Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Environ Toxicol Pharmacol ; 81: 103515, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33086149

RESUMO

The lack of data on hepatic and hormonal markers for occupational exposure to most modern halogenated anesthetics has stimulated our research, which assessed liver enzymes, high-sensitivity C-reactive protein (hs-CRP) and neuroendocrine response. The study investigated 106 physicians who were categorized in an exposed group (primarily exposed to isoflurane and sevoflurane and less to desflurane and nitrous oxide) as well as as a control group. Anesthetic air monitoring was performed, and biological samples were analyzed for the most important liver enzymes, hs-CRP, adrenocorticotrophic hormone, cortisol and prolactin. No biomarkers were significantly different between the groups. Exposed males showed significant increases in cortisol and prolactin compared to unexposed males. However, values were within the reference ranges, and 22 % of exposed males versus 5 % of unexposed males exhibited higher prolactin values above the reference range. This study suggests that occupational exposure to the most commonly used inhalational anesthetics is not associated with hepatotoxicity or neurohormonal changes.


Assuntos
Anestésicos Inalatórios , Exposição Ocupacional , Médicos , Hormônio Adrenocorticotrópico/sangue , Adulto , Alanina Transaminase/sangue , Anestésicos Inalatórios/análise , Aspartato Aminotransferases/sangue , Biomarcadores/sangue , Proteína C-Reativa/análise , Estudos Transversais , Desflurano/análise , Monitoramento Ambiental , Feminino , Humanos , Hidrocortisona/sangue , Isoflurano/análise , Fígado/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Óxido Nitroso/análise , Exposição Ocupacional/análise , Prolactina/sangue , Sevoflurano/análise
2.
J Breath Res ; 14(2): 026004, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31796655

RESUMO

Post-operative isoflurane has been observed to be present in the end-tidal breath of patients who have undergone major surgery, for several weeks after the surgical procedures. A major new non-controlled, non-randomized, and open-label approved study will recruit patients undergoing various surgeries under different inhalation anaesthetics, with two key objectives, namely (1) to record the washout characteristics following surgery, and (2) to investigate the influence of a patient's health and the duration and type of surgery on elimination. In preparation for this breath study using proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS), it is important to identify first the analytical product ions that need to be monitored and under what operating conditions. In this first paper of this new research programme, we present extensive PTR-TOF-MS studies of three major anaesthetics used worldwide, desflurane (CF3CHFOCHF2), sevoflurane ((CF3)2CHOCH2F), and isoflurane (CF3CHClOCHF2) and a fourth one, which is used less extensively, enflurane (CHF2OCF2CHFCl), but is of interest because it is an isomer of isoflurane. Product ions are identified as a function of reduced electric field (E/N) over the range of approximately 80 Td to 210 Td, and the effects of operating the drift tube under 'normal' or 'humid' conditions on the intensities of the product ions are presented. To aid in the analyses, density functional theory (DFT) calculations of the proton affinities and the gas-phase basicities of the anaesthetics have been determined. Calculated energies for the ion-molecule reaction pathways leading to key product ions, identified as ideal for monitoring the inhalation anaesthetics in breath with a high sensitivity and selectivity, are also presented.


Assuntos
Anestésicos Inalatórios/análise , Testes Respiratórios/métodos , Hidrocarbonetos Halogenados/análise , Espectrometria de Massas/métodos , Prótons , Compostos Orgânicos Voláteis/análise , Teoria da Densidade Funcional , Desflurano/análise , Eletricidade , Feminino , Humanos , Íons , Isoflurano/análise , Masculino , Sevoflurano/análise , Processamento de Sinais Assistido por Computador
3.
Lakartidningen ; 1162019 Oct 10.
Artigo em Sueco | MEDLINE | ID: mdl-31613372

RESUMO

This study estimated the climate footprint of halogenated inhalation anesthetics in Sweden and estimated effects of a decreased use of these compounds. We collected data on sales of desflurane, sevoflurane and isoflurane in Sweden during 2017 and calculated the mass of CO2 equivalents (CO2e) using Global Warming Potential data over 100 years for the compounds. Inhalation anesthetics contributed by 5000 tons of CO2e which corresponds to 0.005 percent of the Swedish climate footprint. By replacing desflurane with sevoflurane the footprint can be reduced by 73 percent. By replacing sevoflurane with intravenous propofol the climate effect can be reduced further by at least 2 orders of magnitude.


Assuntos
Anestésicos Inalatórios , Pegada de Carbono , Anestésicos Inalatórios/análise , Anestésicos Inalatórios/química , Anestésicos Intravenosos/análise , Anestésicos Intravenosos/química , Desflurano/análise , Desflurano/química , Aquecimento Global , Humanos , Isoflurano/análise , Isoflurano/química , Óxido Nitroso/análise , Óxido Nitroso/química , Propofol/administração & dosagem , Propofol/análise , Propofol/química , Sevoflurano/análise , Sevoflurano/química , Suécia
4.
BMC Anesthesiol ; 19(1): 148, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399025

RESUMO

BACKGROUND: Real-time photoacoustic gas monitoring is used for personnel exposure and environmental monitoring, but its accuracy varies when organic solvents such as alcohol contaminate measurements. This is problematic for anesthetic gas measurements in hospitals, because most disinfectants contain alcohol, which could lead to false-high gas concentrations. We investigated the cross-sensitivities of the photoacoustic gas monitor Innova 1412 (AirTech Instruments, LumaSense, Denmark) against alcohols and alcoholic disinfectants while measuring sevoflurane, desflurane and isoflurane in a laboratory and in hospital during surgery. METHODS: 25 mL ethyl alcohol was distributed on a hotplate. An optical filter for isoflurane was used and the gas monitor measured the 'isoflurane' concentration for five minutes with the measuring probe fixed 30 cm above the hotplate. Then, 5 mL isoflurane was added vaporized via an Anesthetic Conserving Device (Sedana Medical, Uppsala, Sweden). After one-hour measurement, 25 mL isopropyl alcohol, N-propanol, and two alcoholic disinfectants were subsequently added, each in combination with 5 mL isoflurane. The same experiment was in turn performed for sevoflurane and desflurane. The practical impact of the cross-sensitivity was investigated on abdominal surgeons who were exposed intraoperatively to sevoflurane. A new approach to overcome the gas monitor's cross-sensitivity is presented. RESULTS: Cross-sensitivity was observed for all alcohols and its strength characteristic for the tested agent. Simultaneous uses of anesthetic gases and alcohols increased the concentrations and the recovery times significantly, especially while sevoflurane was utilized. Intraoperative measurements revealed mean and maximum sevoflurane concentrations of 0.61 ± 0.26 ppm and 15.27 ± 14.62 ppm. We replaced the cross-sensitivity peaks with the 10th percentile baseline of the anesthetic gas concentration. This reduced mean and maximum concentrations significantly by 37% (p < 0.001) and 86% (p < 0.001), respectively. CONCLUSION: Photoacoustic gas monitoring is useful to detect lowest anesthetic gases concentrations, but cross-sensitivity caused one third falsely high measured mean gas concentration. One possibility to eliminate these peaks is the recovery time-based baseline approach. Caution should be taken while measuring sevoflurane, since marked cross-sensitivity peaks are to be expected.


Assuntos
Poluentes Ocupacionais do Ar/análise , Anestésicos Inalatórios/análise , Desinfetantes/análise , Monitoramento Ambiental , Exposição Ocupacional/análise , Técnicas Fotoacústicas , 1-Propanol/análise , 2-Propanol/análise , Desflurano/análise , Etanol/análise , Humanos , Isoflurano/análise , Salas Cirúrgicas , Sevoflurano/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA