Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 241
Filtrar
1.
Mol Cell ; 84(7): 1183-1185, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579675

RESUMO

Li et al. and Freitas et al. recently identified 7-dehydrocholesterol (7-DHC), a sterol produced through the cholesterol biosynthetic pathway, as a lipid-soluble antioxidant that protects cells from ferroptosis, a cell death pathway triggered by iron-catalyzed phospholipid peroxidation.1,2.


Assuntos
Ferro , Esteróis , Desidrocolesteróis/metabolismo , Colesterol
2.
Nature ; 626(7998): 401-410, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297129

RESUMO

Ferroptosis is a form of cell death that has received considerable attention not only as a means to eradicate defined tumour entities but also because it provides unforeseen insights into the metabolic adaptation that tumours exploit to counteract phospholipid oxidation1,2. Here, we identify proferroptotic activity of 7-dehydrocholesterol reductase (DHCR7) and an unexpected prosurvival function of its substrate, 7-dehydrocholesterol (7-DHC). Although previous studies suggested that high concentrations of 7-DHC are cytotoxic to developing neurons by favouring lipid peroxidation3, we now show that 7-DHC accumulation confers a robust prosurvival function in cancer cells. Because of its far superior reactivity towards peroxyl radicals, 7-DHC effectively shields (phospho)lipids from autoxidation and subsequent fragmentation. We provide validation in neuroblastoma and Burkitt's lymphoma xenografts where we demonstrate that the accumulation of 7-DHC is capable of inducing a shift towards a ferroptosis-resistant state in these tumours ultimately resulting in a more aggressive phenotype. Conclusively, our findings provide compelling evidence of a yet-unrecognized antiferroptotic activity of 7-DHC as a cell-intrinsic mechanism that could be exploited by cancer cells to escape ferroptosis.


Assuntos
Linfoma de Burkitt , Desidrocolesteróis , Ferroptose , Neuroblastoma , Animais , Humanos , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patologia , Sobrevivência Celular , Desidrocolesteróis/metabolismo , Peroxidação de Lipídeos , Transplante de Neoplasias , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Oxirredução , Fenótipo , Reprodutibilidade dos Testes
3.
Nature ; 626(7998): 411-418, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297130

RESUMO

Ferroptosis, a form of regulated cell death that is driven by iron-dependent phospholipid peroxidation, has been implicated in multiple diseases, including cancer1-3, degenerative disorders4 and organ ischaemia-reperfusion injury (IRI)5,6. Here, using genome-wide CRISPR-Cas9 screening, we identified that the enzymes involved in distal cholesterol biosynthesis have pivotal yet opposing roles in regulating ferroptosis through dictating the level of 7-dehydrocholesterol (7-DHC)-an intermediate metabolite of distal cholesterol biosynthesis that is synthesized by sterol C5-desaturase (SC5D) and metabolized by 7-DHC reductase (DHCR7) for cholesterol synthesis. We found that the pathway components, including MSMO1, CYP51A1, EBP and SC5D, function as potential suppressors of ferroptosis, whereas DHCR7 functions as a pro-ferroptotic gene. Mechanistically, 7-DHC dictates ferroptosis surveillance by using the conjugated diene to exert its anti-phospholipid autoxidation function and shields plasma and mitochondria membranes from phospholipid autoxidation. Importantly, blocking the biosynthesis of endogenous 7-DHC by pharmacological targeting of EBP induces ferroptosis and inhibits tumour growth, whereas increasing the 7-DHC level by inhibiting DHCR7 effectively promotes cancer metastasis and attenuates the progression of kidney IRI, supporting a critical function of this axis in vivo. In conclusion, our data reveal a role of 7-DHC as a natural anti-ferroptotic metabolite and suggest that pharmacological manipulation of 7-DHC levels is a promising therapeutic strategy for cancer and IRI.


Assuntos
Desidrocolesteróis , Ferroptose , Humanos , Membrana Celular/metabolismo , Colesterol/biossíntese , Colesterol/metabolismo , Sistemas CRISPR-Cas/genética , Desidrocolesteróis/metabolismo , Genoma Humano , Nefropatias/metabolismo , Membranas Mitocondriais/metabolismo , Metástase Neoplásica , Neoplasias/metabolismo , Neoplasias/patologia , Fosfolipídeos/metabolismo , Traumatismo por Reperfusão/metabolismo
4.
Biotechnol J ; 18(12): e2300056, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37688450

RESUMO

BACKGROUND: 7-Dehydrocholesterol (7-DHC) can be directly converted to vitamin D3 by UV irradiation and de novo synthesis of 7-DHC in engineered Saccharomyces cerevisiae has been recognized as an attractive substitution to traditional chemical synthesis. Introduction of sterol extracellular transport pathway for the secretory production of 7-DHC is a promising approach to achieve higher titer and simplify the downstream purification processing. METHODS AND RESULTS: A series of genes involved in ergosterol pathway were combined reinforced and reengineered in S. cerevisiae. A biphasic fermentation system was introduced and 7-DHC was found to be enriched in oil-phase with an increased titer by 1.5-folds. Quantitative PCR revealed that say1, atf2, pdr5, pry1-3 involved in sterol storage and transport were all significantly induced in sterol overproduced strain. To enhance the secretion capacity, lipid transporters of pathogen-related yeast proteins (Pry), Niemann-Pick disease type C2 (NPC2), ATP-binding cassette (ABC)-family, and their homologues were screened. Both individual and synergetic overexpression of Plant pathogenesis Related protein-1 (Pr-1) and Sterol transport1 (St1) largely increased the de novo biosynthesis and secretory productivity of 7-DHC, and the final titer reached 28.2 mg g-1 with a secretion ratio of 41.4%, which was 26.5-folds higher than the original strain. In addition, the cooperation between Pr-1 and St1 in sterol transport was further confirmed by confocal microscopy, molecular docking, and directed site-mutation. CONCLUSION: Selective secretion of different sterol intermediates was characterized in sterol over-produced strain and the extracellular export of 7-DHC developed in present study significantly improved the cell biosynthetic capacity, which offered a novel modification idea for 7-DHC de novo biosynthesis by S. cerevisiae cell factory.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Simulação de Acoplamento Molecular , Desidrocolesteróis/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Esteróis/metabolismo
5.
Bioresour Technol ; 360: 127572, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35792326

RESUMO

Vitamin D3 is a fat-soluble vitamin essential for the human body, and the biosynthesis of its precursor, 7-dehydrocholesterol (7-DHC), gains extensive attention. In this work, six genes (tHMG1, IDI1, ERG1, ERG11, ADH2, ERG7) and a transcription factor mutant UPC2G888A were overexpressed, increasing the 7-DHC titer from 1.2 to 115.3 mg/L. The CRISPR-mediated activation and repression systems were constructed and applied to the synthesis of 7-DHC, increasing the 7-DHC titer to 312.4 mg/L. Next, enzymes were compartmentalized into the endoplasmic reticulum (ER) and the ER lumen was enlarged by overexpressing INO2. The 7-DHC titer of the finally engineered yeast reached 455.6 mg/L in a shake flask and 2870 mg/L in a 5 L bioreactor, the highest 7-DHC titer reported so far. Overall, this study achieved a highly efficient 7-DHC synthesis by remodeling the complicated sterol synthesis modules, paving the way for large-scale 7-DHC bioproduction in the future.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Desidrocolesteróis/metabolismo , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Biotechnol Bioeng ; 119(5): 1278-1289, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35128633

RESUMO

The synthesis of vitamin D3 precursor 7-dehydrocholesterol (7-DHC) by microbial fermentation has much attracted attention owing to its advantages of environmental protection. In this study, Saccharomyces cerevisiae was engineered for a de novo biosynthesis of 7-DHC. First, seven essential genes (six endogenous genes and one heterologous gene) were overexpressed, and the ROX1 gene (heme-dependent repressor of hypoxic genes) was knocked out. The resulting strain produced 82.6 mg/L 7-DHC from glucose. Then, we predicted five gene knockout targets for 7-DHC overproduction by the reconstruction of genome-scale metabolic model. GDH1 gene knockout increased the 7-DHC titer from 82.6 to 101.5 mg/L, and the specific growth rate of the ΔGDH1 mutant was also increased by 28%. Next, Ty1 transposon in S. cerevisiae was applied to increase the copies of the ERG1 gene and DHCR24 gene, resulting in a 120% increase in 7-DHC titer to 223.3 mg/L. Besides, to optimize the metabolic flux distribution, Clustered Regularly Interspaced Short Palindromic Repeats interference (CRISPRi) system was used to dynamically inhibit the competitive pathway, and the best binding site of ERG6 (delta (24)-sterol C-methyltransferase) promoter was screened out. The OD600 value of ERG6 regulated cells increased by 43% than knocking out ERG6 directly, and 7-DHC titer increased to 365.5 mg/L in a shake flask. Finally, the 7-DHC titer reached 1328 mg/L in 3-L bioreactor and the specific titer of 7-DHC reached up to 114.7 mg/g dry cell weight). Overall, this study constructed a yeast chassis for the highly efficient production of 7-DHC by systems metabolic engineering.


Assuntos
Desidrocolesteróis , Saccharomyces cerevisiae , Desidrocolesteróis/metabolismo , Fermentação , Engenharia Metabólica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
8.
J Sep Sci ; 45(5): 1080-1093, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34962712

RESUMO

BACKGROUND: Smith-Lemli-Opitz syndrome is a birth defect caused by the deficiency of 7-dehydrocholesterol reductase in cholesterol biosynthesis pathway, which leads to accumulation of 7-dehydrocholesterol and reduction of cholesterol in body fluids. To effectively diagnose Smith-Lemli-Opitz syndrome and monitor therapy, a reliable method for simultaneous detection of 7-dehydrocholesterol and cholesterol is needed. METHODS: In the presence of antioxidants (2,6-ditert-butyl-4-methylphenol and triphenylphosphine), 50 µL of human plasma were hydrolyzed at 70℃ for 40 min with 1 M potassium hydroxide in 90% ethanol, and then 7-dehydrocholesterol and cholesterol were extracted by 600 µL of n-hexane for three times. After microwave-assisted derivatization with 70 µL of N,O-bis(trimethylsilyl)trifluoroacetamide at 460 W for 3 min, the analytes were measured by gas chromatography-mass spectrometry. RESULTS: The limits of detection were 100 ng/mL for 7-dehydrocholesterol and 300 ng/mL for cholesterol. Good linearity was obtained in the range of 1-600 µg/mL for 7-dehydrocholesterol and 10-600 µg/mL for cholesterol, which completely covered the biochemical levels of Smith-Lemli-Opitz syndrome patients that have been reported. CONCLUSION: A time-saving and accurate gas chromatography with mass spectrometry based method was developed for the determination of 7-dehydrocholesterol and cholesterol in human plasma, which also serves as a useful tool for Smith-Lemli-Opitz syndrome diagnosis, treatment, and research.


Assuntos
Síndrome de Smith-Lemli-Opitz , Colesterol , Desidrocolesteróis/análise , Desidrocolesteróis/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Síndrome de Smith-Lemli-Opitz/diagnóstico , Síndrome de Smith-Lemli-Opitz/metabolismo
9.
Curr Probl Dermatol ; 55: 296-315, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34698034

RESUMO

Vitamin D is generally accepted in its importance on the regulation of calcium homeostasis and bone metabolism. Moreover, further health effects due to vitamin D are under discussion. In its effect, vitamin D is more like a hormone. In the classic view, a vitamin is an essential nutrient, which cannot be synthesized independently in the body. Besides nutrition, vitamin D will be produced in the body itself. The skin contains the provitamin D3 7-dehydrocholesterol, a precursor of vitamin D. Provitamin D3 will be photoconverted to previtamin D3 by UVB radiation that penetrates the skin superficially. In this way, the vitamin D metabolism will be started independent of the nutrition. In everyday life, this photosynthesis will be carried out due to the solar UVB radiation penetrating the uncovered skin. In the same spectral waveband range of UVB radiation, which causes the beneficial health effect of starting the vitamin D metabolism, the UVB radiation causes simultaneously acute and chronic harmful health effects as UV erythema (sunburn), skin aging and skin cancer. There is no vitamin D production in the skin without simultaneous DNA damage in the skin. Against this background, risks and benefits have to be balanced carefully.


Assuntos
Pele/efeitos da radiação , Raios Ultravioleta , Vitamina D/biossíntese , Colecalciferol/análogos & derivados , Colecalciferol/metabolismo , Desidrocolesteróis/metabolismo , Humanos , Redes e Vias Metabólicas/efeitos da radiação , Pele/metabolismo , Envelhecimento da Pele/efeitos da radiação , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/prevenção & controle , Queimadura Solar/etiologia , Queimadura Solar/prevenção & controle
10.
Front Immunol ; 12: 683665, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34267753

RESUMO

Vitamin D [1,25(OH)2D-calcitriol] is basically a steroid hormone with pleiotropic biologic effects, and its impact on the regulation of immune system may influence several clinical conditions. Calcidiol (25OHD), as precursor of calcitriol, derives, for the most part (80%), from cutaneous cholesterol (7-dehydrocholesterol) under the action of UV-B (sunlight). Consequently, serum concentrations fluctuate during the year following the circannual rhythm of sun exposition. We will update about the available evidence regarding the complex influence of seasonal vitamin D changes on two different chronic connective tissue diseases, namely rheumatoid arthritis (RA) and systemic sclerosis (SSc). Notably, RA is an emblematic model of autoimmune disease with prevalent joint inflammatory features, while SSc is mainly an autoimmune progressive pro-fibrotic disease. However, in both conditions, low serum concentrations of 25OHD are involved in the pathogenesis of the diseases, and emerging data report their impact on clinical manifestations.


Assuntos
Artrite Reumatoide/sangue , Calcifediol/sangue , Calcitriol/sangue , Escleroderma Sistêmico/sangue , Artrite Reumatoide/fisiopatologia , Ritmo Circadiano , Desidrocolesteróis/metabolismo , Escleroderma Sistêmico/fisiopatologia , Estações do Ano , Pele/metabolismo
11.
J Steroid Biochem Mol Biol ; 212: 105929, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34098080

RESUMO

7-Dehydrocholesterol reductase (DHCR7) catalyses the final step of cholesterol biosynthesis in the Kandutsch-Russel pathway, the reduction of 7-dehydrocholesterol (7DHC) to cholesterol. 7DHC can be acted on by a range of other enzymes including CYP27A1 and CYP11A1, as well as by UVB radiation, producing a number of derivatives including hydroxy-metabolites, some of which retain the C7-C8 double bond and are biologically active. These metabolites include lumisterol (L3) which is a stereoisomer of 7DHC produced in the skin by UVB radiation of 7DHC, as well as vitamin D3. The aim of this study was to test whether these metabolites could act as substrates or inhibitors of DHCR7 in rat liver microsomes. To initially screen the ability of these metabolites to interact with the active site of DHCR7, their ability to inhibit the conversion of ergosterol to brassicasterol was measured. Sterols that significantly inhibited this reaction included 7DHC (as expected), 20S(OH)7DHC, 27(OH)DHC, 8DHC, 20S(OH)L3 and 22(OH)L3 but not 7-dehydropregnenolone (7DHP), 25(OH)7DHC, L3 or vitamin D3 and its hydroxyderivatives. Sterols that inhibited ergosterol reduction were directly tested as substrates for DHCR7. 20S(OH)7DHC, 27(OH)DHC and 7-dehydrodesmosterol were confirmed to be substrates, giving the expected product with the C7-C8 double bond removed. No products were observed from 8DHC or 20S(OH)L3 indicating that these sterols are inhibitors and not substrates of DHCR7. The resistance of lumisterol and 7DHP to reduction by DHCR7 in cells will permit other enzymes to metabolise these sterols to their active forms retaining the C7-C8 double bond, conferring specificity to their biological actions.


Assuntos
Desidrocolesteróis/metabolismo , Ergosterol/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Animais , Colecalciferol/metabolismo , Microssomos Hepáticos/metabolismo , Ratos Wistar , Vitaminas/metabolismo
12.
J Chem Phys ; 154(9): 094309, 2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33685160

RESUMO

The photochemical ring-opening reaction of 7-dehydrocholesterol (DHC, provitamin D3) is responsible for the light-initiated formation of vitamin D3 in mammalian skin membranes. Visible transient absorption spectroscopy was used to explore the excited state dynamics of DHC and two analogs: ergosterol (provitamin D2) and DHC acetate free in solution and confined to lipid bilayers chosen to model the biological cell membrane. In solution, the excited state dynamics of the three compounds are nearly identical. However, when confined to lipid bilayers, the heterogeneity of the lipid membrane and packing forces imposed on the molecule by the lipid alter the excited state dynamics of these compounds. When confined to lipid bilayers in liposomes formed using DPPC, two solvation environments are identified. The excited state dynamics for DHC and analogs in fluid-like regions of the liposome membrane undergo internal conversion and ring-opening on 1 ps-2 ps time scales, similar to those observed in isotropic solution. In contrast, the excited state lifetime of a subpopulation in regions of lower fluidity is 7 ps-12 ps. The long decay component is unique to these liposomes and results from the structural properties of the lipid bilayer. Additional measurements in liposomes prepared with lipids having slightly longer or shorter alkane tails support this conclusion. In the lipid environments studied, the longest lifetimes are observed for DHC. The unsaturated sterol tail of ergosterol and the acetate group of DHC acetate disrupt the packing around the molecule and permit faster internal conversion and relaxation back to the ground state.


Assuntos
Desidrocolesteróis/química , Desidrocolesteróis/metabolismo , Bicamadas Lipídicas/metabolismo , Cinética , Modelos Moleculares , Conformação Molecular , Processos Fotoquímicos , Soluções
13.
J Steroid Biochem Mol Biol ; 206: 105794, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33246156

RESUMO

Bile acids are the end products of cholesterol metabolism secreted into bile. They are essential for the absorption of lipids and lipid soluble compounds from the intestine. Here we have identified a series of unusual Δ5-unsaturated bile acids in plasma and urine of patients with Smith-Lemli-Opitz syndrome (SLOS), a defect in cholesterol biosynthesis resulting in elevated levels of 7-dehydrocholesterol (7-DHC), an immediate precursor of cholesterol. Using liquid chromatography - mass spectrometry (LC-MS) we have uncovered a pathway of bile acid biosynthesis in SLOS avoiding cholesterol starting with 7-DHC and proceeding through 7-oxo and 7ß-hydroxy intermediates. This pathway also occurs to a minor extent in healthy humans, but elevated levels of pathway intermediates could be responsible for some of the features SLOS. The pathway is also active in SLOS affected pregnancies as revealed by analysis of amniotic fluid. Importantly, intermediates in the pathway, 25-hydroxy-7-oxocholesterol, (25R)26-hydroxy-7-oxocholesterol, 3ß-hydroxy-7-oxocholest-5-en-(25R)26-oic acid and the analogous 7ß-hydroxysterols are modulators of the activity of Smoothened (Smo), an oncoprotein that mediates Hedgehog (Hh) signalling across membranes during embryogenesis and in the regeneration of postembryonic tissue. Computational docking of the 7-oxo and 7ß-hydroxy compounds to the extracellular cysteine rich domain of Smo reveals that they bind in the same groove as both 20S-hydroxycholesterol and cholesterol, known activators of the Hh pathway.


Assuntos
Ácidos e Sais Biliares/biossíntese , Colesterol/biossíntese , Desidrocolesteróis/metabolismo , Síndrome de Smith-Lemli-Opitz/metabolismo , Ácidos e Sais Biliares/genética , Ácidos e Sais Biliares/metabolismo , Colesterol/genética , Colesterol/metabolismo , Cromatografia Líquida , Desidrocolesteróis/química , Humanos , Lipogênese/genética , Espectrometria de Massas , Simulação de Acoplamento Molecular , Síndrome de Smith-Lemli-Opitz/genética , Síndrome de Smith-Lemli-Opitz/patologia
14.
Aging (Albany NY) ; 12(14): 15021-15036, 2020 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-32712598

RESUMO

Aberrant activation of the cholesterol biosynthesis supports tumor cell growth. In recent years, significant progress has been made by targeting rate-limiting enzymes in cholesterol biosynthesis pathways to prevent carcinogenesis. However, precise mechanisms behind cholesterol degradation in cancer cells have not been comprehensively investigated. Here, we report that codon optimization of the orthologous cholesterol 7-desaturase, NVD-BM from Bombyx mori, significantly slowed melanoma cell proliferation and migration, and inhibited cancer cell engraftment in nude mice, by converting cholesterol to toxic 7-dehydrocholesterol. Based on these observations, we established a synthetic genetic circuit to induce melanoma cell regression by sensing tumor specific signals in melanoma cells. The dual-input signals, RELA proto-oncogene (RELA) and signal transducer and activator of transcription 1 (STAT1), activated NVD-BM expression and repressed melanoma cell proliferation and migration. Mechanically, we observed that NVD-BM decreased Akt1-ser473 phosphorylation and inhibited cytoplasmic RELA translocation. Taken together, NVD-BM was identified as a tumor suppressor in malignant melanoma, and we established a dual-input biosensor to promote cancer cell regression, via Akt1/NF-κB signaling. Our results demonstrate the potential therapeutic effects of cholesterol 7-desaturase in melanoma metabolism, and provides insights for genetic circuits targeting 7-dehydrocholesterol accumulation in tumors.


Assuntos
Desidrocolesteróis/metabolismo , Melanoma , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição RelA/metabolismo , Animais , Técnicas Biossensoriais/métodos , Bombyx , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Ácidos Graxos Dessaturases/metabolismo , Regulação Neoplásica da Expressão Gênica , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Oxirredutases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
15.
J Toxicol Sci ; 45(4): 201-218, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32238695

RESUMO

TP0446131, developed as an antidepressant agent, was found to cause lenticular opacity in a 13-week repeated-dose study in dogs. Histopathologically, the lenticular opacity was observed as a degeneration of the lens fibers, characterized by irregularity in the ordered arrangement of the fibers which is necessary to maintain the transparency of the lens, and was considered to manifest clinically as cataract. To evaluate the development mechanism of the lenticular opacity, the chemical constituents of the lens, which is known to be associated with the development of cataract, were examined. The results of liquid chromatography-tandem mass spectrometry analysis revealed an increase in the amplitudes of 3 unknown peaks in a dose- and time-dependent manner in the lens, with no remarkable changes in the other chemical components tested. In addition, the content of cholesterol, alterations of which have been reported to be associated with cataract, remained unchanged. The mass spectral data and chromatographic behavior of the 3 peaks indicated that these peaks corresponded to sterol-related substances, and that one of them was 7-dehydrocholesterol, a precursor of cholesterol biosynthesis. This finding suggested that TP0446131 exerts some effects on the cholesterol biosynthesis pathway, which could be involved in the development of the cataracts. Furthermore, increases in the levels of these sterol-related substances were also detected in the serum, and were, in fact, noted prior to the onset of the cataract, suggesting the possibility that these substances in the serum could be used as potential safety biomarkers for predicting the onset of cataract induced by TP0446131.


Assuntos
Antidepressivos/efeitos adversos , Catarata/induzido quimicamente , Desidrocolesteróis/metabolismo , Córtex do Cristalino/metabolismo , Córtex do Cristalino/patologia , Biomarcadores/sangue , Catarata/diagnóstico , Catarata/metabolismo , Cromatografia Líquida , Desidrocolesteróis/sangue , Relação Dose-Resposta a Droga , Humanos , Masculino , Espectrometria de Massas em Tandem
16.
Anticancer Res ; 40(2): 719-722, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32014913

RESUMO

AIM: A commercially available light emitting diode (LED) that transmitted narrow band ultraviolet B (UVB) radiation was evaluated for its efficacy and efficiency to produce vitamin D3 in human skin. MATERIALS AND METHODS: Human skin samples were obtained from surgical procedures. The LED had peak emission wavelength of 295 nm. Skin samples were exposed to the UVB-LED for varying times and then were analyzed by high-pressure liquid chromatography (HPLC) to determine the vitamin D3 content. RESULTS: There was a statistically significant time- and dose-dependent increase in the percent of 7-dehydrocholesterol that was converted to vitamin D3 in the skin type II samples; 1.3%±0.5, 2.3%±0.6 and 4.5%±1.67 after exposure to 0.75 (11.7 mJ/cm2), 1.5 (23.4 mJ/cm2) and 3 (46.8 mJ/cm2) minimal erythemal doses (MEDs), respectively. CONCLUSION: The UVB-LED was effective and efficient in generating vitamin D3 in human skin, in vitro. The amount of vitamin D3 production increased in a dose-dependent fashion with increased UVB energy. UVB-LEDs can be developed for devices that can efficiently produce vitamin D3 in human skin.


Assuntos
Colecalciferol/biossíntese , Pele/metabolismo , Pele/efeitos da radiação , Raios Ultravioleta , Colecalciferol/metabolismo , Cromatografia Líquida de Alta Pressão , Desidrocolesteróis/metabolismo , Relação Dose-Resposta à Radiação , Humanos
17.
Biochem Pharmacol ; 173: 113595, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31377232

RESUMO

Vitamin D3 is produced non-enzymatically when the cholesterol precursor 7-dehydrocholesterol is exposed to UV-B, i.e., evolutionary the first function of the molecule was that of an UV-B radiation scavenging end product. Vitamin D endocrinology started when some 550 million years ago first species developed a vitamin D receptor (VDR) that binds with high affinity the vitamin D metabolite 1α,25-dihydroxyvitamin D3. VDR evolved from a subfamily of nuclear receptors sensing the levels of cholesterol derivatives, such as bile acids, and controlling metabolic genes supporting cellular processes, such as innate and adaptive immunity. During vertebrate evolution, the skeletal and adaptive immune system showed in part interesting synchronous development although adaptive immunity is evolutionary older. There are bidirectional osteoimmune interactions between the immune system and bone metabolism, the regulation of both is under control of vitamin D. This diversity of physiological functions explains the pleiotropy of vitamin D signaling and opens the potential for various pharmacological applications of vitamin D as well as of its natural and synthetic derivatives. The overall impact of vitamin D on human health is demonstrated by the fact that the need for its efficient synthesis served in European hunter and gatherers as an evolutionary driver for increased 7-dehydrocholesterol levels, while light skin was established far later via populations from Anatolia and the northern Caucasus entering Europe 9000 and 5000 years ago, respectively. The later population settled preferentially in northern Europe and we hypothesize that that the introduction of high vitamin D responsiveness was an essential trait for surviving dark winters without suffering from the detrimental consequences of vitamin D deficiency.


Assuntos
Calcitriol/metabolismo , Desidrocolesteróis/metabolismo , Receptores de Calcitriol/metabolismo , Vitamina D/metabolismo , Evolução Biológica , Vias Biossintéticas/efeitos da radiação , Calcificação Fisiológica/efeitos dos fármacos , Calcificação Fisiológica/genética , Calcitriol/química , Calcitriol/farmacologia , Desidrocolesteróis/química , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Humanos , Estrutura Molecular , Receptores de Calcitriol/genética , Raios Ultravioleta , Vitamina D/química , Vitamina D/farmacologia , Vitaminas/química , Vitaminas/farmacologia
18.
IEEE Trans Nanobioscience ; 19(1): 48-58, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31647441

RESUMO

Inter-Symbol Interference (ISI) is one of the challenges of bio-inspired diffusion-based molecular communication. The degradation of the remaining molecules from a previous transmission is the solution that biological systems use to mitigate this ISI. While most prior work has proposed the use of enzymes to catalyze the molecules degradation, enzymes also degrade the molecules carrying the information, which drastically decreases the signal strength. In this paper, we propose the use of photolysis reactions, which use the light to instantly transform the emitted molecules so they no longer be recognized after their detection. The light will be emitted in an optimal time, allowing the receiver to detect as many molecules as possible, which increases both the signal strength and ISI mitigation. A lower bound expression on the expectation of the observed molecules number at the receiver is derived. Bit error probability expression is also formulated, and both expressions are validated with simulation results, which show a visible enhancement when using photolysis reactions. The performance of the proposed method is evaluated using Interference-to-Total-Received molecules metric (ITR) and the derived bit error probability.


Assuntos
Computadores Moleculares , Nanotecnologia/métodos , Fotólise , Raios Ultravioleta , Colecalciferol/química , Colecalciferol/metabolismo , Colecalciferol/efeitos da radiação , Comunicação , Desidrocolesteróis/química , Desidrocolesteróis/metabolismo , Desidrocolesteróis/efeitos da radiação , Difusão , Humanos , Modelos Biológicos
19.
Immunity ; 52(1): 109-122.e6, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31882361

RESUMO

Recent work suggests that cholesterol metabolism impacts innate immune responses against infection. However, the key enzymes or the natural products and mechanisms involved are not well elucidated. Here, we have shown that upon DNA and RNA viral infection, macrophages reduced 7-dehydrocholesterol reductase (DHCR7) expression. DHCR7 deficiency or treatment with the natural product 7-dehydrocholesterol (7-DHC) could specifically promote phosphorylation of IRF3 (not TBK1) and enhance type I interferon (IFN-I) production in macrophages. We further elucidated that viral infection or 7-DHC treatment enhanced AKT3 expression and activation. AKT3 directly bound and phosphorylated IRF3 at Ser385, together with TBK1-induced phosphorylation of IRF3 Ser386, to achieve IRF3 dimerization. Deletion of DHCR7 and the DHCR7 inhibitors including AY9944 and the chemotherapy drug tamoxifen promoted clearance of Zika virus and multiple viruses in vitro or in vivo. Taken together, we propose that the DHCR7 inhibitors and 7-DHC are potential therapeutics against emerging or highly pathogenic viruses.


Assuntos
Desidrocolesteróis/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/biossíntese , Macrófagos/imunologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Estomatite Vesicular/imunologia , Células A549 , Animais , Linhagem Celular , Colesterol/metabolismo , Ativação Enzimática/imunologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células RAW 264.7 , Interferência de RNA , RNA Interferente Pequeno/genética , Vírus da Estomatite Vesicular Indiana/imunologia
20.
Sci Rep ; 9(1): 19267, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31848400

RESUMO

Vitamin D is important in multiple health conditions. Vitamin D deficiency is prevalent globally even with exposure to adequate sunlight. Reduction in provitamin D3 (7-dehydrocholesterol, 7-DHC) is an important cause of vitamin D3 deficiency. Vitamin supplementation, food fortification, and use of probiotics are some approaches to reduce vitamin D3 deficiency. This study investigates plausibility of 7-DHC biosynthesis through dietary prebiotics supplementation. Furthermore, it reports mechanistic details and constraints for the biosynthesis using flux balance analysis (FBA) simulations. The FBA simulations using co-metabolism models comprising human host and a resident bacterium (Faecalibacterium prausnitzii or Bacteroides thetaiotamicron) indicated increased flux of 7-DHC with short-chain fructooligosaccharide (scFOS) or inulin supplementation. We observed around 2-fold increase in flux compared to the baseline. Biosynthesis of 7-DHC was primarily modulated through acetate, pyruvate and lactate secreted by the bacterium. We observed diverse mechanisms and dose dependent responses. We extended this assessment to 119 resident bacteria and investigated the metabolites profiles with prebiotics supplementation. In summary, the current study suggests the potential use of applying prebiotics in enhancing 7-DHC biosynthesis. Furthermore, performance of the different gut bacteria with prebiotic supplementation for secreted metabolites profile is reported. These results may be useful to design future clinical studies.


Assuntos
Bacteroides thetaiotaomicron/metabolismo , Desidrocolesteróis/metabolismo , Faecalibacterium/metabolismo , Prebióticos , Meios de Cultura/química , Meios de Cultura/farmacologia , Humanos , Inulina/química , Inulina/farmacologia , Oligossacarídeos/química , Oligossacarídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA