasia Cleidocraniana/etiologia , Displasia Cleidocraniana/patologia , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Mutação de Sentido Incorreto , Fenótipo , Crânio/crescimento & desenvolvimento
12.
Dev Dyn ; 242(9): 1021-32, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23821404

RESUMO

Heparan sulfate (HS) is an essential component of cell surface and matrix-associated proteoglycans. Due to their sulfation patterns, the HS chains interact with numerous signaling proteins and regulate their distribution and activity on target cells. Many of these proteins, including bone morphogenetic protein family members, are expressed in the growth plate of developing skeletal elements, and several skeletal phenotypes are caused by mutations in those proteins as well as in HS-synthesizing and modifying enzymes. The disease we discuss here is hereditary multiple exostoses (HME), a disorder caused by mutations in HS synthesizing enzymes EXT1 and EXT2, leading to HS deficiency. The exostoses are benign cartilaginous-bony outgrowths, form next to growth plates, can cause growth retardation and deformities, chronic pain and impaired motion, and progress to malignancy in 2-5% of patients. We describe recent advancements on HME pathogenesis and exostosis formation deriving from studies that have determined distribution, activities and roles of signaling proteins in wild-type and HS-deficient cells and tissues. Aberrant distribution of signaling factors combined with aberrant responsiveness of target cells to those same factors appear to be a major culprit in exostosis formation. Insights from these studies suggest plausible and cogent ideas about how HME could be treated in the future.


Assuntos
Osso e Ossos , Exostose Múltipla Hereditária , Heparitina Sulfato , Desenvolvimento Musculoesquelético/genética , N-Acetilglucosaminiltransferases , Animais , Osso e Ossos/enzimologia , Osso e Ossos/patologia , Exostose Múltipla Hereditária/enzimologia , Exostose Múltipla Hereditária/genética , Exostose Múltipla Hereditária/patologia , Heparitina Sulfato/genética , Heparitina Sulfato/metabolismo , Humanos , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo
13.
Expert Opin Drug Metab Toxicol ; 9(9): 1139-53, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23650932

RESUMO

INTRODUCTION: Glycine conjugation of mitochondrial acyl-CoAs, catalyzed by glycine N-acyltransferase (GLYAT, E.C. 2.3.1.13), is an important metabolic pathway responsible for maintaining adequate levels of free coenzyme A (CoASH). However, because of the small number of pharmaceutical drugs that are conjugated to glycine, the pathway has not yet been characterized in detail. Here, we review the causes and possible consequences of interindividual variation in the glycine conjugation pathway. AREAS COVERED: The authors review the importance of CoASH in metabolism, formation and toxicity of xenobiotic acyl-CoAs, and mechanisms for restoring levels of CoASH. They focus on GLYAT, glycine conjugation, how genetic variation in the GLYAT gene could influence glycine conjugation, and the emerging roles of glycine metabolism in cancer and musculoskeletal development. EXPERT OPINION: The substrate selectivity of GLYAT and its variants needs to be further characterized, as organic acids can be toxic if the corresponding acyl-CoA is not a substrate for glycine conjugation. GLYAT activity affects mitochondrial ATP production, glycine availability, CoASH availability, and the toxicity of various organic acids. Therefore, variation in the glycine conjugation pathway could influence liver cancer, musculoskeletal development, and mitochondrial energy metabolism.


Assuntos
Aciltransferases/metabolismo , Glicina/metabolismo , Aciltransferases/genética , Coenzima A/metabolismo , Hepatite/genética , Hepatite/patologia , Humanos , Hidroxibenzoatos/metabolismo , Hidroxibenzoatos/toxicidade , Inativação Metabólica , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Mitocôndrias/metabolismo , Desenvolvimento Musculoesquelético/genética , Polimorfismo de Nucleotídeo Único , Xenobióticos/metabolismo
14.
Development ; 139(3): 579-90, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22190640

RESUMO

A central challenge of developmental and evolutionary biology is to understand how anatomy is encoded in the genome. Elucidating the genetic mechanisms that control the development of specific anatomical features will require the analysis of model morphogenetic processes and an integration of biological information at genomic, cellular and tissue levels. The formation of the endoskeleton of the sea urchin embryo is a powerful experimental system for developing such an integrated view of the genomic regulatory control of morphogenesis. The dynamic cellular behaviors that underlie skeletogenesis are well understood and a complex transcriptional gene regulatory network (GRN) that underlies the specification of embryonic skeletogenic cells (primary mesenchyme cells, PMCs) has recently been elucidated. Here, we link the PMC specification GRN to genes that directly control skeletal morphogenesis. We identify new gene products that play a proximate role in skeletal morphogenesis and uncover transcriptional regulatory inputs into many of these genes. Our work extends the importance of the PMC GRN as a model developmental GRN and establishes a unique picture of the genomic regulatory control of a major morphogenetic process. Furthermore, because echinoderms exhibit diverse programs of skeletal development, the newly expanded sea urchin skeletogenic GRN will provide a foundation for comparative studies that explore the relationship between GRN evolution and morphological evolution.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Células-Tronco Mesenquimais/fisiologia , Morfogênese/genética , Desenvolvimento Musculoesquelético/genética , Ouriços-do-Mar/crescimento & desenvolvimento , Animais , Ouriços-do-Mar/genética
15.
Nat Genet ; 43(10): 1026-30, 2011 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-21892160

RESUMO

MicroRNAs (miRNAs) are key regulators of gene expression in animals and plants. Studies in a variety of model organisms show that miRNAs modulate developmental processes. To our knowledge, the only hereditary condition known to be caused by a miRNA is a form of adult-onset non-syndromic deafness, and no miRNA mutation has yet been found to be responsible for any developmental defect in humans. Here we report the identification of germline hemizygous deletions of MIR17HG, encoding the miR-17∼92 polycistronic miRNA cluster, in individuals with microcephaly, short stature and digital abnormalities. We demonstrate that haploinsufficiency of miR-17∼92 is responsible for these developmental abnormalities by showing that mice harboring targeted deletion of the miR-17∼92 cluster phenocopy several key features of the affected humans. These findings identify a regulatory function for miR-17∼92 in growth and skeletal development and represent the first example of an miRNA gene responsible for a syndromic developmental defect in humans.


Assuntos
Deleção de Genes , Mutação em Linhagem Germinativa , MicroRNAs/genética , Família Multigênica , Desenvolvimento Musculoesquelético/genética , Animais , Cromossomos Humanos Par 13/genética , Bases de Dados Genéticas , Obstrução Duodenal/genética , Embrião de Mamíferos , Atresia Esofágica/genética , Pálpebras/anormalidades , Feminino , Haploinsuficiência , Humanos , Deficiência Intelectual , Deformidades Congênitas dos Membros/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/metabolismo , Microcefalia/genética , Modelos Animais , Linhagem , Reação em Cadeia da Polimerase , Fístula Traqueoesofágica
16.
Biotechnol Lett ; 33(8): 1551-8, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21484342

RESUMO

Sox9 is expressed in multiple tissues during mouse development and adulthood. Mutations in the Sox9 gene or changes in expression levels can be attributed to many congenital diseases. Heterozygous loss-of-function mutations in the human SOX9 gene cause Campomelic dysplasia, a semi-lethal skeletal malformation syndrome. Disruption of Sox9 by conventional gene targeting leads to perinatal lethality in heterozygous mice, hence hampering the feasibility to obtain the homozygous Sox9 null mice for in vivo functional studies. In this study, we generated a conditional allele of Sox9 (Sox9 ( tm4.Tlu )) by flanking exon 1 with loxP sites. Homozygous mice for the Sox9 ( tm4.Tlu ) allele (Sox9 ( flox/flox )) are viable, fertile and indistinguishable from wildtype (WT) mice, indicating that the Sox9 ( tm4.Tlu ) allele is a fully functional Sox9 allele. Furthermore, we demonstrated that Cre-mediated recombination using a Col2a1-Cre line resulted in specific ablation of Sox9 activity in cartilage tissues.


Assuntos
Alelos , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas de Inativação de Genes/métodos , Fatores de Transcrição SOX9/genética , Animais , Clonagem Molecular , Colágeno Tipo II/genética , Embrião de Mamíferos , Membro Anterior/embriologia , Membro Anterior/patologia , Dosagem de Genes , Marcação de Genes , Histocitoquímica , Integrases/genética , Camundongos , Camundongos Knockout , Modelos Genéticos , Desenvolvimento Musculoesquelético/genética , Coluna Vertebral/embriologia , Coluna Vertebral/patologia
17.
Genesis ; 49(1): 2-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21254332

RESUMO

Irxl1 (Iroquois-related homeobox like-1) is a newly identified three amino-acid loop extension (TALE) homeobox gene, which is expressed in various mesoderm-derived tissues, particularly in the progenitors of the musculoskeletal system. To analyze the roles of Irxl1 during embryonic development, we generated mice carrying a null allele of Irxl1. Mice homozygous for the targeted allele were viable, fertile, and showed reduced tendon differentiation. Skeletal morphology and skeletal muscle weight in Irxl1-knockout mice appeared normal. Expression patterns of several marker genes for cartilage, tendon, and muscle progenitors in homozygous mutant embryos were unchanged. These results suggest that Irxl1 is required for the tendon differentiation but dispensable for the patterning of the musculoskeletal system in development.


Assuntos
Proteínas de Homeodomínio/genética , Tendões/embriologia , Animais , Padronização Corporal/genética , Camundongos , Camundongos Knockout , Desenvolvimento Musculoesquelético/genética , Sistema Musculoesquelético/anatomia & histologia , Sistema Musculoesquelético/embriologia , Recombinação Genética , Proteínas Repressoras/genética
18.
Hum Mol Genet ; 20(2): 271-85, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20962035

RESUMO

Brachydactyly type B (BDB1) and Robinow syndrome (RRS) are two skeletal disorders caused by mutations in ROR2, a co-receptor of Wnt5a. Wnt5a/Ror2 can activate multiple branches of non-canonical Wnt signaling, but it is unclear which branch(es) mediates Wnt5a/Ror2 function in limb skeletal development. Here, we provide evidence implicating the planar cell polarity (PCP) pathway as the downstream component of Wnt5a in the limb. We show that a mutation in the mouse PCP gene Vangl2 causes digit defects resembling the clinical phenotypes in BDB1, including loss of phalanges. Halving the dosage of Wnt5a in Vangl2 mutants enhances the severity and penetrance of the digit defects and causes long bone defects reminiscent of RRS, suggesting that Wnt5a and Vangl2 function in the same pathway and disruption of PCP signaling may underlie both BDB1 and RRS. Consistent with a role for PCP signaling in tissue morphogenesis, mutation of Vangl2 alters the shape and dimensions of early limb buds: the width and thickness are increased, whereas the length is decreased. The digit pre-chondrogenic condensates also become wider, thicker and shorter. Interestingly, altered limb bud dimensions in Vangl2 mutants also affect limb growth by perturbing the signaling network that regulates the balance between Fgf and Bmp signaling. Halving the dosage of Bmp4 partially suppresses the loss of phalanges in Vangl2 mutants, supporting the hypothesis that an aberrant increase in Bmp signaling is the cause of the brachydactyly defect. These findings provide novel insight into the signaling mechanisms of Wnt5a/Ror2 and the pathogenesis in BDB1 and RRS.


Assuntos
Deformidades Congênitas dos Membros , Anormalidades Maxilofaciais , Morfogênese/genética , Desenvolvimento Musculoesquelético/genética , Transdução de Sinais/genética , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Animais , Proteína Morfogenética Óssea 4/antagonistas & inibidores , Proteína Morfogenética Óssea 4/genética , Polaridade Celular/fisiologia , Sobrevivência Celular/genética , Dosagem de Genes , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Botões de Extremidades/anormalidades , Deformidades Congênitas dos Membros/embriologia , Deformidades Congênitas dos Membros/genética , Deformidades Congênitas dos Membros/metabolismo , Deformidades Congênitas dos Membros/patologia , Anormalidades Maxilofaciais/embriologia , Anormalidades Maxilofaciais/genética , Anormalidades Maxilofaciais/patologia , Camundongos , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Coluna Vertebral/anormalidades , Coluna Vertebral/embriologia , Coluna Vertebral/patologia , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Wnt-5a
19.
Development ; 137(17): 2807-17, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20699295

RESUMO

The formation of the musculoskeletal system represents an intricate process of tissue assembly involving heterotypic inductive interactions between tendons, muscles and cartilage. An essential component of all musculoskeletal systems is the anchoring of the force-generating muscles to the solid support of the organism: the skeleton in vertebrates and the exoskeleton in invertebrates. Here, we discuss recent findings that illuminate musculoskeletal assembly in the vertebrate embryo, findings that emphasize the reciprocal interactions between the forming tendons, muscle and cartilage tissues. We also compare these events with those of the corresponding system in the Drosophila embryo, highlighting distinct and common pathways that promote efficient locomotion while preserving the form of the organism.


Assuntos
Desenvolvimento Musculoesquelético , Tendões/embriologia , Animais , Drosophila/embriologia , Drosophila/genética , Drosophila/fisiologia , Músculos/embriologia , Músculos/fisiologia , Desenvolvimento Musculoesquelético/genética , Desenvolvimento Musculoesquelético/fisiologia , Transdução de Sinais , Tendões/fisiologia , Vertebrados/embriologia , Vertebrados/genética , Vertebrados/fisiologia
20.
Hereditas ; 147(3): 132-5, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20626768

RESUMO

The results obtained in the present study made it possible to place selected markers responsible for development of the nervous and skeletal systems on the physical map of the donkey genome. Fluorescence in situ hybridization (FISH) was used to localize genes such as GDF5 (15q13), FRZB (4q23.1), TWIST (1q31), PAX6 (20q25), SALL1 (24q15) and SHH (1q35) on donkey chromosomes. The identification of their localization confirmed previously proposed homologies using ZOO-FISH technique, except for FRZB and SALL1 genes. This suggests that they were affected by rearrangements that changed their localization compared to horse, and in the case of the SALL1 gene also compared to human.


Assuntos
Cromossomos/genética , Equidae/genética , Genes/genética , Hibridização in Situ Fluorescente , Desenvolvimento Musculoesquelético/genética , Sistema Nervoso/crescimento & desenvolvimento , Animais , Mapeamento Cromossômico , Proteínas do Olho/genética , Glicoproteínas/genética , Fator 5 de Diferenciação de Crescimento/genética , Proteínas Hedgehog/genética , Proteínas de Homeodomínio/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Proteína 1 Relacionada a Twist/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA