Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 7936, 2018 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29786696

RESUMO

Dihydrodipicolinate reductase (DHDPR) is a key enzyme in the diaminopimelate- and lysine-synthesis pathways that reduces DHDP to tetrahydrodipicolinate. Although DHDPR uses both NADPH and NADH as a cofactor, the structural basis for cofactor specificity and preference remains unclear. Here, we report that Paenisporosarcina sp. TG-14 PaDHDPR has a strong preference for NADPH over NADH, as determined by isothermal titration calorimetry and enzymatic activity assays. We determined the crystal structures of PaDHDPR alone, with its competitive inhibitor (dipicolinate), and the ternary complex of the enzyme with dipicolinate and NADPH, with results showing that only the ternary complex had a fully closed conformation and suggesting that binding of both substrate and nucleotide cofactor is required for enzymatic activity. Moreover, NADPH binding induced local conformational changes in the N-terminal long loop (residues 34-59) of PaDHDPR, as the His35 and Lys36 residues in this loop interacted with the 2'-phosphate group of NADPH, possibly accounting for the strong preference of PaDHDPR for NADPH. Mutation of these residues revealed reduced NADPH binding and enzymatic activity, confirming their importance in NADPH binding. These findings provide insight into the mechanism of action and cofactor selectivity of this important bacterial enzyme.


Assuntos
Di-Hidrodipicolinato Redutase/química , Di-Hidrodipicolinato Redutase/metabolismo , NADP/metabolismo , Planococáceas/enzimologia , Sequência de Aminoácidos , Cristalografia por Raios X , Cinética , Modelos Moleculares , NADP/química , Conformação Proteica , Homologia de Sequência , Especificidade por Substrato
2.
Biochem J ; 475(1): 137-150, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29187521

RESUMO

Dihydrodipicolinate reductase (DHDPR) catalyses the second reaction in the diaminopimelate pathway of lysine biosynthesis in bacteria and plants. In contrast with the tetrameric bacterial DHDPR enzymes, we show that DHDPR from Vitis vinifera (grape) and Selaginella moellendorffii are dimeric in solution. In the present study, we have also determined the crystal structures of DHDPR enzymes from the plants Arabidopsis thaliana and S. moellendorffii, which are the first dimeric DHDPR structures. The analysis of these models demonstrates that the dimer forms through the intra-strand interface, and that unique secondary features in the plant enzymes block tetramer assembly. In addition, we have also solved the structure of tetrameric DHDPR from the pathogenic bacteria Neisseria meningitidis Measuring the activity of plant DHDPR enzymes showed that they are much more prone to substrate inhibition than the bacterial enzymes, which appears to be a consequence of increased flexibility of the substrate-binding loop and higher affinity for the nucleotide substrate. This higher propensity to substrate inhibition may have consequences for ongoing efforts to increase lysine biosynthesis in plants.


Assuntos
Proteínas de Bactérias/química , Di-Hidrodipicolinato Redutase/química , Ácidos Picolínicos/química , Proteínas de Plantas/química , Vitis/enzimologia , Motivos de Aminoácidos , Arabidopsis/química , Arabidopsis/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Coenzimas/química , Coenzimas/metabolismo , Cristalografia por Raios X , Di-Hidrodipicolinato Redutase/genética , Di-Hidrodipicolinato Redutase/metabolismo , Expressão Gênica , Cinética , Lisina/biossíntese , Modelos Moleculares , NAD/química , NAD/metabolismo , NADP/química , NADP/metabolismo , Neisseria meningitidis/química , Neisseria meningitidis/enzimologia , Ácidos Picolínicos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Selaginellaceae/química , Selaginellaceae/enzimologia , Especificidade da Espécie , Especificidade por Substrato , Vitis/química
3.
Acta Crystallogr F Struct Biol Commun ; 72(Pt 12): 885-891, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27917836

RESUMO

In bacteria, the second committed step in the diaminopimelate/lysine anabolic pathways is catalyzed by the enzyme dihydrodipicolinate reductase (DapB). DapB catalyzes the reduction of dihydrodipicolinate to yield tetrahydrodipicolinate. Here, the cloning, expression, purification, crystallization and X-ray diffraction analysis of DapB from the human-pathogenic bacterium Bartonella henselae, the causative bacterium of cat-scratch disease, are reported. Protein crystals were grown in conditions consisting of 5%(w/v) PEG 4000, 200 mM sodium acetate, 100 mM sodium citrate tribasic pH 5.5 and were shown to diffract to ∼2.3 Šresolution. They belonged to space group P4322, with unit-cell parameters a = 109.38, b = 109.38, c = 176.95 Å. Rr.i.m. was 0.11, Rwork was 0.177 and Rfree was 0.208. The three-dimensional structural features of the enzymes show that DapB from B. henselae is a tetramer consisting of four identical polypeptides. In addition, the substrate NADP+ was found to be bound to one monomer, which resulted in a closed conformational change in the N-terminal domain.


Assuntos
Proteínas de Bactérias/química , Bartonella henselae/química , Di-Hidrodipicolinato Redutase/química , NADP/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bartonella henselae/enzimologia , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Di-Hidrodipicolinato Redutase/genética , Di-Hidrodipicolinato Redutase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Modelos Moleculares , NADP/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
4.
Sci Rep ; 6: 37111, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27845445

RESUMO

Lysine biosynthesis in bacteria and plants commences with a condensation reaction catalysed by dihydrodipicolinate synthase (DHDPS) followed by a reduction reaction catalysed by dihydrodipicolinate reductase (DHDPR). Interestingly, both DHDPS and DHDPR exist as different oligomeric forms in bacteria and plants. DHDPS is primarily a homotetramer in all species, but the architecture of the tetramer differs across kingdoms. DHDPR also exists as a tetramer in bacteria, but has recently been reported to be dimeric in plants. This study aimed to characterise for the first time the structure and function of DHDPS and DHDPR from cyanobacteria, which is an evolutionary important phylum that evolved at the divergence point between bacteria and plants. We cloned, expressed and purified DHDPS and DHDPR from the cyanobacterium Anabaena variabilis. The recombinant enzymes were shown to be folded by circular dichroism spectroscopy, enzymatically active employing the quantitative DHDPS-DHDPR coupled assay, and form tetramers in solution using analytical ultracentrifugation. Crystal structures of DHDPS and DHDPR from A. variabilis were determined at 1.92 Å and 2.83 Å, respectively, and show that both enzymes adopt the canonical bacterial tetrameric architecture. These studies indicate that the quaternary structure of bacterial and plant DHDPS and DHDPR diverged after cyanobacteria evolved.


Assuntos
Anabaena variabilis/enzimologia , Proteínas de Bactérias/química , Di-Hidrodipicolinato Redutase/química , Hidroliases/química , Anabaena variabilis/genética , Proteínas de Bactérias/genética , Dicroísmo Circular , Cristalografia por Raios X , Di-Hidrodipicolinato Redutase/genética , Hidroliases/genética , Estrutura Quaternária de Proteína , Relação Estrutura-Atividade
5.
PLoS One ; 11(1): e0146525, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26815040

RESUMO

The enzyme dihydrodipicolinate reductase (DHDPR) is a component of the lysine biosynthetic pathway in bacteria and higher plants. DHDPR catalyzes the NAD(P)H dependent reduction of 2,3-dihydrodipicolinate to the cyclic imine L-2,3,4,5,-tetrahydropicolinic acid. The dapB gene that encodes dihydrodipicolinate reductase has previously been cloned, but the expression of the enzyme is low and the purification is time consuming. Therefore the E. coli dapB gene was cloned into the pET16b vector to improve the protein expression and simplify the purification. The dapB gene sequence was utilized to design forward and reverse oligonucleotide primers that were used to PCR the gene from Escherichia coli genomic DNA. The primers were designed with NdeI or BamHI restriction sites on the 5'and 3' terminus respectively. The PCR product was sequenced to confirm the identity of dapB. The gene was cloned into the expression vector pET16b through NdeI and BamHI restriction endonuclease sites. The resulting plasmid containing dapB was transformed into the bacterial strain BL21 (DE3). The transformed cells were utilized to grow and express the histidine-tagged reductase and the protein was purified using Ni-NTA affinity chromatography. SDS/PAGE gel analysis has shown that the protein was 95% pure and has approximate subunit molecular weight of 28 kDa. The protein purification is completed in one day and 3 liters of culture produced approximately 40-50 mgs of protein, an improvement on the previous protein expression and multistep purification.


Assuntos
Di-Hidrodipicolinato Redutase/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas Recombinantes de Fusão/biossíntese , Cromatografia de Afinidade , Clonagem Molecular , Di-Hidrodipicolinato Redutase/química , Di-Hidrodipicolinato Redutase/genética , Eletroforese em Gel de Poliacrilamida , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Histidina/genética , Histidina/metabolismo , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação
6.
J Microbiol Biotechnol ; 26(2): 226-32, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26502738

RESUMO

Dihydrodipicolinate reductase is an enzyme that converts dihydrodipicolinate to tetrahydrodipicolinate using an NAD(P)H cofactor in L-lysine biosynthesis. To increase the understanding of the molecular mechanisms of lysine biosynthesis, we determined the crystal structure of dihydrodipicolinate reductase from Corynebacterium glutamicum (CgDapB). CgDapB functions as a tetramer, and each protomer is composed of two domains, an Nterminal domain and a C-terminal domain. The N-terminal domain mainly contributes to nucleotide binding, whereas the C-terminal domain is involved in substrate binding. We elucidated the mode of cofactor binding to CgDapB by determining the crystal structure of the enzyme in complex with NADP(+) and found that CgDapB utilizes both NADH and NADPH as cofactors. Moreover, we determined the substrate binding mode of the enzyme based on the coordination mode of two sulfate ions in our structure. Compared with Mycobacterium tuberculosis DapB in complex with its cofactor and inhibitor, we propose that the domain movement for active site constitution occurs when both cofactor and substrate bind to the enzyme.


Assuntos
Corynebacterium glutamicum/enzimologia , Di-Hidrodipicolinato Redutase/química , Di-Hidrodipicolinato Redutase/metabolismo , Lisina/biossíntese , NADP/metabolismo , NAD/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Biocatálise , Corynebacterium glutamicum/metabolismo , Cristalografia por Raios X , Cinética , Modelos Moleculares , Mycobacterium tuberculosis/enzimologia , Oxirredutases/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato
7.
PLoS One ; 10(3): e0118861, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25756623

RESUMO

Arabidopsis CRINKLY4 (ACR4) is a receptor-like kinase (RLK) involved in the global development of the plant. The Arabidopsis genome encodes four homologs of ACR4 that contain sequence similarity and analogous architectural elements to ACR4, termed Arabidopsis CRINKLY4 Related (AtCRRs) proteins. Additionally, a signaling module has been previously proposed including a postulated peptide ligand, CLE40, the ACR4 RLK, and the WOX5 transcription factor that engage in a possible feedback mechanism controlling stem cell differentiation. However, little biochemical evidence is available to ascertain the molecular aspects of receptor heterodimerization and the role of phosphorylation in these interactions. Therefore, we have undertaken an investigation of the in vitro interactions between the intracellular domains (ICD) of ACR4, the CRRs and WOX5. We demonstrate that interaction can occur between ACR4 and all four CRRs in the unphosphorylated state. However, phosphorylation dependency is observed for the interaction between ACR4 and CRR3. Furthermore, sequence analysis of the ACR4 gene family has revealed a conserved 'KDSAF' motif that may be involved in protein-protein interactions among the receptor family. We demonstrate that peptides harboring this conserved motif in CRR3 and CRK1are able to bind to the ACR4 kinase domain. Our investigations also indicate that the ACR4 ICD can interact with and phosphorylate the transcription factor WOX5.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sítios de Ligação , Di-Hidrodipicolinato Redutase/química , Di-Hidrodipicolinato Redutase/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Fosforilação , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
8.
Artigo em Inglês | MEDLINE | ID: mdl-23722845

RESUMO

Acinetobacter baumannii is a virulent pathogenic bacterium that is resistant to most currently available antibiotics. Therefore, the design of drugs for the treatment of infections caused by A. baumannii is urgently required. Dihydrodipicolinate reductase (DHDPR) is an important enzyme which is involved in the biosynthetic pathway that leads to the production of L-lysine in bacteria. In order to design potent inhibitors against this enzyme, its detailed three-dimensional structure is required. DHDPR from A. baumannii (AbDHDPR) has been cloned, expressed, purified and crystallized. Here, the preliminary X-ray crystallographic data of AbDHDPR are reported. The crystals were grown using the hanging-drop vapour-diffusion method with PEG 3350 as the precipitating agent The crystals belonged to the orthorhombic space group P222, with unit-cell parameters a = 80.0, b = 100.8, c = 147.6 Å, and contained four molecules in the asymmetric unit. The complete structure determination of AbDHDPR is in progress.


Assuntos
Clonagem Molecular , Di-Hidrodipicolinato Redutase/química , Di-Hidrodipicolinato Redutase/genética , Regulação Enzimológica da Expressão Gênica , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Clonagem Molecular/métodos , Cristalização , Cristalografia por Raios X , Di-Hidrodipicolinato Redutase/isolamento & purificação , Dados de Sequência Molecular
9.
Gene ; 518(1): 52-8, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23270923

RESUMO

Dynamic information in proteins may provide valuable information for understanding allosteric regulation of protein complexes or long-range effects of the mutations on enzyme activity. Experimental data such as X-ray B-factors or NMR order parameters provide a convenient estimate of atomic fluctuations (or atomic auto-correlated motions) in proteins. However, it is not as straightforward to obtain atomic cross-correlated motions in proteins - one usually resorts to more sophisticated computational methods such as Molecular Dynamics, normal mode analysis or atomic network models. In this report, we show that atomic cross-correlations can be reliably obtained directly from protein structure using X-ray refinement data. We have derived an analytic form of atomic correlated motions in terms of the original TLS parameters used to refine the B-factors of X-ray structures. The correlated maps computed using this equation are well correlated with those of the method based on a mechanical model (the correlation coefficient is 0.75) for a non-homologous dataset comprising 100 structures. We have developed an approach to compute atomic cross-correlations directly from X-ray protein structure. Being in analytic form, it is fast and provides a feasible way to compute correlated motions in proteins in a high throughput way. In addition, avoiding sophisticated computational operations; it provides a quick, reliable way, especially for non-computational biologists, to obtain dynamics information directly from protein structure relevant to its function.


Assuntos
Modelos Moleculares , Proteínas/química , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/química , Cristalografia por Raios X , Di-Hidrodipicolinato Redutase/química , Isoenzimas/química , Distribuição Normal , Conformação Proteica
10.
Protein Expr Purif ; 85(1): 66-76, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22776412

RESUMO

Given the rise of multi drug resistant bacterial strains, such as methicillin-resistant Staphylococcus aureus (MRSA), there is an urgent need to discover new antimicrobial agents. A validated but as yet unexplored target for new antibiotics is dihydrodipicolinate reductase (DHDPR), an enzyme that catalyzes the second step of the lysine biosynthesis pathway in bacteria. We report here the cloning, expression and purification of N-terminally his-tagged recombinant DHDPR from MRSA (6H-MRSA-DHDPR) and compare its secondary and quaternary structure with the wild type (MRSA-DHDPR) enzyme. Comparative analyses demonstrate that recombinant 6H-MRSA-DHDPR is folded and adopts the native tetrameric quaternary structure in solution. Furthermore, kinetic studies show 6H-MRSA-DHDPR is functional, displaying parameters for K(m)(NADH) of 6.0 µM, K(m)(DHDP) of 22 µM, and k(cat) of 21s(-1), which are similar to those reported for the native enzyme. The solution properties and stability of the 6H-MRSA-DHDPR enzyme are also reported in varying physicochemical conditions.


Assuntos
Di-Hidrodipicolinato Redutase/química , Di-Hidrodipicolinato Redutase/metabolismo , Staphylococcus aureus Resistente à Meticilina/enzimologia , Clonagem Molecular , Di-Hidrodipicolinato Redutase/genética , Di-Hidrodipicolinato Redutase/isolamento & purificação , Estabilidade Enzimática , Histidina/química , Histidina/genética , Histidina/isolamento & purificação , Histidina/metabolismo , Cinética , Staphylococcus aureus Resistente à Meticilina/química , Staphylococcus aureus Resistente à Meticilina/genética , Concentração Osmolar , Conformação Proteica , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
11.
PLoS One ; 7(7): e40318, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22792278

RESUMO

In plants, the lysine biosynthetic pathway is an attractive target for both the development of herbicides and increasing the nutritional value of crops given that lysine is a limiting amino acid in cereals. Dihydrodipicolinate synthase (DHDPS) and dihydrodipicolinate reductase (DHDPR) catalyse the first two committed steps of lysine biosynthesis. Here, we carry out for the first time a comprehensive characterisation of the structure and activity of both DHDPS and DHDPR from Arabidopsis thaliana. The A. thaliana DHDPS enzyme (At-DHDPS2) has similar activity to the bacterial form of the enzyme, but is more strongly allosterically inhibited by (S)-lysine. Structural studies of At-DHDPS2 show (S)-lysine bound at a cleft between two monomers, highlighting the allosteric site; however, unlike previous studies, binding is not accompanied by conformational changes, suggesting that binding may cause changes in protein dynamics rather than large conformation changes. DHDPR from A. thaliana (At-DHDPR2) has similar specificity for both NADH and NADPH during catalysis, and has tighter binding of substrate than has previously been reported. While all known bacterial DHDPR enzymes have a tetrameric structure, analytical ultracentrifugation, and scattering data unequivocally show that At-DHDPR2 exists as a dimer in solution. The exact arrangement of the dimeric protein is as yet unknown, but ab initio modelling of x-ray scattering data is consistent with an elongated structure in solution, which does not correspond to any of the possible dimeric pairings observed in the X-ray crystal structure of DHDPR from other organisms. This increased knowledge of the structure and function of plant lysine biosynthetic enzymes will aid future work aimed at improving primary production.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Di-Hidrodipicolinato Redutase/química , Hidroliases/química , Lisina/biossíntese , Sítio Alostérico , Arabidopsis/metabolismo , Vias Biossintéticas , Cristalografia por Raios X , Cinética , Luz , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Espalhamento a Baixo Ângulo , Homologia Estrutural de Proteína
12.
Biochim Biophys Acta ; 1814(12): 1900-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21803176

RESUMO

To gain insights into the role of quaternary structure in the TIM-barrel family of enzymes, we introduced mutations to the DHDPS enzyme of Thermotoga maritima, which we have previously shown to be a stable tetramer in solution. These mutations were aimed at reducing the number of salt bridges at one of the two tetramerization interface of the enzyme, which contains many more interactions than the well characterized equivalent interface of the mesophilic Escherichia coli DHDPS enzyme. The resulting variants had altered quaternary structure, as shown by analytical ultracentrifugation, gel filtration liquid chromatography, and small angle X-ray scattering, and X-ray crystallographic studies confirmed that one variant existed as an independent monomer, but with few changes to the secondary and tertiary structure. Reduction of higher order assembly resulted in a loss of thermal stability, as measured by a variety of methods, and impaired catalytic function. Binding of pyruvate increased the oligomeric status of the variants, with a concomitant increase in thermal stability, suggesting a role for substrate binding in optimizing stable, higher order structures. The results of this work show that the salt bridges located at the tetramerization interface of DHDPS play a significant role in maintaining higher order structures, and demonstrate the importance of quaternary structure in determining protein stability and in the optimization of enzyme catalysis.


Assuntos
Di-Hidrodipicolinato Redutase/química , Di-Hidrodipicolinato Redutase/metabolismo , Multimerização Proteica/fisiologia , Calibragem , Clonagem Molecular , Di-Hidrodipicolinato Redutase/genética , Di-Hidrodipicolinato Redutase/isolamento & purificação , Variação Genética , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/isolamento & purificação , Proteínas Mutantes/metabolismo , Ligação Proteica/genética , Ligação Proteica/fisiologia , Domínios e Motivos de Interação entre Proteínas/genética , Domínios e Motivos de Interação entre Proteínas/fisiologia , Multimerização Proteica/genética , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Especificidade por Substrato/genética , Thermotoga maritima/química , Thermotoga maritima/enzimologia , Thermotoga maritima/genética , Thermotoga maritima/metabolismo
13.
FEBS Lett ; 585(16): 2561-7, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21803042

RESUMO

Lysine biosynthesis proceeds by the nucleotide-dependent reduction of dihydrodipicolinate (DHDP) to tetrahydrodipicolinate (THDP) by dihydrodipicolinate reductase (DHDPR). The S. aureus DHDPR structure reveals different conformational states of this enzyme even in the absence of a substrate or nucleotide-cofactor. Despite lacking a conserved basic residue essential for NADPH interaction, S. aureus DHDPR differs from other homologues as NADPH is a more preferred co-factor than NADH. The structure provides a rationale-Lys35 compensates for the co-factor site mutation. These observations are significant for bi-ligand inhibitor design that relies on ligand-induced conformational changes as well as co-factor specificity for this important drug target.


Assuntos
Di-Hidrodipicolinato Redutase/química , Di-Hidrodipicolinato Redutase/metabolismo , NADP/metabolismo , Staphylococcus aureus/enzimologia , Sequência de Aminoácidos , Cristalografia por Raios X , Di-Hidrodipicolinato Redutase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Especificidade por Substrato
14.
Arch Biochem Biophys ; 512(2): 167-74, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21704017

RESUMO

Given the rapid rise in antibiotic resistance, including methicillin resistance in Staphylococcus aureus (MRSA), there is an urgent need to characterize novel drug targets. Enzymes of the lysine biosynthesis pathway in bacteria are examples of such targets, including dihydrodipicolinate reductase (DHDPR, E.C. 1.3.1.26), which is the product of an essential bacterial gene. DHDPR catalyzes the NAD(P)H-dependent reduction of dihydrodipicolinate (DHDP) to tetrahydrodipicolinate (THDP) in the lysine biosynthesis pathway. We show that MRSA-DHDPR exhibits a unique nucleotide specificity utilizing NADPH (K(m)=12µM) as a cofactor more effectively than NADH (K(m)=26µM). However, the enzyme is inhibited by high concentrations of DHDP when using NADPH as a cofactor, but not with NADH. Isothermal titration calorimetry (ITC) studies reveal that MRSA-DHDPR has ∼20-fold greater binding affinity for NADPH (K(d)=1.5µM) relative to NADH (K(d)=29µM). Kinetic investigations in tandem with ITC studies show that the enzyme follows a compulsory-order ternary complex mechanism; with inhibition by DHDP through the formation of a nonproductive ternary complex with NADP(+). This work describes, for the first time, the catalytic mechanism and cofactor preference of MRSA-DHDPR, and provides insight into rational approaches to inhibiting this valid antimicrobial target.


Assuntos
Di-Hidrodipicolinato Redutase/metabolismo , Staphylococcus aureus Resistente à Meticilina/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Calorimetria , Catálise , Di-Hidrodipicolinato Redutase/antagonistas & inibidores , Di-Hidrodipicolinato Redutase/química , Di-Hidrodipicolinato Redutase/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Cinética , Staphylococcus aureus Resistente à Meticilina/genética , Dados de Sequência Molecular , NAD/metabolismo , NADP/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Termodinâmica
15.
J Med Chem ; 53(12): 4808-12, 2010 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-20503968

RESUMO

Despite extensive effort, the drug target dihydrodipicolinate synthase (DHDPS) continues to evade effective inhibition. We used NMR spectroscopy to examine the substrate specificity of this enzyme and found that two pyruvate analogues previously classified as weak competitive inhibitors were turned over productively by DHDPS. Four other analogues were confirmed not to be substrates. Finally, our examination of the natural product of DHDPS and its degradation revealed that dihydrodipicolinate reductase (DHDPR) possesses previously unrecognized dehydratase activity.


Assuntos
Di-Hidrodipicolinato Redutase/química , Hidroliases/química , Di-Hidrodipicolinato Redutase/antagonistas & inibidores , Hidroliases/antagonistas & inibidores , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Ácidos Picolínicos/química , Piruvatos/química , Especificidade por Substrato
16.
Acta Crystallogr D Biol Crystallogr ; 66(Pt 1): 61-72, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20057050

RESUMO

Dihydrodipicolinate reductase (DHDPR, DapB) is an enzyme that belongs to the L-lysine biosynthetic pathway. DHDPR reduces the alpha,beta-unsaturated cyclic imine 2,3-dihydrodipicolinic acid to yield the compound 2,3,4,5-tetrahydrodipicolinic acid in a pyridine nucleotide-dependent reaction. The substrate of this reaction is the unstable product of the preceding enzyme dihydrodipicolinate synthase (DHDPS, DapA). Here, the structure of apo-DHDPR from Mycobacterium tuberculosis is reported in two orthorhombic crystal forms, as well as the structure of DHDPR from M. tuberculosis in complex with NADH in a monoclinic crystal form. A comparison of the results with previously solved structures of this enzyme shows that DHDPR undergoes a major conformational change upon binding of its cofactor. This conformational change can be interpreted as one of the low-frequency normal modes of the structure.


Assuntos
Proteínas de Bactérias/química , Di-Hidrodipicolinato Redutase/química , Mycobacterium tuberculosis/enzimologia , NAD/química , Regulação Alostérica , Proteínas de Bactérias/metabolismo , Cristalização , Cristalografia por Raios X , Di-Hidrodipicolinato Redutase/metabolismo , Hidroliases/metabolismo , NAD/metabolismo , Ligação Proteica , Conformação Proteica , Piridinas/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-20057072

RESUMO

Dihydrodipicolinate reductase (DHDPR; EC 1.3.1.26) catalyzes the nucleotide (NADH/NADPH) dependent second step of the lysine-biosynthesis pathway in bacteria and plants. Here, the cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of DHDPR from methicillin-resistant Staphylococcus aureus (MRSA-DHDPR) are presented. The enzyme was crystallized in a number of forms, predominantly with ammonium sulfate as a precipitant, with the best crystal form diffracting to beyond 3.65 A resolution. Crystal structures of the apo form as well as of cofactor (NADPH) bound and inhibitor (2,6-pyridinedicarboxylate) bound forms of MRSA-DHDPR will provide insight into the structure and function of this essential enzyme and valid drug target.


Assuntos
Di-Hidrodipicolinato Redutase/química , Staphylococcus aureus Resistente à Meticilina/enzimologia , Clonagem Molecular , Cristalização , Cristalografia por Raios X
18.
Biochemistry ; 47(38): 9966-80, 2008 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-18710263

RESUMO

Dihydrodipicolinate reductase (DHPR) is a homotetramer that catalyzes reduction of dihydrodipicolinate (DHP). We recently reported a biligand inhibitor ( K i = 100 nM) of DHPR, comprised of fragments that bind in the NADH (CRAA = catechol rhodanine acetic acid) and DHP (PDC = pyridine dicarboxylate) binding sites. Herein, we characterize binding synergy and cooperativity for ligand binding to Escherichia coli DHPR: NADH or CRAA and PDC (stable analog of DHP). While K d values indicate little synergy between NADH and PDC, (1)H- (15)N HSQC chemical shift perturbation and saturation transfer difference (STD) titrations indicate that PDC induces a more dramatic conformational change than NADH, consistent with a role in domain closure. PDC binds cooperatively (Hill coefficient = 2), while NADH does not, based on STD titrations that monitor only fast exchange processes. However, HSQC titrations monitoring Trp253 (located between monomers) indicate that NADH binds in two steps, with high affinity binding to only one of the monomers. Therefore, DHPR binds cofactor via a sequential model, with negative cooperativity. These results, interpreted in light of steady-state data, suggest that DHPR activity requires NADH binding at only one of the four monomers. Implications of our results for fragment assembly are discussed, using CRAA tethering to PDC as a model biligand: (a) if one fragment (ex. PDC) must induce a large structural change before the other fragment is brought proximal, this must be screened for upfront, and (b) cooperative or synergistic interactions between binding sites can lead to unexpected and misleading effects in NMR-based screening.


Assuntos
Di-Hidrodipicolinato Redutase/química , Di-Hidrodipicolinato Redutase/metabolismo , Inibidores Enzimáticos/síntese química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Sítios de Ligação/fisiologia , Di-Hidrodipicolinato Redutase/antagonistas & inibidores , Inibidores Enzimáticos/metabolismo , Proteínas de Escherichia coli/antagonistas & inibidores , Ligantes , Especificidade por Substrato/fisiologia
19.
J Biochem ; 143(5): 617-23, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18250105

RESUMO

In lysine biosynthesis, dihydrodipicolinate reductase (DHDPR) catalyses the formation of tetrahydrodipicolinate. Unlike DHDPR enzymes from Escherichia coli and Mycobacterium tuberculosis, which have dual specificity for both NADH and NADPH as co-factors, the enzyme from Thermotoga maritima has a significantly greater affinity for NADPH. Despite low sequence identity with the E. coli and M. tuberculosis DHDPR enzymes, DHDPR from T. maritima has a similar catalytic site, with many conserved residues involved in interactions with substrates. This suggests that as the enzyme evolved, the co-factor specificity was relaxed. Kinetic studies show that the T. maritima DHDPR enzyme is inhibited by high concentrations of its substrate, DHDP, and that at high concentrations NADH also acts as an inhibitor of the enzyme, suggesting a novel method of regulation for the lysine biosynthetic pathway. Increased thermal stability of the T. maritima DHDPR enzyme may be associated with the lack of C-terminal and N-terminal loops that are present in the E. coli DHDPR enzyme.


Assuntos
Proteínas de Bactérias/química , Di-Hidrodipicolinato Redutase/química , Thermotoga maritima/enzimologia , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Evolução Biológica , Di-Hidrodipicolinato Redutase/metabolismo , Estabilidade Enzimática , Cinética , Modelos Moleculares , NAD/metabolismo , NADP/metabolismo , Ligação Proteica , Temperatura
20.
Plant J ; 52(3): 539-47, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17727612

RESUMO

Chloroplast NAD(P)H dehydrogenase (NDH) is a homolog of the bacterial NADH dehydrogenase NDH-1 and is involved in cyclic electron transport around photosystem I. In higher plants, 14 subunits of the NDH complex have been identified. The subunit that contains the electron donor-binding site or an electron donor to NDH has not been determined. Arabidopsis crr1 (chlororespiratory reduction 1) mutants were isolated by chlorophyll fluorescence imaging on the basis of their lack of NDH activity. CRR1 is homologous to dihydrodipicolinate reductase (DHPR), which functions in a lysine biosynthesis pathway. However, the dihydrodipicolinate-binding motif was not conserved in CRR1, and the crr1 defect was specific to accumulation of the NDH complex, implying that CRR1 is not involved in lysine biosynthesis in Arabidopsis. Similarly to other nuclear-encoded genes for NDH subunits, CRR1 was expressed only in photosynthetic tissue. CRR1 contained a NAD(P)H-binding motif and was a candidate electron donor-binding subunit of the NDH complex. However, CRR1 was detected in the stroma but not in the thylakoid membranes, where the NDH complex is localized. Furthermore, CRR1 was stable in crr2-2 lacking the NDH complex. These results suggest that CRR1 is involved in biogenesis or stabilization of the NDH complex, possibly via the reduction of an unknown substrate.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Cloroplastos/enzimologia , Di-Hidrodipicolinato Redutase/metabolismo , NADPH Desidrogenase/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Di-Hidrodipicolinato Redutase/química , Di-Hidrodipicolinato Redutase/genética , Transporte de Elétrons , Regulação da Expressão Gênica de Plantas , Filogenia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA