Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 101(Pt A): 108321, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34741869

RESUMO

BACKGROUND AND PURPOSE: Panaxynol (PAL, PubChem CID: 5281149) is a common natural minor component in Umbelliferae plants, such as Radix Saposhnikoviae Divaricatae. Modern pharmacology studies show that PAL has nutritional value and anti-inflammatory and other pharmaceutical activities. Therefore, the scientific hypothesis of PAL in the treatment of rheumatoid arthritis was put forward, and the hypothesis was further verified by Fibroblast-like synovial cells (RA-FLS) and Collagen Induced Arthritis (CIA) rats models. EXPERIMENTAL METHOD: CIA method was used to establish a rat arthritis model. After extracting RA-FLS, flow cytometry and immunofluorescence were used to explore the effect of PAL on the apoptosis and proliferation of RA-FLS. Wound healing and transwell experiment explored the effect of PAL on the migration and invasion of RA-FLS. Western blot analysis explored the inner mechanism of the effect of PAL on RA-FLS. At the same time, it also explored the role of PAL in CIA rats, including pathological section detection and western blot analysis. MAIN RESULTS: PAL can promote the apoptosis and inhibit the proliferation, migration and invasion of RA-FLS. PAL can also reduce joint swelling in CIA rats, reduce pannus formation and inflammatory infiltration in the joints. Western blot analysis showed that PAL mainly played a role through the TLR4/NF-κB signaling pathway. CONCLUSION: The results of in vivo and in vitro experiments show that PAL can effectively alleviate the condition of RA, and may be a potential drug for the treatment of RA.


Assuntos
Antirreumáticos/uso terapêutico , Apoptose/efeitos dos fármacos , Artrite Reumatoide/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Di-Inos/uso terapêutico , Álcoois Graxos/uso terapêutico , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Membrana Sinovial/citologia , Receptor 4 Toll-Like/metabolismo , Animais , Western Blotting , Movimento Celular/efeitos dos fármacos , Feminino , Ratos , Ratos Wistar , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/metabolismo
2.
Immunopharmacol Immunotoxicol ; 43(6): 778-789, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34618611

RESUMO

BACKGROUND: Non-alcoholic steatohepatitis (NASH) is an extreme form of non-alcoholic fatty liver disease. The present study concentrated on the role of Capillin, a polyacetylene compound isolated from Artemisia capillaris Thunb., in NASH development. MATERIALS AND METHODS: Palmitic acid (PA) was treated with FL83B hepatocytes, and high-fat diet was given to mouse to construct the NASH model in vivo. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method, flow cytometry, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay were carried out to measure the viability and apoptosis of FL83B hepatocytes. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed to measure the mRNA expressions of infiltration markers (Cd11c, Ccr2, and Ly6c), fibrosis genes (Tgfß1, Col1a1, and Timp1), and alpha-smooth muscle actin (α-SMA). Western blot, immunofluorescence, and Enzyme-linked immunosorbent assay (ELISA) were implemented to examine the proteins of Caspase-3, Bcl2, Nrf2, HO-1, NLRP3, ASC, and Caspase-1, the ROS level, and oxidative stress markers (MDA, GSH-ST, SOD, and GSH-Px), and the lipid peroxidation level, respectively. Moreover, HE staining was manipulated to observe the histopathological changes in liver tissue. RESULTS: Capillin hampered PA-mediated hepatocytes apoptosis and enhanced cell viability. Furthermore, Capillin suppressed PA-mediated oxidative stress in hepatocytes, promoted Nrf2/HO-1 expression, and repressed NLRP3-ASC-Caspase1 inflammasome. The in vivo studies indicated that Capillin vigorously improves liver fat accumulation, oxidative stress, and liver injury in NASH mice. Mechanistically, Capillin repressed NLRP3-ASC-Caspase1 inflammasome and up-regulated the Nrf2-HO-1 pathway in the liver. CONCLUSION: Capillin ameliorates hepatocyte injury by dampening oxidative stress and repressing NLRP3 inflammasome in NASH mice.


Assuntos
Di-Inos/uso terapêutico , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Animais , Dieta Hiperlipídica/efeitos adversos , Di-Inos/farmacologia , Relação Dose-Resposta a Droga , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Oxidativo/fisiologia , Extratos Vegetais/farmacologia
3.
Biomed Pharmacother ; 138: 111387, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33721753

RESUMO

Panaxynol (PAL) mainly comes from Umbelliferae plants, which has anti-inflammatory and neuroprotective activities. Lipopolysaccharide (LPS)-induced depression in mice was a classic model for studying the effects of drugs on depression in mice. The purpose of this study was to investigate the mechanism and effect of PAL on depression by LPS induced in mice. In the tail suspension test (TST) and forced swimming test (FST) results, PAL significantly reduced the immobility time of mice. In the result of the open field test (OFT) and the elevated plus maze test (EPM), improved their exploration ability. According to the results of ELISA, PAL could significantly reduce the tumor necrosis factor-α (TNF-α) and interleukin- 6 (IL-6) levels in serum. Increase the superoxide dismutase (SDO) level and decrease the malondialdehyde (MDA) level in hippocampus. According to Western blotting analysis results, PAL increased the protein expression of brain-derived neurotrophic factor (BDNF) and tyrosine kinase receptor B (TrkB), decreased the nuclear transport of nuclear factor kappa-Bp65 (NF-κBp65) and phosphorylation of inhibitor of NF-κB (IκB-α). Meanwhile, PAL also inhibited the production of nitric oxide in BV-2 microglia and decreased the level of inflammatory factors. PAL also reduced levels of oxidative stress and inhibited protein expression in the NF-κB/IκB-α inflammatory pathway and increased the protein expression of BDNF/TrkB, thereby inhibiting the over-activation of BV-2 microglia. In conclusion, according to the results of the behavioral text, it is proved that PAL could effectively alleviate LPS induced depression behavior in mice. The mechanism may be that the anti-inflammatory and anti-oxidative stress effects of PAL reduce the release of inflammatory factors in the mouse brain. Meanwhile, PAL could improve brain neurotrophic factors, inhibit the excessive activation of BV-2 microglia, and further inhibit the depressive state of the mice.


Assuntos
Antidepressivos/farmacologia , Di-Inos/farmacologia , Álcoois Graxos/farmacologia , Microglia/efeitos dos fármacos , Inibidor de NF-kappaB alfa/antagonistas & inibidores , NF-kappa B/antagonistas & inibidores , Extratos Vegetais/farmacologia , Animais , Antidepressivos/uso terapêutico , Linhagem Celular , Depressão/tratamento farmacológico , Depressão/metabolismo , Depressão/psicologia , Di-Inos/uso terapêutico , Relação Dose-Resposta a Droga , Álcoois Graxos/uso terapêutico , Imobilização/métodos , Imobilização/fisiologia , Imobilização/psicologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Microglia/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Extratos Vegetais/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Resultado do Tratamento
4.
Nutrients ; 12(6)2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32575883

RESUMO

Ulcerative colitis (UC) is a chronic inflammatory bowel disease that affects millions of people worldwide and increases the risk of colorectal cancer (CRC) development. We have previously shown that American ginseng (AG) can treat colitis and prevent colon cancer in mice. We further fractionated AG and identified the most potent fraction, hexane fraction (HAG), and the most potent compound in this fraction, panaxynol (PA). Because (1) oxidative stress plays a significant role in the pathogenesis of colitis and associated CRC and (2) nuclear factor erythroid-2-related factor 2 (Nrf2) is the master regulator of antioxidant responses, we examined the role of Nrf2 as a mechanism by which AG suppresses colitis. Through a series of in vitro and in vivo Nrf2 knockout mouse experiments, we found that AG and its components activate the Nrf2 pathway and decrease the oxidative stress in macrophages (mΦ) and colon epithelial cells in vitro. Consistent with these in vitro results, the Nrf2 pathway is activated by AG and its components in vivo, and Nrf2-/- mice are resistant to the suppressive effects of AG, HAG and PA on colitis. Results from this study establish Nrf2 as a mediator of AG and its components in the treatment of colitis.


Assuntos
Antioxidantes/farmacologia , Colite Ulcerativa/metabolismo , Di-Inos/farmacologia , Álcoois Graxos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Panax/química , Extratos Vegetais/farmacologia , Animais , Antioxidantes/uso terapêutico , Colite , Colite Ulcerativa/tratamento farmacológico , Di-Inos/uso terapêutico , Álcoois Graxos/uso terapêutico , Células HCT116 , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fitoterapia , Extratos Vegetais/uso terapêutico
5.
Oxid Med Cell Longev ; 2018: 3153527, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30420908

RESUMO

Nuclear factor- (erythroid-derived 2) like 2 (Nrf2) is a transcription factor that regulates the expression of a battery of antioxidant, anti-inflammatory, and cytoprotective enzymes including heme oxygenase-1 (Hmox1, Ho-1) and NADPH:quinone oxidoreductase-1 (Nqo1). The isothiocyanate sulforaphane (SF) is widely understood to be the most effective natural activator of the Nrf2 pathway. Falcarinol (FA) is a lesser studied natural compound abundant in medicinal plants as well as dietary plants from the Apiaceae family such as carrot. We evaluated the protective effects of FA and SF (5 mg/kg twice per day in CB57BL/6 mice) pretreatment for one week against acute intestinal and systemic inflammation. The phytochemical pretreatment effectively reduced the magnitude of intestinal proinflammatory gene expression (IL-6, Tnfα/Tnfαr, Infγ, STAT3, and IL-10/IL-10r) with FA showing more potency than SF. FA was also more effective in upregulating Ho-1 at mRNA and protein levels in both the mouse liver and the intestine. FA but not SF attenuated plasma chemokine eotaxin and white blood cell growth factor GM-CSF, which are involved in the recruitment and stabilization of first-responder immune cells. Phytochemicals generally did not attenuate plasma proinflammatory cytokines. Plasma and intestinal lipid peroxidation was also not significantly changed 4 h after LPS injection; however, FA did reduce basal lipid peroxidation in the mesentery. Both phytochemical pretreatments protected against LPS-induced reduction in intestinal barrier integrity, but FA additionally reduced inflammatory cell infiltration even below negative control.


Assuntos
Dieta , Di-Inos/uso terapêutico , Álcoois Graxos/uso terapêutico , Heme Oxigenase-1/biossíntese , Inflamação/tratamento farmacológico , Inflamação/enzimologia , Intestinos/patologia , Isotiocianatos/uso terapêutico , Animais , Citocinas/sangue , Di-Inos/química , Di-Inos/farmacologia , Indução Enzimática/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Álcoois Graxos/química , Álcoois Graxos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/genética , Inflamação/patologia , Isotiocianatos/química , Isotiocianatos/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Sulfóxidos
6.
Biol Pharm Bull ; 41(11): 1701-1707, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30381670

RESUMO

Panaxydol, a polyacetylenic compound derived from Panax ginseng has been reported to suppress the growth of cancer cells. However, the molecular mechanisms underlying cell cycle arrest by this compound in non-small cell lung cancer (NSCLC) are unknown. Our study found that panaxydol treatment induced cell cycle arrest at G1 phase in NSCLC cells. The cell cycle arrest was accompanied by down-regulation of the protein expression of cyclin-dependent kinase (CDK) 2, CDK4, CDK6, cyclin D1 and cyclin E, and decrease in the phosphorylation of retinoblastoma (Rb) protein. Furthermore, up-regulation of cyclin-dependent kinase inhibitor (CDKI) p21CIP1/WAF1 and p27KIP1 was observed in panaxydol-treated NSCLC cells. In addition, panaxydol also induced accumulation of intracellular Ca2+ ([Ca2+]i). (Acetyloxy)methyl 2-({2-[(acetyloxy)methoxy]-2-oxoethyl}[2-(2-{2-[bis({2-[(acetyloxy)methoxy]-2-oxoethyl})amino]phenoxy}ethoxy)phenyl]amino)acetate (BAPTA-AM), the Ca2+ chelator, attenuated not only panaxydol-induced accumulation of [Ca2+]i, but also G1 cell cycle arrest and decrease of CDK6 and cyclin D1 protein expression level. These results demonstrated that the anti-proliferative effects of panaxydol were caused by cell cycle arrest, which is closely linked to the up-regulation of [Ca2+]i and represents a promising approach for the treatment of lung cancer.


Assuntos
Cálcio/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Di-Inos/farmacologia , Álcoois Graxos/farmacologia , Fase G1/efeitos dos fármacos , Neoplasias Pulmonares/patologia , Panax/química , Fitoterapia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Ciclina E/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Di-Inos/uso terapêutico , Álcoois Graxos/uso terapêutico , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Proteínas Oncogênicas/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Proteína do Retinoblastoma/metabolismo , Regulação para Cima
7.
Phytomedicine ; 20(11): 999-1006, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23746754

RESUMO

Oplopanax horridus is a plant native to North America. Previous reports have demonstrated that this herb has antiproliferative effects on cancer cells but study mostly focused on its extract or fractions. Because there has been limited phytochemical study on this herb, its bioactive compounds are largely unknown. We recently isolated and identified 13 compounds, including six polyynes, three sesquiterpenes, two steroids, and two phenolic acids, of which five are novel compounds. In this study, we systemically evaluated the anticancer effects of compounds isolated from O. horridus. Their antiproliferative effects on a panel of human colorectal and breast cancer cells were determined using the MTS assay. Cell cycle distribution and apoptotic effects were analyzed by flow cytometry. The in vivo antitumor effect was examined using a xenograft tumor model. Among the 13 compounds, strong antiproliferative effects were observed from falcarindiol and a novel compound oplopantriol A. Falcarindiol showed the most potent antiproliferative effects, significantly inducing pro-apoptosis and cell cycle arrest in the S and G2/M phases. The anticancer potential of falcarindiol was further verified in vivo, significantly inhibiting HCT-116 tumor growth in an athymic nude mouse model at 15 mg/kg. We also analyzed the relationship between polyyne structures and their pharmacological activities. We observed that both the terminal hydroxyl group and double bond obviously affected their anticancer potential. Results from this study supplied valuable information for future semi-synthesis of polyyne derivatives to develop novel cancer chemopreventive agents.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Di-Inos/uso terapêutico , Álcoois Graxos/uso terapêutico , Oplopanax/química , Fitoterapia , Extratos Vegetais/uso terapêutico , Animais , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Di-Inos/química , Di-Inos/isolamento & purificação , Di-Inos/farmacologia , Álcoois Graxos/química , Álcoois Graxos/isolamento & purificação , Álcoois Graxos/farmacologia , Feminino , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Extratos Vegetais/química , Extratos Vegetais/farmacologia
8.
Phytother Res ; 27(7): 993-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22899555

RESUMO

The n-hexane extract of Lovage root was found to significantly inhibit the growth of both Mycobacterium smegmatis mc²155 and Mycobacterium bovis BCG, and therefore a bioassay-guided isolation strategy was undertaken. (Z)-Ligustilide, (Z)-3-butylidenephthalide, (E)-3-butylidenephthalide, 3-butylphthalide, α-prethapsenol, falcarindiol, levistolide A, psoralen and bergapten were isolated by chromatographic techniques, characterized by NMR spectroscopy and MS, and evaluated for their growth inhibition activity against Mycobacterium tuberculosis H37Rv using the whole-cell phenotypic spot culture growth inhibition assay (SPOTi). Cytotoxicity against RAW 264.7 murine macrophage cells was employed for assessing their degree of selectivity. Falcarindiol was the most potent compound with a minimum inhibitory concentration (MIC) value of 20 mg/L against the virulent H37Rv strain; however, it was found to be cytotoxic with a half-growth inhibitory concentration (GIC50) in the same order of magnitude (SI < 1). Interestingly the sesquiterpene alcohol α-prethapsenol was found to inhibit the growth of the pathogenic mycobacteria with an MIC value of 60 mg/L, being more specific towards mycobacteria than mammalian cells (SI ~ 2). Colony forming unit analysis at different concentrations of this phytochemical showed mycobacteriostatic mode of action.


Assuntos
Antibióticos Antituberculose/farmacologia , Citotoxinas/farmacologia , Ligusticum/química , Mycobacterium bovis/efeitos dos fármacos , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Fitoterapia , Extratos Vegetais/farmacologia , 4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacologia , 4-Butirolactona/uso terapêutico , Animais , Antibióticos Antituberculose/isolamento & purificação , Citotoxinas/química , Di-Inos/farmacologia , Di-Inos/uso terapêutico , Álcoois Graxos/farmacologia , Álcoois Graxos/uso terapêutico , Furocumarinas/farmacologia , Furocumarinas/uso terapêutico , Macrófagos/efeitos dos fármacos , Camundongos , Raízes de Plantas/química , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico
9.
Cell Death Dis ; 3: e376, 2012 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-22914324

RESUMO

Falcarindiol (FAD) is a natural polyyne with various beneficial biological activities. We show here that FAD preferentially kills colon cancer cells but not normal colon epithelial cells. Furthermore, FAD inhibits tumor growth in a xenograft tumor model and exhibits strong synergistic killing of cancer cells with 5-fluorouracil, an approved cancer chemotherapeutic drug. We demonstrate that FAD-induced cell death is mediated by induction of endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR). Decreasing the level of ER stress, either by overexpressing the ER chaperone protein glucose-regulated protein 78 (GRP78) or by knockout of components of the UPR pathway, reduces FAD-induced apoptosis. In contrast, increasing the level of ER stress by knocking down GRP78 potentiates FAD-induced apoptosis. Finally, FAD-induced ER stress and apoptosis is correlated with the accumulation of ubiquitinated proteins, suggesting that FAD functions at least in part by interfering with proteasome function, leading to the accumulation of unfolded protein and induction of ER stress. Consistent with this, inhibition of protein synthesis by cycloheximide significantly decreases the accumulation of ubiquitinated proteins and blocks FAD-induced ER stress and cell death. Taken together, our study shows that FAD is a potential new anticancer agent that exerts its activity through inducing ER stress and apoptosis.


Assuntos
Antineoplásicos Fitogênicos/toxicidade , Apoptose/efeitos dos fármacos , Di-Inos/toxicidade , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Álcoois Graxos/toxicidade , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Di-Inos/uso terapêutico , Sinergismo Farmacológico , Chaperona BiP do Retículo Endoplasmático , Álcoois Graxos/uso terapêutico , Fluoruracila/toxicidade , Células HCT116 , Proteínas de Choque Térmico/antagonistas & inibidores , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Camundongos , Transplante Heterólogo , Ubiquitinação/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos
10.
Biol Pharm Bull ; 34(3): 371-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21372387

RESUMO

Falcarindiol is a diacetylenic natural product containing unique carbon-carbon triple bonds. Mice were orally administrated falcarindiol (100 mg/kg), and drug-metabolizing and antioxidant enzymes were monitored in several tissues of mice. Treatment with falcarindiol was found to increase glutathione S-transferase (GST) and NAD(P)H: quinone oxidoreductase 1 activities in liver, small intestine, kidney, and lung. No changes were observed in cytochrome P450 (CYP) 1A known to activate procarcinogens. Western blot analysis revealed that various GST subunits including GSTA4, which plays an important role in the detoxification of alkenals produced from lipid peroxides, were induced in liver, small intestine, and kidney of falcarindiol-treated mice. Additionally, we investigated the protective effects of falcarindiol against hepatotoxicity induced by carbon tetrachloride (CCl(4)) and the mechanism of its hepatoprotective effect. Pretreatment with falcarindiol prior to the administration of CCl(4) significantly suppressed both an increase in serum alanine transaminase/aspartate transaminase (ALT/AST) activity and an increase in hepatic thiobarbituric acid reactive substance levels without affecting CCl(4)-mediated degradation of CYP2E1. Formation of hexanoyl-lysine and 4-hydroxy-2(E)-nonenal-histidine adducts, lipid peroxidation biomarkers, in homogenates from the liver of CCl(4)-treated mice was decreased in the group of mice pretreated with falcarindiol. These results suggest that the protective effects of falcarindiol against CCl(4) toxicity might, in part, be explained by anti-lipid peroxidation activity associated with the induction of the GSTs including GSTA4.


Assuntos
Antioxidantes/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Dieta , Di-Inos/uso terapêutico , Álcoois Graxos/uso terapêutico , Peroxidação de Lipídeos/efeitos dos fármacos , Desintoxicação Metabólica Fase II/fisiologia , Fitoterapia , Alanina Transaminase/sangue , Animais , Antioxidantes/farmacologia , Apiaceae/química , Aspartato Aminotransferases/sangue , Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Di-Inos/farmacologia , Álcoois Graxos/farmacologia , Glutationa Transferase/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NADH NADPH Oxirredutases/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
11.
Zhongguo Zhong Yao Za Zhi ; 35(8): 1034-7, 2010 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-20617688

RESUMO

OBJECTIVE: To evaluate the effect of panaxynol (PAN) on delayed type hypersensitivity and possible mechanism. METHOD: Allergic contact dermatitis (ACD) was induced by DNCB as a delayed type hypersensitivity (DTH) model to observe effect of PAN on auricle inflammation including pathological injury. Proliferation of T lymphocytes was induced by ConA and measured by MTf method. IFN-gamma secretion of splenocyte induced by ConA was detected by ELISA. RESULT: The swelling degree of auricle and pathological injury in ACD mice was reduced significantly by treated with PAN in induction phase. Proliferation of T lymphocytes induced by ConA in vitro was inhibited significantly by PAN, By contrast, no detectable effect was observed in resting splenocyte. IFN-y induced by ConA in splenocytes was inhibited markedly by PAN from 10 micromol x L(-1) and from 6 h. CONCLUSION: The results showed that DTH was inhibited by PAN mainly in induction phase and this effect may be related with the inhibition on T lymphocytes proliferation and secretion of IFN-gamma.


Assuntos
Dermatite Alérgica de Contato/tratamento farmacológico , Di-Inos/farmacologia , Álcoois Graxos/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Concanavalina A/metabolismo , Dermatite Alérgica de Contato/imunologia , Dermatite Alérgica de Contato/metabolismo , Di-Inos/uso terapêutico , Álcoois Graxos/uso terapêutico , Feminino , Interferon gama/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Baço/efeitos dos fármacos , Baço/metabolismo , Baço/patologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA