Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.860
Filtrar
1.
Pak J Pharm Sci ; 37(1(Special)): 235-243, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38747275

RESUMO

Stimulus-responsive mesoporous silica nanoparticles (MSNs) have displayed great potentiality for controlled-release and targeted drug delivery. In the current work, a supercritical fluid method was utilized to successfully prepare cinnamon oil loaded into chitosan grafted MSNs (CO@CS-MSNs). The influencing factors of drug loads, such as pressure, temperature, impregnation time and depressure time, were investigated. The structure of CO@CS-MSNs was demonstrated with Fourier-transform infrared (FT-IR) spectroscopy, transmission electron microscope (TEM), scanning electron microscopy (SEM), thermogravimetry (TG) as well as X-ray diffraction (XRD). The drug release assays in vitro at various pH conditions displayed that CO@CS-MSNs had an excellent pH-responsive release behavior, which confirmed that CO was loaded successfully into the CO@CS-MSNs. The findings indicated that the supercritical fluid approach is a non-destructive and efficient approach for stimulus-responsive MSNs, which is expected to further expand its application range.


Assuntos
Dióxido de Carbono , Quitosana , Cinnamomum zeylanicum , Liberação Controlada de Fármacos , Nanopartículas , Dióxido de Silício , Quitosana/química , Dióxido de Silício/química , Nanopartículas/química , Concentração de Íons de Hidrogênio , Dióxido de Carbono/química , Porosidade , Cinnamomum zeylanicum/química , Portadores de Fármacos/química , Óleos Voláteis/química , Óleos Voláteis/administração & dosagem , Difração de Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Microscopia Eletrônica de Varredura , Preparações de Ação Retardada
2.
Part Fibre Toxicol ; 21(1): 23, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734694

RESUMO

BACKGROUND: Inhalation of biopersistent fibers like asbestos can cause strong chronic inflammatory effects, often resulting in fibrosis or even cancer. The interplay between fiber shape, fiber size and the resulting biological effects is still poorly understood due to the lack of reference materials. RESULTS: We investigated how length, diameter, aspect ratio, and shape of synthetic silica fibers influence inflammatory effects at doses up to 250 µg cm-2. Silica nanofibers were prepared with different diameter and shape. Straight (length ca. 6 to 8 µm, thickness ca. 0.25 to 0.35 µm, aspect ratio ca. 17:1 to 32:1) and curly fibers (length ca. 9 µm, thickness ca. 0.13 µm, radius of curvature ca. 0.5 µm, aspect ratio ca. 70:1) were dispersed in water with no apparent change in the fiber shape during up to 28 days. Upon immersion in aqueous saline (DPBS), the fibers released about 5 wt% silica after 7 days irrespectively of their shape. The uptake of the fibers by macrophages (human THP-1 and rat NR8383) was studied by scanning electron microscopy and confocal laser scanning microscopy. Some fibers were completely taken up whereas others were only partially internalized, leading to visual damage of the cell wall. The biological effects were assessed by determining cell toxicity, particle-induced chemotaxis, and the induction of gene expression of inflammatory mediators. CONCLUSIONS: Straight fibers were only slightly cytotoxic and caused weak cell migration, regardless of their thickness, while the curly fibers were more toxic and caused significantly stronger chemotaxis. Curly fibers also had the strongest effect on the expression of cytokines and chemokines. This may be due to the different aspect ratio or its twisted shape.


Assuntos
Quimiotaxia , Macrófagos , Tamanho da Partícula , Dióxido de Silício , Dióxido de Silício/toxicidade , Dióxido de Silício/química , Animais , Humanos , Ratos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Quimiotaxia/efeitos dos fármacos , Nanofibras/toxicidade , Nanofibras/química , Células THP-1 , Transcriptoma/efeitos dos fármacos , Fibras Minerais/toxicidade , Citocinas/metabolismo , Citocinas/genética , Linhagem Celular
3.
Sci Rep ; 14(1): 10566, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719873

RESUMO

Conventional wastewater treatment processes are often unable to remove antibiotics with resistant compounds and low biological degradation. The need for advanced and sustainable technologies to remove antibiotics from water sources seems essential. In this regard, the effectiveness of a spinning disc photocatalytic reactor (SDPR) equipped with a visible light-activated Fe3O4@SiO2-NH2@CuO/ZnO core-shell (FSNCZ CS) thin film photocatalyst was investigated for the decomposition of amoxicillin (AMX), a representative antibiotic. Various characterization techniques, such as TEM, FESEM, EDX, AFM, XRD, and UV-Vis-DRS, were employed to study the surface morphology, optoelectronic properties, and nanostructure of the FSNCZ CS. Key operating parameters such as irradiation time, pH, initial AMX concentration, rotational speed, and solution flow rate were fine-tuned for optimization. The results indicated that the highest AMX decomposition (98.7%) was attained under optimal conditions of 60 min of irradiation time, a rotational speed of 350 rpm, a solution flow rate of 0.9 L/min, pH of 5, and an initial AMX concentration of 20 mg/L. Moreover, during the 60 min irradiation time, more than 69.95% of chemical oxygen demand and 61.2% of total organic carbon were removed. After the photocatalytic decomposition of AMX, there is a substantial increase in the average oxidation state and carbon oxidation state in SDPR from 1.33 to 1.94 and 3.2, respectively. Active species tests confirmed that ·OH and ·O2- played a dominant role in AMX decomposition. The developed SDPR, which incorporates a reusable and robust FSNCZ CS photocatalyst, demonstrates promising potential for the decomposition of organic compounds.


Assuntos
Amoxicilina , Antibacterianos , Luz , Nanoestruturas , Catálise , Antibacterianos/química , Nanoestruturas/química , Amoxicilina/química , Poluentes Químicos da Água/química , Cobre/química , Óxido de Zinco/química , Dióxido de Silício/química , Purificação da Água/métodos
4.
J Agric Food Chem ; 72(19): 10781-10793, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38709780

RESUMO

In this study, 20-day-old soybean plants were watered with 100 mL of 100 mM NaCl solution and sprayed with silica nanoparticles (SiO2 NPs) or potassium silicate every 3 days over 15 days, with a final dosage of 12 mg of SiO2 per plant. We assessed the alterations in the plant's growth and physiological traits, and the responses of bacterial microbiome within the leaf endosphere, rhizosphere, and root endosphere. The result showed that the type of silicon did not significantly impact most of the plant parameters. However, the bacterial communities within the leaf and root endospheres had a stronger response to SiO2 NPs treatment, showing enrichment of 24 and 13 microbial taxa, respectively, compared with the silicate treatment, which led to the enrichment of 9 and 8 taxonomic taxa, respectively. The rhizosphere bacterial communities were less sensitive to SiO2 NPs, enriching only 2 microbial clades, compared to the 8 clades enriched by silicate treatment. Furthermore, SiO2 NPs treatment enriched beneficial genera, such as Pseudomonas, Bacillus, and Variovorax in the leaf and root endosphere, likely enhancing plant growth and salinity stress resistance. These findings highlight the potential of SiO2 NPs for foliar application in sustainable farming by enhancing plant-microbe interactions to improve salinity tolerance.


Assuntos
Bactérias , Glycine max , Nanopartículas , Rizosfera , Silício , Glycine max/microbiologia , Glycine max/crescimento & desenvolvimento , Glycine max/efeitos dos fármacos , Glycine max/química , Nanopartículas/química , Bactérias/classificação , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Bactérias/crescimento & desenvolvimento , Silício/farmacologia , Silício/química , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Microbiologia do Solo , Microbiota/efeitos dos fármacos , Folhas de Planta/química , Folhas de Planta/microbiologia , Folhas de Planta/crescimento & desenvolvimento , Endófitos/fisiologia , Endófitos/efeitos dos fármacos , Dióxido de Silício/química , Estresse Salino
5.
BMC Oral Health ; 24(1): 557, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38735940

RESUMO

BACKGROUND: Dental resin-based composites are widely recognized for their aesthetic appeal and adhesive properties, which make them integral to modern restorative dentistry. Despite their advantages, adhesion and biomechanical performance challenges persist, necessitating innovative strategies for improvement. This study addressed the challenges associated with adhesion and biomechanical properties in dental resin-based composites by employing molecular docking and dynamics simulation. METHODS: Molecular docking assesses the binding energies and provides valuable insights into the interactions between monomers, fillers, and coupling agents. This investigation prioritizes SiO2 and TRIS, considering their consistent influence. Molecular dynamics simulations, executed with the Forcite module and COMPASS II force field, extend the analysis to the mechanical properties of dental composite complexes. The simulations encompassed energy minimization, controlled NVT and NPT ensemble simulations, and equilibration stages. Notably, the molecular dynamics simulations spanned a duration of 50 ns. RESULTS: SiO2 and TRIS consistently emerged as influential components, showcasing their versatility in promoting solid interactions. A correlation matrix underscores the significant roles of van der Waals and desolvation energies in determining the overall binding energy. Molecular dynamics simulations provide in-depth insights into the mechanical properties of dental composite complexes. HEMA-SiO2-TRIS excelled in stiffness, BisGMA-SiO2-TRIS prevailed in terms of flexural strength, and EBPADMA-SiO2-TRIS offered a balanced combination of mechanical properties. CONCLUSION: These findings provide valuable insights into optimizing dental composites tailored to diverse clinical requirements. While EBPADMA-SiO2-TRIS demonstrates distinct strengths, this study emphasizes the need for further research. Future investigations should validate the computational findings experimentally and assess the material's response to dynamic environmental factors.


Assuntos
Materiais Biocompatíveis , Resinas Compostas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Dióxido de Silício , Resinas Compostas/química , Dióxido de Silício/química , Materiais Biocompatíveis/química , Materiais Dentários/química , Metacrilatos/química , Poliuretanos/química , Ácidos Polimetacrílicos/química , Polietilenoglicóis/química , Resinas Acrílicas/química
6.
J Chromatogr A ; 1725: 464943, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38691924

RESUMO

In this study, we proposed a novel method utilizing polyethyleneimine (PEI)-modified halloysite nanotubes (HNTs)-based hybrid silica monolithic spin tip to analyze hydrophilic ß-lactam antibiotics and ß-lactamases inhibitors in whole blood samples for the first time. HNTs were incorporated directly into the hybrid silica monolith via a sol-gel method, which improved the hydrophilicity of the matrix. The as-prepared monolith was further modified with PEI by glutaraldehyde coupling reaction. It was found that the PEI-modified HNTs-based hybrid silica monolith enabled a large adsorption capacity of cefoperazone at 35.7 mg g-1. The monolithic spin tip-based purification method greatly reduced the matrix effect of whole blood samples and had a detection limit as low as 0.1 - 0.2 ng mL-1. In addition, the spiked recoveries of sulbactam, cefuroxime, and cefoperazone in blank whole blood were in the range of 89.3-105.4 % for intra-day and 90.6-103.5 % for inter-day, with low relative standard deviations of 1.3-7.2 % and 4.9-10.5 %, respectively. This study introduces a new strategy for preparing nanoparticles incorporated in a hybrid silica monolith with a high adsorption capacity. Moreover, it offers a valuable tool to monitor sulbactam, cefoperazone, and cefuroxime in whole blood from pregnant women with the final aim of guiding their administration.


Assuntos
Cefoperazona , Cefuroxima , Interações Hidrofóbicas e Hidrofílicas , Limite de Detecção , Nanotubos , Dióxido de Silício , Extração em Fase Sólida , Sulbactam , Cefoperazona/sangue , Cefoperazona/química , Humanos , Sulbactam/sangue , Sulbactam/química , Extração em Fase Sólida/métodos , Dióxido de Silício/química , Nanotubos/química , Cefuroxima/sangue , Cefuroxima/química , Argila/química , Adsorção , Antibacterianos/sangue , Antibacterianos/química , Polietilenoimina/química , Cromatografia Líquida de Alta Pressão/métodos , Reprodutibilidade dos Testes
7.
Anal Chem ; 96(19): 7470-7478, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38696229

RESUMO

MicroRNAs (miRNAs) are endogenous and noncoding single-stranded RNA molecules with a length of approximately 18-25 nucleotides, which play an undeniable role in early cancer screening. Therefore, it is very important to develop an ultrasensitive and highly specific method for detecting miRNAs. Here, we present a bottom-up assembly approach for modifying glass microtubes with silica nanowires (SiNWs) and develop a label-free sensing platform for miRNA-21 detection. The three-dimensional (3D) networks formed by SiNWs make them abundant and highly accessible sites for binding with peptide nucleic acid (PNA). As a receptor, PNA has no phosphate groups and exhibits an overall electrically neutral state, resulting in a relatively small repulsion between PNA and RNA, which can improve the hybridization efficiency. The SiNWs-filled glass microtube (SiNWs@GMT) sensor enables ultrasensitive, label-free detection of miRNA-21 with a detection limit as low as 1 aM at a detection range of 1 aM-100 nM. Noteworthy, the sensor can still detect miRNA-21 in the range of 102-108 fM in complex solutions containing 1000-fold homologous interference of miRNAs. The high anti-interference performance of the sensor enables it to specifically recognize target miRNA-21 in the presence of other miRNAs and distinguish 1-, 3-mismatch nucleotide sequences. Significantly, the sensor platform is able to detect miRNA-21 in the lysate of breast cancer cell lines (e.g., MCF-7 cells and MDA-MB-231 cells), indicating that it has good potential in the screening of early breast cancers.


Assuntos
Vidro , MicroRNAs , Nanofios , Ácidos Nucleicos Peptídicos , Dióxido de Silício , MicroRNAs/análise , Ácidos Nucleicos Peptídicos/química , Dióxido de Silício/química , Humanos , Nanofios/química , Vidro/química , Técnicas Biossensoriais/métodos , Limite de Detecção
8.
Anal Chem ; 96(19): 7679-7686, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38698534

RESUMO

Despite the success of surface-enhanced Raman spectroscopy (SERS) for detecting DNA immobilized on plasmonic metal surfaces, its quantitative response is limited by the rapid falloff of enhancement with distance from the metal surface and variations in sensitivity that depend on orientation and proximity to plasmonic "hot spots". In this work, we assess an alternative approach for enhancing detection by immobilizing DNA on the interior surfaces of porous silica particles. These substrates provide over a 1000-fold greater surface area for detection compared to a planar support. The porous silica substrate is a purely dielectric material with randomly oriented internal surfaces, where scattering is independent of proximity and orientation of oligonucleotides relative to the silica surface. We characterize the quantitative response of Raman scattering from DNA in porous silica particles with sequences used in previous SERS investigations of DNA for comparison. The results show that Raman scattering of DNA in porous silica is independent of distance of nucleotides from the silica surface, allowing detection of longer DNA strands with constant sensitivity. The surface area enhancement within particles is reproducible (<4% particle-to-particle variation) owing to the uniform internal pore structure and surface chemistry of the silica support. DNA immobilization with a bis-thiosuccinimide linker provides a Raman-active internal standard for quantitative interpretation of Raman scattering results. Despite the high (30 mM) concentrations of immobilized DNA within porous silica particles, they can be used to measure nanomolar binding affinities of target molecules to DNA by equilibrating a very small number of particles with a sufficiently large volume of low-concentration solution of target molecules.


Assuntos
DNA , Dióxido de Silício , Análise Espectral Raman , Propriedades de Superfície , Dióxido de Silício/química , Análise Espectral Raman/métodos , Porosidade , DNA/química , DNA/análise
9.
Sci Rep ; 14(1): 11450, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769394

RESUMO

A mesoporous silica nanoparticle (MSN) coated with polydopamine (PDA) and loaded with umbelliprenin (UMB) was prepared and evaluated for its anti-cancer properties in this study. Then UMB-MSN-PDA was characterized by dynamic light scattering (DLS), Field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM) and FTIR methods. UV-visible spectrometry was employed to study the percentage of encapsulation efficiency (EE%). UMB-MSN-PDA mediated cell cytotoxicity and their ability to induce programmed cell death were evaluated by MTT, real-time qPCR, flow cytometry, and AO/PI double staining methods. The size of UMB-MSN-PDA was 196.7 with a size distribution of 0.21 and a surface charge of -41.07 mV. The EE% was 91.92%. FESEM and TEM showed the spherical morphology of the UMB-MSN-PDA. FTIR also indicated the successful interaction of the UMB and MSN and PDA coating. The release study showed an initial 20% release during the first 24 h of the study and less than 40% during 168 h. The lower cytotoxicity of the UMB-MSN-PDA against HFF normal cells compared to MCF-7 carcinoma cells suggested the safety of formulation on normal cells and tissues. The induction of apoptosis in MCF-7 cells was indicated by the upregulation of P53, caspase 8, and caspase 9 genes, enhanced Sub-G1 phase cells, and the AO/PI fluorescent staining. As a result of these studies, it may be feasible to conduct preclinical studies shortly to evaluate the formulation for its potential use in cancer treatment.


Assuntos
Antineoplásicos , Indóis , Nanopartículas , Polímeros , Dióxido de Silício , Humanos , Indóis/química , Indóis/farmacologia , Dióxido de Silício/química , Polímeros/química , Nanopartículas/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Porosidade , Células MCF-7 , Umbeliferonas/química , Umbeliferonas/farmacologia , Portadores de Fármacos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos
10.
Clin Exp Dent Res ; 10(3): e901, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38770577

RESUMO

OBJECTIVES: The study aimed to evaluate the debonding resistance of three different endocrown designs on molar teeth, using three different zirconia surface pretreatments. MATERIAL AND METHOD: Ninety human mandibular first molars were divided into three main groups: endocrowns without ferrule, with 1 mm ferrule, and with 2 mm ferrule. The subgroups were defined by their surface pretreatment method used (n = 15): 50 µm alumina air-particle abrasion, silica coating using 30 µm Cojet™ particles, and Zircos-E® etching. The endocrowns were fabricated using multilayer zirconia ceramic, cemented with self-adhesive resin cement, and subjected to 5000 thermocycles (5-55°C) before debonding. The data obtained were analyzed using a two-way ANOVA. RESULTS: All test specimens survived the thermocyclic aging. The results indicated that both the preparation design and the surface treatment had a significant impact on the resistance to debonding of the endocrowns (p < .001). The 2 mm ferrule followed by the 1 mm ferrule designs exhibited the highest debonding resistance, both were superior to the endocrown without ferrule. Zircos-E® etching and silica coating yielded comparable debonding resistance, which were significantly higher than alumina air-particle abrasion. All endocrowns demonstrated a favorable failure mode. CONCLUSIONS: All designs and surface treatments showed high debonding resistance for a single restoration. However, ferrule designs with Zircos-E® etching or silica coating may represent better clinical options compared to the nonferrule design or alumina airborne-particle abrasion. Nonetheless, further research, including fatigue testing and evaluations with different luting agents is recommended.


Assuntos
Óxido de Alumínio , Dióxido de Silício , Propriedades de Superfície , Zircônio , Óxido de Alumínio/química , Humanos , Dióxido de Silício/química , Zircônio/química , Dente Molar , Teste de Materiais , Abrasão Dental por Ar/métodos , Cimentos de Resina/química , Corrosão Dentária/métodos , Análise do Estresse Dentário , Planejamento de Prótese Dentária
11.
Biomed Mater ; 19(4)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38697132

RESUMO

During the process of malignant tumor treatment, photodynamic therapy (PDT) exerts poor efficacy due to the hypoxic environment of the tumor cells, and long-time chemotherapy reduces the sensitivity of tumor cells to chemotherapy drugs due to the presence of drug-resistant proteins on the cell membranes for drug outward transportation. Therefore, we reported a nano platform based on mesoporous silica coated with polydopamine (MSN@PDA) loading PDT enhancer MnO2, photosensitizer indocyanine green (ICG) and chemotherapeutic drug doxorubicin (DOX) (designated as DMPIM) to achieve a sequential release of different drugs to enhance treatment of malignant tumors. MSN was first synthesized by a template method, then DOX was loaded into the mesoporous channels of MSN, and locked by the PDA coating. Next, ICG was modified by π-π stacking on PDA, and finally, MnO2layer was accumulated on the surface of DOX@MSN@PDA- ICG@MnO2, achieving orthogonal loading and sequential release of different drugs. DMPIM first generated oxygen (O2) through the reaction between MnO2and H2O2after entering tumor cells, alleviating the hypoxic environment of tumors and enhancing the PDT effect of sequentially released ICG. Afterwards, ICG reacted with O2in tumor tissue to produce reactive oxygen species, promoting lysosomal escape of drugs and inactivation of p-glycoprotein (p-gp) on tumor cell membranes. DOX loaded in the MSN channels exhibited a delay of approximately 8 h after ICG release to exert the enhanced chemotherapy effect. The drug delivery system achieved effective sequential release and multimodal combination therapy, which achieved ideal therapeutic effects on malignant tumors. This work offers a route to a sequential drug release for advancing the treatment of malignant tumors.


Assuntos
Doxorrubicina , Liberação Controlada de Fármacos , Verde de Indocianina , Indóis , Compostos de Manganês , Óxidos , Fotoquimioterapia , Fármacos Fotossensibilizantes , Polímeros , Fotoquimioterapia/métodos , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Verde de Indocianina/química , Indóis/química , Animais , Compostos de Manganês/química , Humanos , Polímeros/química , Linhagem Celular Tumoral , Óxidos/química , Fármacos Fotossensibilizantes/química , Dióxido de Silício/química , Camundongos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Portadores de Fármacos/química , Porosidade
12.
J Chromatogr A ; 1726: 464960, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38718695

RESUMO

Mass transport through the mesopore space of a reversed-phase liquid chromatography (RPLC) column depends on the properties of the chromatographic interface, particularly on the extent of the organic-solvent ditch that favors the analyte surface diffusivity. Through molecular dynamics simulations in cylindrical RPLC mesopore models with pore diameters between 6 and 12 nm we systematically trace the evolution of organic-solvent ditch overlap due to spatial confinement in the mesopore space of RPLC columns for small-molecule separations. Each pore model of a silica-based, endcapped, C18-stationary phase is equilibrated with two mobile phases of comparable elution strength, namely 70/30 (v/v) water/acetonitrile and 60/40 (v/v) water/methanol, to consider the influence of the mobile-phase composition on the onset of organic-solvent ditch overlap. The simulations show that, as the pore diameter decreases from 9 to 6 nm, the bonded-phase density extends and compacts towards the pore center, which leads to increased accumulation of organic-solvent excess and thus enhanced organic-solvent diffusivity in the ditch. Because the acetonitrile ditch is more pronounced than the methanol ditch, acetonitrile ditch overlap sets in at less severe spatial confinement than methanol ditch overlap. The pore-averaged methanol and acetonitrile diffusivities are considerably raised by ditch overlap in the 6 nm-diameter pore, but also benefit from the ditch (without overlap) in the 7 to 12 nm-diameter pores, whereby local and pore-averaged effects are generally larger for acetonitrile than methanol.


Assuntos
Acetonitrilas , Cromatografia de Fase Reversa , Metanol , Simulação de Dinâmica Molecular , Solventes , Cromatografia de Fase Reversa/métodos , Acetonitrilas/química , Solventes/química , Metanol/química , Porosidade , Difusão , Dióxido de Silício/química , Água/química
13.
Mikrochim Acta ; 191(6): 326, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740583

RESUMO

Migration is an initial step in tumor expansion and metastasis; suppressing cellular migration is beneficial to cancer therapy. Herein, we designed a novel biogated nanoagents that integrated the migration inhibitory factor into the mesoporous silica nanoparticle (MSN) drug delivery nanosystem to realize cell migratory inhibition and synergistic treatment. Antisense oligonucleotides (Anti) of microRNA-330-3p, which is positively related with cancer cell proliferation, migration, invasion, and angiogenesis, not only acted as the locker for blocking drugs but also acted as the inhibitory factor for suppressing migration via gene therapy. Synergistic with gene therapy, the biogated nanoagents (termed as MSNs-Gef-Anti) could achieve on-demand drug release based on the intracellular stimulus-recognition and effectively kill tumor cells. Experimental results synchronously demonstrated that the migration suppression ability of MSNs-Gef-Anti nanoagents (nearly 30%) significantly contributed to cancer therapy, and the lethality rate of the non-small-cell lung cancer was up to 70%. This strategy opens avenues for realizing efficacious cancer therapy and should provide an innovative way for pursuing the rational design of advanced nano-therapeutic platforms with the combination of cancer cell migratory inhibition.


Assuntos
Movimento Celular , Quimioterapia Combinada , Nanopartículas , Neoplasias , Dióxido de Silício , Movimento Celular/efeitos dos fármacos , Dióxido de Silício/química , Quimioterapia Combinada/métodos , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Fármacos por Nanopartículas/química , Sistemas de Liberação de Fármacos por Nanopartículas/uso terapêutico , Nanopartículas/química , Nanopartículas/uso terapêutico , Nanopartículas/ultraestrutura , Células A549 , Microscopia Eletrônica de Transmissão , Humanos
14.
J Chromatogr A ; 1726: 464972, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38744184

RESUMO

The effect of internal and external magnetic fields on the separation of antifungal drugs by centrifugal acceleration thin-layer chromatography was reported for the first time. External and internal magnetic fields were applied using neodymium magnets and CoFe2O4@SiO2 ferromagnetic nanoparticles. Separation of ketoconazole and clotrimazole was performed using a mobile phase consisting of n-hexane, ethyl acetate, ethanol, and ammonia (2.0:2.0:0.5:0.2, v/v). The influence of the magnetic field on the entire chromatographic system led to changes in the properties of the stationary and mobile phases and the analytes affecting the retention factor, shape, and width of the separated rings. The extent of this impact depended on the structure of the analyte and the type and intensity of the magnetic field. In the presence of the external magnetic field, there were more significant changes in the chromatographic parameters of the drugs, especially the width of the separated rings, and ketoconazole was more affected than clotrimazole. The changes are conceivably due to the effect of the magnetic field on the analyte distribution between the stationary and mobile phases, which is also caused by the possibility of the magnetic field affecting the viscosity, surface tension, and surface free energy between the stationary and mobile phases.


Assuntos
Antifúngicos , Cetoconazol , Campos Magnéticos , Cromatografia em Camada Fina/métodos , Antifúngicos/análise , Antifúngicos/química , Antifúngicos/isolamento & purificação , Cetoconazol/química , Cetoconazol/análise , Clotrimazol/química , Clotrimazol/análise , Centrifugação/métodos , Dióxido de Silício/química
15.
J Adhes Dent ; 26(1): 125-134, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38770704

RESUMO

PURPOSE: To investigate the effect of adhesive type and long-term aging on the shear bond strength (SBS) between silica-based ceramics and composite cement (CC). MATERIALS AND METHODS: Lithium-silicate (LS), feldspathic (FD) and polymer-infiltrated ceramic (PIC) blocks were sectioned (10 x 12 x 2 mm) and divided into 24 groups considering the factors: "ceramics" (LS, FD, and PIC), "adhesive" (Ctrl: without adhesive; 2SC: 2-step conventional; 3SC: 3-step conventional; 1SU: 1-step universal), and "aging" (non-aged or aged [A]). After the surface treatments, CC cylinders (n = 15, Ø = 2 mm; height = 2 mm) were made and half of the samples were subjected to thermocycling (10,000) and stored in water at 37°C for 18 months. The samples were submitted to SBS testing (100 kgf, 1 mm/min) and failure analysis. Extra samples were prepared for microscopic analysis of the adhesive interface. SBS (MPa) data was analyzed by 3-way ANOVA and Tukey's test (5%). Weibull analysis was performed on the SBS data. RESULTS: All factors and interactions were significant for SBS (p<0.05). Before aging, there was no significant difference between the tested groups and the respective control groups. After aging, the LS_1SU (22.18 ± 7.74) and LS_2SC (17.32 ± 5.86) groups exhibited significantly lower SBS than did the LS_Ctrl (30.30 ± 6.11). Only the LS_1SU group showed a significant decrease in SBS after aging vs without aging. The LS_1SU (12.20) group showed the highest Weibull modulus, which was significantly higher than LS_2SC_A (2.82) and LS_1SU_A (3.15) groups. CONCLUSION: No type of adhesive applied after silane benefitted the long-term adhesion of silica-based ceramics to CC in comparison to the groups without adhesive.


Assuntos
Cerâmica , Colagem Dentária , Teste de Materiais , Cimentos de Resina , Resistência ao Cisalhamento , Dióxido de Silício , Dióxido de Silício/química , Cerâmica/química , Fatores de Tempo , Cimentos de Resina/química , Desenho Assistido por Computador , Propriedades de Superfície , Análise do Estresse Dentário , Cimentação/métodos , Porcelana Dentária/química , Humanos , Resinas Compostas/química , Cimentos Dentários/química , Compostos de Potássio/química , Silicatos de Alumínio/química , Temperatura
16.
J Nanobiotechnology ; 22(1): 249, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745193

RESUMO

BACKGROUND: Chemotherapy, the mainstay treatment for metastatic cancer, presents serious side effects due to off-target exposure. In addition to the negative impact on patients' quality of life, side effects limit the dose that can be administered and thus the efficacy of the drug. Encapsulation of chemotherapeutic drugs in nanocarriers is a promising strategy to mitigate these issues. However, avoiding premature drug release from the nanocarriers and selectively targeting the tumour remains a challenge. RESULTS: In this study, we present a pioneering method for drug integration into nanoparticles known as mesoporous organosilica drugs (MODs), a distinctive variant of periodic mesoporous organosilica nanoparticles (PMOs) in which the drug is an inherent component of the silica nanoparticle structure. This groundbreaking approach involves the chemical modification of drugs to produce bis-organosilane prodrugs, which act as silica precursors for MOD synthesis. Mitoxantrone (MTO), a drug used to treat metastatic breast cancer, was selected for the development of MTO@MOD nanomedicines, which demonstrated a significant reduction in breast cancer cell viability. Several MODs with different amounts of MTO were synthesised and found to be efficient nanoplatforms for the sustained delivery of MTO after biodegradation. In addition, Fe3O4 NPs were incorporated into the MODs to generate magnetic MODs to actively target the tumour and further enhance drug efficacy. Importantly, magnetic MTO@MODs underwent a Fenton reaction, which increased cancer cell death twofold compared to non-magnetic MODs. CONCLUSIONS: A new PMO-based material, MOD nanomedicines, was synthesised using the chemotherapeutic drug MTO as a silica precursor. MTO@MOD nanomedicines demonstrated their efficacy in significantly reducing the viability of breast cancer cells. In addition, we incorporated Fe3O4 into MODs to generate magnetic MODs for active tumour targeting and enhanced drug efficacy by ROS generation. These findings pave the way for the designing of silica-based multitherapeutic nanomedicines for cancer treatment with improved drug delivery, reduced side effects and enhanced efficacy.


Assuntos
Antineoplásicos , Neoplasias da Mama , Sobrevivência Celular , Mitoxantrona , Compostos de Organossilício , Humanos , Neoplasias da Mama/tratamento farmacológico , Feminino , Sobrevivência Celular/efeitos dos fármacos , Compostos de Organossilício/química , Compostos de Organossilício/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Mitoxantrona/farmacologia , Mitoxantrona/química , Mitoxantrona/uso terapêutico , Linhagem Celular Tumoral , Portadores de Fármacos/química , Dióxido de Silício/química , Porosidade , Liberação Controlada de Fármacos , Nanopartículas/química , Células MCF-7 , Nanomedicina/métodos , Espécies Reativas de Oxigênio/metabolismo
17.
Bioorg Chem ; 147: 107398, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38691907

RESUMO

Herein, we report a multifaceted nanoformulation, developed by binding thionine acetate (TA) in silica matrix to form TA loaded silica nanoparticles (STA Nps), which were characterized using various physicochemical techniques. STA NPs were spherical shaped having size 40-50 nm and exhibited good heating efficiency, improved photostability and singlet oxygen production rate than TA alone. In PDT experiment, the rate of degradation for ABDMA was enhanced from 0.1367 min-1 for TA alone to 0.1774 min-1 for STA Nps, depicting an increase in the reactive oxygen species (ROS) generation ability of STA Nps. Further, the cytotoxicity of STA Nps was investigated by carrying out the biophysical studies with Calf thymus DNA (Ct-DNA) and Human Serum Albumin (HSA). The results indicated that the binding of STA Nps to Ct-DNA causes alterations in the double helix structure of DNA and as a result, STA Nps can impart chemotherapeutic effects via targeting DNA. STA Nps showed good binding affinity with HSA without compromising the structure of HSA, which is important for STA Nps sustainable biodistribution and pharmacokinetics. Based on this study, it is suggested that because of the synergistic effect of chemo and phototherapy, STA Nps can be extensively utilized as potential candidates for treating cancer.


Assuntos
Antineoplásicos , Lasers , Nanopartículas , Fenotiazinas , Dióxido de Silício , Humanos , Dióxido de Silício/química , Nanopartículas/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Fenotiazinas/química , Fenotiazinas/farmacologia , Fenotiazinas/síntese química , Albumina Sérica Humana/química , DNA/química , Ensaios de Seleção de Medicamentos Antitumorais , Relação Dose-Resposta a Droga , Estrutura Molecular , Animais , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese química , Fotoquimioterapia , Proliferação de Células/efeitos dos fármacos , Bovinos , Relação Estrutura-Atividade
18.
ACS Appl Bio Mater ; 7(5): 3337-3345, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38700956

RESUMO

A stimuli-responsive drug delivery nanocarrier with a core-shell structure combining photothermal therapy and chemotherapy for killing cancer cells was constructed in this study. The multifunctional nanocarrier ReS2@mSiO2-RhB entails an ReS2 hierarchical nanosphere coated with a fluorescent mesoporous silica shell. The three-dimensional hierarchical ReS2 nanostructure is capable of effectively absorbing near-infrared (NIR) light and converting it into heat. These ReS2 nanospheres were generated by a hydrothermal synthesis process leading to the self-assembly of few-layered ReS2 nanosheets. The mesoporous silica shell was further coated on the surface of the ReS2 nanospheres through a surfactant-templating sol-gel approach to provide accessible mesopores for drug uploading. A fluorescent dye (Rhodamine B) was covalently attached to silica precursors and incorporated during synthesis in the mesoporous silica walls toward conferring imaging capability to the nanocarrier. Doxorubicin (DOX), a known cancer drug, was used in a proof-of-concept study to assess the material's ability to function as a drug delivery carrier. While the silica pores are not capped, the drug molecule loading and release take advantage of the pH-governed electrostatic interactions between the drug and silica wall. The ReS2@mSiO2-RhB enabled a drug loading content as high as 19.83 mg/g doxorubicin. The ReS2@mSiO2-RhB-DOX nanocarrier's cumulative drug release rate at pH values that simulate physiological conditions showed significant pH responsiveness, reaching 59.8% at pH 6.8 and 98.5% and pH 5.5. The in vitro testing using HeLa cervical cancer cells proved that ReS2@mSiO2-RhB-DOX has a strong cancer eradication ability upon irradiation with an NIR laser owing to the combined drug delivery and photothermal effect. The results highlight the potential of ReS2@mSiO2-RhB nanoparticles for combined cancer therapy in the future.


Assuntos
Doxorrubicina , Liberação Controlada de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Teste de Materiais , Nanopartículas , Tamanho da Partícula , Terapia Fototérmica , Rênio , Dióxido de Silício , Dióxido de Silício/química , Humanos , Doxorrubicina/farmacologia , Doxorrubicina/química , Concentração de Íons de Hidrogênio , Nanopartículas/química , Rênio/química , Rênio/farmacologia , Dissulfetos/química , Porosidade , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/química , Antineoplásicos/farmacologia , Portadores de Fármacos/química , Células HeLa
19.
ACS Appl Bio Mater ; 7(5): 3295-3305, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38701399

RESUMO

Physicochemical properties of nanoparticles, such as particle size, surface charge, and particle shape, have a significant impact on cell activities. However, the effects of surface functionalization of nanoparticles with small chemical groups on stem cell behavior and function remain understudied. Herein, we incorporated different chemical functional groups (amino, DETA, hydroxyl, phosphate, and sulfonate with charges of +9.5, + 21.7, -14.1, -25.6, and -37.7, respectively) to the surface of inorganic silica nanoparticles. To trace their effects on mesenchymal stem cells (MSCs) of rat bone marrow, these functionalized silica nanoparticles were used to encapsulate Rhodamine B fluorophore dye. We found that surface functionalization with positively charged and short-chain chemical groups facilitates cell internalization and retention of nanoparticles in MSCs. The endocytic pathway differed among functionalized nanoparticles when tested with ion-channel inhibitors. Negatively charged nanoparticles mainly use lysosomal exocytosis to exit cells, while positively charged nanoparticles can undergo endosomal escape to avoid scavenging. The cytotoxic profiles of these functionalized silica nanoparticles are still within acceptable limits and tolerable. They exerted subtle effects on the actin cytoskeleton and migration ability. Last, phosphate-functionalized nanoparticles upregulate osteogenesis-related genes and induce osteoblast-like morphology, implying that it can direct MSCs lineage specification for bone tissue engineering. Our study provides insights into the rational design of biomaterials for effective drug delivery and regenerative medicine.


Assuntos
Materiais Biocompatíveis , Teste de Materiais , Células-Tronco Mesenquimais , Nanopartículas , Tamanho da Partícula , Dióxido de Silício , Propriedades de Superfície , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Nanopartículas/química , Animais , Ratos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Osteogênese/efeitos dos fármacos
20.
Biosens Bioelectron ; 258: 116350, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38705075

RESUMO

Early monitoring of cardiovascular disease (CVD) is crucial for its treatment and prognosis. Hence, highly specific and sensitive detection method is urgently needed. In this study, we propose a novel herringbone microfluid chip with aptamer functionalized core-shell photonic crystal (PhC) barcode integration for high throughput multiplex CVD detection. Based on the PhC derived from co-assembled carboxylated single-wall carbon nanotubes and silicon dioxide nanoparticles, we obtain core-shell PhC barcodes by hydrogel replicating and partially etching. These core-shell PhC barcodes not only retain the original structural colors coding element, but also fully expose a large number of carboxyl elements in the ore for the probe immobilization. We further combine the functionalized barcodes with herringbone groove microfluidic chip to elucidate its acceptability in testing clinical sample. It is demonstrated that the special design of microfluidic chip can significantly enhance fluid vortex resistance and contact frequency, improving the sample capture efficiency and detection sensitivity. These features indicate that our core-shell PhC barcodes-integrated herringbone microfluidic system possesses great potential for multiplex biomarker detection in clinical application.


Assuntos
Biomarcadores , Técnicas Biossensoriais , Dispositivos Lab-On-A-Chip , Nanotubos de Carbono , Nanotubos de Carbono/química , Humanos , Técnicas Biossensoriais/instrumentação , Desenho de Equipamento , Aptâmeros de Nucleotídeos/química , Dióxido de Silício/química , Fótons , Nanopartículas/química , Técnicas Analíticas Microfluídicas/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA