Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.051
Filtrar
1.
Behav Brain Res ; 467: 115008, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38657839

RESUMO

The present study aimed to investigate the effects of paradoxical sleep deprivation (PSD) on behavioral and oxidative stress parameters in the brain and serum of mice submitted to the animal model of hyperglycemia induced by alloxan, mimicking the main symptom of diabetes mellitus (DM). Adults C57BL/6 male and female mice received an injection of alloxan, and ten days later, the animals were submitted to the PSD for 36 h. The animals' behavioral parameters were evaluated in the open-field test. Oxidative stress parameters [Diacetyldichlorofluorescein (DCF), Thiobarbituric acid reactive substances (TBARS), Superoxide dismutase (SOD), and Glutathione] were assessed in the frontal cortex, hippocampus, striatum, and serum. The PSD increased the male and female mice locomotion, but the alloxan's pre-administration prevented the PSD-induced hyperactivity. In addition, the male mice receiving alloxan and submitted to the PSD had elevated latency time in the first quadrant and the number of fecal boli, demonstrating increased anxiety-like behavior. The HPA-axis was hyperactivating in male and female mice pre-administered alloxan and/or PSD-submitted animals. The oxidative stress parameters were also increased in the serum of the animals administered alloxan and/or sleep-deprived mice. Despite alloxan or PSD leading to behavioral or biochemical alterations, the one did not potentiate the other in mice. However, more studies are necessary to identify the link between sleep and hyperglycemia.


Assuntos
Encéfalo , Modelos Animais de Doenças , Hiperglicemia , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Privação do Sono , Animais , Privação do Sono/metabolismo , Privação do Sono/fisiopatologia , Privação do Sono/sangue , Masculino , Estresse Oxidativo/fisiologia , Feminino , Hiperglicemia/metabolismo , Encéfalo/metabolismo , Camundongos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Aloxano , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Superóxido Dismutase/metabolismo , Glutationa/metabolismo , Glutationa/sangue
2.
Methods Mol Biol ; 2803: 75-86, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38676886

RESUMO

Mitochondria within a cardiomyocyte form a highly dynamic network that undergoes fusion and fission events in response to acute and chronic stressors, such as hyperglycemia and diabetes mellitus. Changes in mitochondrial architecture and morphology not only reflect their capacity for oxidative phosphorylation and ATP synthesis but also impact their subcellular localization and interaction with other organelles. The role of these ultrastructural abnormalities in modulating electrophysiological properties and excitation-contraction coupling remains largely unknown and warrants direct investigation considering the growing appreciation of the functional and structural coupling between the mitochondrial network, the calcium cycling machinery, and sarcolemmal ion channels in the cardiac myocyte. In this Methods in Molecular Biology chapter, we provide a protocol that allows for a quantitative assessment of mitochondrial shape and morphology in control and diabetic hearts that had undergone detailed electrophysiological measurements using high resolution optical action potential (AP) mapping.


Assuntos
Potenciais de Ação , Mitocôndrias Cardíacas , Miócitos Cardíacos , Animais , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Potenciais de Ação/fisiologia , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Experimental/patologia , Ratos , Fenômenos Eletrofisiológicos , Miocárdio/patologia , Miocárdio/metabolismo
3.
Cardiovasc Diabetol ; 23(1): 138, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664801

RESUMO

BACKGROUND: Neutral cholesterol ester hydrolase 1 (NCEH1) plays a critical role in the regulation of cholesterol ester metabolism. Deficiency of NCHE1 accelerated atherosclerotic lesion formation in mice. Nonetheless, the role of NCEH1 in endothelial dysfunction associated with diabetes has not been explored. The present study sought to investigate whether NCEH1 improved endothelial function in diabetes, and the underlying mechanisms were explored. METHODS: The expression and activity of NCEH1 were determined in obese mice with high-fat diet (HFD) feeding, high glucose (HG)-induced mouse aortae or primary endothelial cells (ECs). Endothelium-dependent relaxation (EDR) in aortae response to acetylcholine (Ach) was measured. RESULTS: Results showed that the expression and activity of NCEH1 were lower in HFD-induced mouse aortae, HG-exposed mouse aortae ex vivo, and HG-incubated primary ECs. HG exposure reduced EDR in mouse aortae, which was exaggerated by endothelial-specific deficiency of NCEH1, whereas NCEH1 overexpression restored the impaired EDR. Similar results were observed in HFD mice. Mechanically, NCEH1 ameliorated the disrupted EDR by dissociating endothelial nitric oxide synthase (eNOS) from caveolin-1 (Cav-1), leading to eNOS activation and nitric oxide (NO) release. Moreover, interaction of NCEH1 with the E3 ubiquitin-protein ligase ZNRF1 led to the degradation of Cav-1 through the ubiquitination pathway. Silencing Cav-1 and upregulating ZNRF1 were sufficient to improve EDR of diabetic aortas, while overexpression of Cav-1 and downregulation of ZNRF1 abolished the effects of NCEH1 on endothelial function in diabetes. Thus, NCEH1 preserves endothelial function through increasing NO bioavailability secondary to the disruption of the Cav-1/eNOS complex in the endothelium of diabetic mice, depending on ZNRF1-induced ubiquitination of Cav-1. CONCLUSIONS: NCEH1 may be a promising candidate for the prevention and treatment of vascular complications of diabetes.


Assuntos
Caveolina 1 , Dieta Hiperlipídica , Células Endoteliais , Endotélio Vascular , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo III , Vasodilatação , Animais , Masculino , Camundongos , Aorta/enzimologia , Aorta/fisiopatologia , Aorta/metabolismo , Aorta/efeitos dos fármacos , Aorta/patologia , Caveolina 1/metabolismo , Caveolina 1/deficiência , Caveolina 1/genética , Células Cultivadas , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/fisiopatologia , Células Endoteliais/enzimologia , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Endotélio Vascular/metabolismo , Endotélio Vascular/enzimologia , Endotélio Vascular/efeitos dos fármacos , Camundongos Knockout , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Obesidade/enzimologia , Obesidade/fisiopatologia , Obesidade/metabolismo , Transdução de Sinais , Esterol Esterase/metabolismo , Esterol Esterase/genética , Ubiquitinação , Vasodilatação/efeitos dos fármacos
4.
Front Biosci (Landmark Ed) ; 29(4): 154, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38682210

RESUMO

BACKGROUND: Diabetic bladder dysfunction (DBD) is driven in part by inflammation which dysregulates prostaglandin release in the bladder. Precise inflammatory mechanisms responsible for such dysregulation have been elusive. Since prostaglandins impact bladder contractility, elucidating these mechanisms may yield potential therapeutic targets for DBD. In female Type 1 diabetic Akita mice, inflammation mediated by the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome is responsible for DBD. Here, we utilized female Akita mice crossbred with NLRP3 knock-out mice to determine how NLRP3-driven inflammation impacts prostaglandin release within the bladder and prostaglandin-mediated bladder contractions. METHODS: Akita mice were crossbred with NLRP3-⁣/- mice to yield four groups of non-diabetics and diabetics with and without the NLRP3 gene. Females were aged to 30 weeks when Akitas typically exhibit DBD. Urothelia and detrusors were stretched ex vivo to release prostaglandins. Prostaglandin E2 (PGE2) and prostaglandin F2α (PGF2α) were quantified using enzyme linked immunosorbent assays (ELISA). In separate samples, ex vivo contractile force to PGE2 and PGF2α +/- the prostaglandin F (FP) receptor antagonist, AL8810, was measured. FP receptor protein expression was determined via western blotting. RESULTS: Stretch-induced PGE2 release increases in urothelia but decreases in detrusors of diabetics. However, PGE2-mediated bladder contractions are not impacted. Conversely, diabetics show no changes in PGF2α release, but PGF2α-mediated contractions increase significantly. This is likely due to signaling through the FP receptors as FP receptor antagonism prevents this increase and diabetics demonstrate a four-fold increase in FP receptor proteins. Without NLRP3-mediated inflammation, changes in prostaglandin release, contractility, and receptor expression do not occur. CONCLUSION: NLRP3-dependent inflammation dysregulates prostaglandin release and prostaglandin-mediated bladder contractions in diabetic female Akita mice via FP receptor upregulation.


Assuntos
Diabetes Mellitus Tipo 1 , Camundongos Knockout , Contração Muscular , Proteína 3 que Contém Domínio de Pirina da Família NLR , Receptores de Prostaglandina , Bexiga Urinária , Animais , Feminino , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Bexiga Urinária/metabolismo , Bexiga Urinária/fisiopatologia , Receptores de Prostaglandina/metabolismo , Receptores de Prostaglandina/genética , Diabetes Mellitus Tipo 1/fisiopatologia , Diabetes Mellitus Tipo 1/metabolismo , Camundongos , Inflamação/metabolismo , Inflamação/fisiopatologia , Camundongos Endogâmicos C57BL , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Experimental/metabolismo
5.
Redox Biol ; 58: 102525, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36335764

RESUMO

Oxidative stress is an essential component in the progression of diabetic kidney disease (DKD), and the transcription factor NF-E2-related factor-2 (Nrf2) plays critical roles in protecting the body against oxidative stress. To clarify the roles of Nrf2 in protecting against DKD, in this study we prepared compound mutant mice with diabetes and loss of antioxidative defense. Specifically, we prepared compound Ins2Akita/+ (Akita) and Nrf2 knockout (Akita::Nrf2-/-) or Akita and Nrf2 induction (Akita::Keap1FA/FA) mutant mice. Eighteen-week-old Akita::Nrf2-/- mice showed more severe diabetic symptoms than Akita mice. In the Akita::Nrf2-/- mouse kidneys, the glomeruli showed distended capillary loops, suggesting enhanced mesangiolysis. Distal tubules showed dilation and an increase in 8-hydroxydeoxyguanosine-positive staining. In the Akita::Nrf2-/- mouse kidneys, the expression of glutathione (GSH) synthesis-related genes was decreased, and the actual GSH level was decreased in matrix-assisted laser desorption/ionization mass spectrometry imaging analysis. Akita::Nrf2-/- mice exhibited severe inflammation and enhancement of infiltrated macrophages in the kidney. To further examine the progression of DKD, we compared forty-week-old Akita mouse kidney compounds with Nrf2-knockout or Nrf2 mildly induced (Akita::Keap1FA/FA) mice. Nrf2-knockout Akita (Akita::Nrf2-/-) mice displayed severe medullary cast formation, but the formation was ameliorated in Akita::Keap1FA/FA mice. Moreover, in Akita::Keap1FA/FA mice, tubule injury and inflammation-related gene expression were significantly suppressed, which was evident in Akita::Nrf2-/- mouse kidneys. These results demonstrate that Nrf2 contributes to the protection of the kidneys against DKD by suppressing oxidative stress and inflammation.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Fator 2 Relacionado a NF-E2 , Animais , Camundongos , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/fisiopatologia , Glutationa/metabolismo , Inflamação/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Rim/metabolismo , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/fisiopatologia
6.
Gene ; 822: 146351, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35189251

RESUMO

INTRODUCTION: Diabetes mellitus can affect and disrupt the levels of PGC1α and NRF2 proteins in the mitochondrial biogenesis pathway. Considering the anti-diabetic properties of Urtica Dioica extract and exercise, this study aimed to investigate the beneficial effects of Urtica Dioica extract and endurance activity on PGC1α and NRF2 protein levels in the streptozotocin-induced diabetic rat heart tissue. MATERIALS AND METHODS: 58 male Wistar rats were divided into five groups (N = 12) including: healthy control (HC), diabetes control (DC), diabetes Urtica Dioica (D-UD), diabetes exercise training (DT), and diabetes exercise training Urtica Dioica (DT-UD). Diabetes was induced intraperitoneally by STZ (45 mg/kg) injection. Two weeks after the induction of diabetes, the rats were stimulated to carry out the exercise (moderate intensity/5day/week) and the gavage of UD extract (50 mg/kg/day) was administered to the rats for six weeks. In this study, the western blotting method was used to measure the levels of PGC1α and NRF2 proteins. Moreover, cardiography was used to evaluate the functional parameters of the heart (ejection fraction & fractional shortening). Finally, the bioluminescence and ELISA methods were used to determine the content of adenosine triphosphate and citrate synthase. RESULTS: The cardiac function parameters, the mitochondrial ATP and the CS content in DC group mice were impaired in comparison with the other study groups and showed a decreasing trend (P < 0.001). The treatment with EX + UD extract was able to minimize the rate of these disorders and acted as a protector of mitochondrial function. There were significant differences in the expression levels of NRF2 (F = 17.7, P = 0.001) and PGC-1α (F = 43.7, P = 0.001) mitochondrial proteins among the different groups. The levels of these proteins were significantly reduced in the DC group in comparison with the HC group (P < 0.001). The treatment with EX or UD extract increased the expression of PGC-1α and NRF2 proteins in the heart muscle of animals in the DT and D-UD groups in comparison with the DC group (P < 0.05). Moreover, the expression of these proteins was more pronounced in the DT-UD group. There was not a significant difference between the DT-UD group and the HC group regarding the expression of these proteins (P > 0.05). CONCLUSIONS: The results of this study showed that treatment with EX and UD extract could treat the disorders which were caused by diabetes in the parameters of cardiac function. Moreover, it was able to improve the expression of the levels of proteins which were involved in mitochondrial biogenesis and its function. Finally, this kind of treatment could attract more attention to the roles of EX and UD extract in the prevention of cardiovascular complications in future studies.


Assuntos
Diabetes Mellitus Experimental/terapia , Mitocôndrias Cardíacas/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Extratos Vegetais/administração & dosagem , Urtica dioica/química , Animais , Glicemia/efeitos dos fármacos , Terapia Combinada , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Condicionamento Físico Animal , Extratos Vegetais/farmacologia , Ratos , Estreptozocina , Volume Sistólico/efeitos dos fármacos , Resultado do Tratamento
7.
Life Sci ; 295: 120393, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35167880

RESUMO

AIMS: Hyperbaric oxygen (HBO) therapy has been widely used for the adjunctive treatment of diabetic wounds, and is currently known to influence left ventricular (LV) function. However, morphological and molecular repercussions of the HBO in the diabetic myocardium remain to be described. We aimed to investigate whether HBO therapy would mitigate adverse LV remodeling caused by streptozotocin (STZ)-induced diabetes. MAIN METHODS: Sixty-day-old Male Wistar rats were divided into four groups: Control (n = 8), HBO (n = 7), STZ (n = 10), and STZ + HBO (n = 8). Diabetes was induced by a single STZ injection (60 mg/kg, i.p.). HBO treatment (100% oxygen at 2.5 atmospheres absolute, 60 min/day, 5 days/week) lasted for 5 weeks. LV morphology was evaluated using histomorphometry. Gene expression analyzes were performed for LV collagens I (Col1a1) and III (Col3a1), matrix metalloproteinases 2 (Mmp2) and 9 (Mmp9), and transforming growth factor-ß1 (Tgfb1). The Immunoexpression of cardiac tumor necrosis factor-α (TNF-α) and vascular endothelial growth factor (VEGF) were also quantified. KEY FINDINGS: HBO therapy prevented LV concentric remodeling, heterogeneous myocyte hypertrophy, and fibrosis in diabetic rats associated with attenuation of leukocyte infiltration. HBO therapy also increased Mmp2 gene expression, and inhibited the induction of Tgfb1 and Mmp9 mRNAs caused by diabetes, and normalized TNF-α and VEGF protein expression. SIGNIFICANCE: HBO therapy had protective effects for the LV structure in STZ-diabetic rats and ameliorated expression levels of genes involved in cardiac collagen turnover, as well as pro-inflammatory and pro-angiogenic signaling.


Assuntos
Oxigenoterapia Hiperbárica/métodos , Remodelação Ventricular/fisiologia , Animais , Cardiotônicos/farmacologia , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/fisiopatologia , Fibrose , Ventrículos do Coração/metabolismo , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Miocárdio/metabolismo , Ratos , Ratos Wistar , Estreptozocina/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos
8.
Genes (Basel) ; 13(1)2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35052470

RESUMO

Adverse exposures during pregnancy have been shown to contribute to susceptibility for chronic diseases in offspring. Maternal diabetes during pregnancy is associated with higher risk of pregnancy complications, structural birth defects, and cardiometabolic health impairments later in life. We showed previously in a mouse model that the placenta is smaller in diabetic pregnancies, with reduced size of the junctional zone and labyrinth. In addition, cell migration is impaired, resulting in ectopic accumulation of spongiotrophoblasts within the labyrinth. The present study had the goal to identify the mechanisms underlying the growth defects and trophoblast migration abnormalities. Based upon gene expression assays of 47 candidate genes, we were able to attribute the reduced growth of diabetic placenta to alterations in the Insulin growth factor and Serotonin signaling pathways, and provide evidence for Prostaglandin signaling deficiencies as the possible cause for abnormal trophoblast migration. Furthermore, our results reinforce the notion that the exposure to maternal diabetes has particularly pronounced effects on gene expression at midgestation time points. An implication of these findings is that mechanisms underlying developmental programming act early in pregnancy, during placenta morphogenesis, and before the conceptus switches from histiotrophic to hemotrophic nutrition.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Diabetes Gestacional/fisiopatologia , Dieta , Regulação da Expressão Gênica , Fenômenos Fisiológicos da Nutrição Materna , Placenta/patologia , Animais , Feminino , Perfilação da Expressão Gênica , Camundongos , Placenta/metabolismo , Gravidez
9.
Sci Rep ; 12(1): 978, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35046471

RESUMO

Mitochondrial dysfunction is a feature of type I and type II diabetes, but there is a lack of consistency between reports and links to disease development. We aimed to investigate if mitochondrial structure-function remodelling occurs in the early stages of diabetes by employing a mouse model (GENA348) of Maturity Onset Diabetes in the Young, exhibiting hyperglycemia, but not hyperinsulinemia, with mild left ventricular dysfunction. Employing 3-D electron microscopy (SBF-SEM) we determined that compared to wild-type, WT, the GENA348 subsarcolemma mitochondria (SSM) are ~ 2-fold larger, consistent with up-regulation of fusion proteins Mfn1, Mfn2 and Opa1. Further, in comparison, GENA348 mitochondria are more irregular in shape, have more tubular projections with SSM projections being longer and wider. Mitochondrial density is also increased in the GENA348 myocardium consistent with up-regulation of PGC1-α and stalled mitophagy (down-regulation of PINK1, Parkin and Miro1). GENA348 mitochondria have more irregular cristae arrangements but cristae dimensions and density are similar to WT. GENA348 Complex activity (I, II, IV, V) activity is decreased but the OCR is increased, potentially linked to a shift towards fatty acid oxidation due to impaired glycolysis. These novel data reveal that dysregulated mitochondrial morphology, dynamics and function develop in the early stages of diabetes.


Assuntos
Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/patologia , Mitocôndrias Cardíacas/ultraestrutura , Dinâmica Mitocondrial , Miocárdio/ultraestrutura , Animais , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Camundongos , Mitocôndrias Cardíacas/fisiologia
10.
Am J Physiol Regul Integr Comp Physiol ; 322(3): R181-R191, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34984919

RESUMO

Intrauterine programming of cardiovascular and renal function occurs in diabetes because of the adverse maternal environment. Heme oxygenase 1 (HO-1) and -2 (HO-2) exert vasodilatory and antioxidant actions, particularly in conditions of elevated HO-1 expression or deficient nitric oxide levels. We evaluated whether the activity of the heme-HO system is differentially regulated by oxidative stress in the female offspring of diabetic mothers, contributing to the improved cardiovascular function in comparison with males. Diabetes was induced in pregnant rats by a single dose of streptozotocin (STZ, 50 mg/kg ip) in late gestation. Three-month-old male offspring from diabetic mothers (MODs) exhibited higher blood pressure (BP), higher renal vascular resistance (RVR), worse endothelium-dependent response to acetylcholine (ACH), and an increased constrictor response to phenylephrine (PHE) compared with those in age-matched female offspring of diabetic mothers (FODs), which were abolished by chronic tempol (1 mM) treatment. In anesthetized animals, stannous mesoporphyrin (SnMP; 40 µmol/kg iv) administration, to inhibit HO activity, increased RVR in FODs and reduced glomerular filtration rate (GFR) in MODs, without altering these parameters in control animals. When compared with MODs, FODs showed lower nitrotirosyne levels and higher HO-1 protein expression in renal homogenates. Indeed, chronic treatment with tempol in MODs prevented elevations in nitrotyrosine levels and the acute renal hemodynamics response to SnMP. Then, maternal diabetes results in sex-specific hypertension and renal alterations associated with oxidative stress mainly in adult male offspring, which are reduced in the female offspring by elevation in HO-1 expression and lower oxidative stress levels.


Assuntos
Diabetes Mellitus Experimental/complicações , Diabetes Gestacional , Heme Oxigenase (Desciclizante)/metabolismo , Hemodinâmica , Hipertensão/etiologia , Rim/irrigação sanguínea , Efeitos Tardios da Exposição Pré-Natal , Circulação Renal , Animais , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Gestacional/enzimologia , Diabetes Gestacional/fisiopatologia , Feminino , Hipertensão/enzimologia , Hipertensão/fisiopatologia , Rim/enzimologia , Masculino , Estresse Oxidativo , Gravidez , Ratos Sprague-Dawley , Fatores Sexuais
11.
Pharmacol Res ; 176: 106086, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35033649

RESUMO

Type 2 diabetes mellitus (T2D) contributes to sustained inflammation and myopathic changes in the heart although the precise interplay between the two remains largely unknown. This study evaluated the impact of deficiency in CD74, the cognate receptor for the regulatory cytokine macrophage migration inhibitory factor (MIF), in T2D-induced cardiac remodeling and functional responses, and cell death domains involved. WT and CD74-/- mice were fed a high fat diet (60% calorie from fat) for 8 weeks prior to injection of streptozotocin (STZ, 35 mg/kg, i.p., 3 consecutive days) and were maintained for another 8 weeks. KEGG analysis for differentially expressed genes (DEGs) reported gene ontology term related to ferroptosis in T2D mouse hearts. T2D patients displayed elevated plasma MIF levels. Murine T2D exerted overt global metabolic derangements, cardiac remodeling, contractile dysfunction, apoptosis, pyroptosis, ferroptosis and mitochondrial dysfunction, ablation of CD74 attenuated T2D-induced cardiac remodeling, contractile dysfunction, various forms of cell death and mitochondrial defects without affecting global metabolic defects. CD74 ablation rescued T2D-evoked NLRP3-Caspase1 activation and oxidative stress but not dampened autophagy. In vitro evidence depicted that high glucose/high fat (HGHF) compromised cardiomyocyte function and promoted lipid peroxidation, the effects were ablated by inhibitors of NLRP3, pyroptosis, and ferroptosis but not by the mitochondrial targeted antioxidant mitoQ. Recombinant MIF mimicked HGHF-induced lipid peroxidation, GSH depletion and ferroptosis, the effects of which were reversed by inhibitors of MIF, NLRP3 and pyroptosis. Taken together, these data suggest that CD74 ablation protects against T2D-induced cardiac remodeling and contractile dysfunction through NLRP3/pyroptosis-mediated regulation of ferroptosis.


Assuntos
Antígenos de Diferenciação de Linfócitos B/genética , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ferroptose , Antígenos de Histocompatibilidade Classe II/genética , Piroptose , Remodelação Ventricular , Adulto , Animais , Linhagem Celular , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/fisiopatologia , Feminino , Expressão Gênica , Humanos , Fatores Inibidores da Migração de Macrófagos/sangue , Masculino , Camundongos Knockout , Pessoa de Meia-Idade , Contração Miocárdica , Miocárdio/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Estresse Oxidativo , Consumo de Oxigênio , Ratos
12.
Inflammation ; 45(1): 156-171, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34468908

RESUMO

Inflammation is a major pathophysiological factor in development of type-2 diabetes mellitus (T2DM). Vitamin D (VITD) plays an imperative role in modulation of several inflammatory responses. The current study aimed to investigate the possible beneficial effects of coadministration of VITD with pioglitazone (PIO), a PPAR-γ agonist, in fructose/streptozotocin (F/STZ) T2DM model in male Wistar rats. T2DM was induced by maintaining rats on 10% (w/v) fructose in drinking water for 9 weeks with an intraperitoneal injection of sub-diabetogenic dose of STZ (35 mg/kg) by the end of the fourth week. One week after STZ injection, PIO (10 mg/kg/day) alone or with VITD (500 IU/kg/day) was administered orally to diabetic rats till the end of the experiment. Blood samples were collected, livers were homogenized to determine biochemical parameters, and samples of livers were fixed in 10% formalin in saline for histological examination. Administration of PIO alone improved diabetes-induced inflammatory and oxidative states besides controlling hyperglycemia and decreasing apoptosis. Coadministration of VIT D with PIO promoted additional improvement in glycemic and lipid profiles, provided further control on diabetic-induced hepatic inflammation evident by downregulating TLR2, TLR4, and IKK-ß while upregulating IκB-α expression and reducing inflammatory cytokines namely; NF-κB, TNF-α, IL-6, and IL-1ß, decreasing apoptosis and oxidative stress by hampering caspase-3 and MDA contents, respectively, and improved liver histology than PIO alone. These beneficial effects of VIT D may expand its use by diabetics combined with antidiabetic drugs due to its anti-inflammatory, antioxidant, and antiapoptotic properties.


Assuntos
Anti-Inflamatórios/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hepatopatias/prevenção & controle , Pioglitazona/farmacologia , Vitamina D/farmacologia , Animais , Anti-Inflamatórios/uso terapêutico , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Quimioterapia Combinada , Hipoglicemiantes/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/etiologia , Inflamação/metabolismo , Hepatopatias/etiologia , Hepatopatias/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Pioglitazona/uso terapêutico , Ratos , Ratos Wistar , Resultado do Tratamento , Vitamina D/uso terapêutico
13.
Diabetes ; 71(2): 285-297, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34753800

RESUMO

Red blood cells (RBC) act as mediators of vascular injury in type 2 diabetes mellitus (T2DM). miR-210 plays a protective role in cardiovascular homeostasis and is decreased in whole blood of T2DM mice. We hypothesized that downregulation of RBC miR-210 induces endothelial dysfunction in T2DM. RBC were coincubated with arteries and endothelial cells ex vivo and transfused in vivo to identify the role of miR-210 and its target protein tyrosine phosphatase 1B (PTP1B) in endothelial dysfunction. RBC from patients with T2DM and diabetic rodents induced endothelial dysfunction ex vivo and in vivo. miR-210 levels were lower in human RBC from patients with T2DM (T2DM RBC) than in RBC from healthy subjects. Transfection of miR-210 in human T2DM RBC rescued endothelial function, whereas miR-210 inhibition in healthy subjects RBC or RBC from miR-210 knockout mice impaired endothelial function. Human T2DM RBC decreased miR-210 expression in endothelial cells. miR-210 expression in carotid artery plaques was lower in T2DM patients than in patients without diabetes. Endothelial dysfunction induced by downregulated RBC miR-210 involved PTP1B and reactive oxygen species. miR-210 mimic attenuated endothelial dysfunction induced by RBC via downregulating vascular PTP1B and oxidative stress in diabetic mice in vivo. These data reveal that the downregulation of RBC miR-210 is a novel mechanism driving the development of endothelial dysfunction in T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Endotélio Vascular/fisiopatologia , Eritrócitos/metabolismo , MicroRNAs/genética , Animais , Estudos de Casos e Controles , Células Cultivadas , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatologia , Angiopatias Diabéticas/sangue , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/fisiopatologia , Endotélio Vascular/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/fisiologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
14.
Biochem Biophys Res Commun ; 586: 8-13, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34818584

RESUMO

AIM: To evaluate the effects of exercise training (ET) on cardiac extracellular matrix (ECM) proteins homeostasis and cardiac dysfunction in mice with diabetic cardiomyopathy. METHODS: Thirty-six male C57BL/6 mice were randomized into 3 groups for 8 weeks (12mice/group): Diabetic control-DC: Diabetes was induced by single streptozotocin injection (200 mg/kg i.p.); Diabetic exercise-DE: Diabetic mice underwent ET program on motorized-treadmill (6-times/week, 60min/session); Non-diabetic control-NDC: Vehicle-treated, sedentary, non-diabetic mice served as controls. Before euthanasia, all groups underwent transthoracic echocardiography (TTE). Post-mortem, left-ventricle (LV) samples were histologically analysed for ECM proteins (collagen, elastin), matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs). RESULTS: DC group showed significantly higher cardiac contents of collagen and MMP-9 and lower elastic concentration than NDC (p < 0.001). The implementation of ET completely outweighed those diabetes-induced changes (DE vs NDC, p > 0.05). TIMP-1 levels significantly increased across all groups (DC: 18.98 ± 3.47%, DE: 24.24 ± 2.36%, NDC: 46.36 ± 5.91%; p < 0.05), while MMP-9/TIMP-1 ratio followed a reverse pattern. ET tended to increase MMP-2 concentrations versus DC (p = 0.055), but did not achieve non-diabetic levels (p < 0.05). TIMP-2 cardiac concentrations remained unaltered throughout the study (p > 0.05). Importantly, ET ameliorated both LV end-systolic internal diameter (LVESD) (p < 0.001) and the percentage of LV fractional shortening (FS%) (p = 0.006) compared to DC. Despite that favorable effect, the cardiac function level of DE group remained worse than NDC group (%FS: p = 0.002; LVESD: p < 0.001). CONCLUSION: Systemic ET may favorably change ECM proteins, MMP-9 and TIMP-1 cardiac concentrations in mice with diabetic cardiomyopathy. Those results were associated with partial improvement of echocardiography-assessed cardiac function, indicating a therapeutic effect of ET in diabetic cardiomyopathy.


Assuntos
Diabetes Mellitus Experimental/enzimologia , Cardiomiopatias Diabéticas/enzimologia , Matriz Extracelular/enzimologia , Metaloproteinase 9 da Matriz/genética , Condicionamento Físico Animal/fisiologia , Inibidor Tecidual de Metaloproteinase-1/genética , Animais , Glicemia/metabolismo , Colágeno/genética , Colágeno/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatologia , Cardiomiopatias Diabéticas/induzido quimicamente , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/fisiopatologia , Ecocardiografia , Elastina/genética , Elastina/metabolismo , Teste de Esforço , Matriz Extracelular/genética , Regulação da Expressão Gênica , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Estreptozocina/administração & dosagem , Inibidor Tecidual de Metaloproteinase-1/metabolismo
15.
Biomed Pharmacother ; 145: 112305, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34872802

RESUMO

Diabetes has become more common in recent years worldwide, and this growth is projected to continue in the future. The primary concern with diabetes is developing various complications, which significantly contribute to the disease's mortality and morbidity. Over time, the condition progresses from the pre-diabetic to the diabetic stage and then to the development of complications. Years and enormous resources are required to evaluate pharmacological interventions to prevent or delay the progression of disease or complications in humans. Appropriate screening models are required to gain a better understanding of both pathogenesis and potential therapeutic agents. Different species of animals are used to evaluate the pharmacological potentials and study the pathogenesis of the disease. Animal models are essential for research because they represent most of the structural, functional, and biochemical characteristics of human diseases. An ideal screening model should mimic the pathogenesis of the disease with identifiable characteristics. A thorough understanding of animal models is required for the experimental design to select an appropriate model. Each animal model has certain advantages and limitations. The present manuscript describes the animal models and their diagnostic characteristics to evaluate microvascular diabetic complications.


Assuntos
Diabetes Mellitus Experimental/complicações , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/fisiopatologia , Nefropatias Diabéticas/diagnóstico , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/fisiopatologia , Neuropatias Diabéticas/diagnóstico , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/fisiopatologia , Retinopatia Diabética/diagnóstico , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/fisiopatologia , Progressão da Doença , Humanos , Especificidade da Espécie
16.
Bioengineered ; 12(2): 10982-10993, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34851228

RESUMO

To investigate the protective effects of metformin on the diabetic mice with cognitive impairment induced by the combination of streptozotocin (STZ) and isoflurane anesthesia. The isoflurane-anesthetized cognitive impairment model mice were established and then observed via behavioral tests and histopathological examination. Then these model mice were randomly assigned to three groups, which received the PBS, low and high doses of metformin, respectively. The body weight, food and water consumption of model mice were measured every other day. The mechanisms of metformin on ameliorating the cognitive dysfunction were further investigated by histomorphological, biochemical and Western blot analysis. After 14-days treatment of metformin, the diabetic symptoms in STZ-induced diabetic mice were significantly alleviated. Metformin could restore the isoflurane- and STZ-induced hippocampal tissue damage, cognitive and memory impairment in exposed space via improving the oxidative stress, upregulating the contents of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) in the hippocampus tissues of diabetic mice. Furthermore, chronic treatment of metformin significantly down-regulated the expression of AGEs, RAGE, pNF-κB, iNOS, and COX-2. In conclusion, metformin can improve the isoflurane- and STZ-induced cognitive impairment in diabetic mice via improving oxidative stress and inhibiting the AGEs/RAGE/NF-κB signaling pathway.


Assuntos
Anestesia/efeitos adversos , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Diabetes Mellitus Experimental/tratamento farmacológico , Metformina/uso terapêutico , Animais , Disfunção Cognitiva/complicações , Disfunção Cognitiva/fisiopatologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/fisiopatologia , Modelos Animais de Doenças , Hipocampo/patologia , Isoflurano , Masculino , Memória/efeitos dos fármacos , Metformina/farmacologia , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais/efeitos dos fármacos , Aprendizagem Espacial/efeitos dos fármacos , Estreptozocina
17.
Nutrients ; 13(12)2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34960104

RESUMO

Impairment of adiponectin production and function is closely associated with insulin resistance and type 2 diabetes, which are linked to obesity. Studies in animal models have documented the anti-diabetic effects of tetrahydrocurcumin (THC). Although several possible mechanisms have been proposed, the contribution of adiponectin signaling on THC-mediated antihyperglycemic effects remains unknown. Here, we report that adiposity, steatosis, and hyperglycemia were potently attenuated in high-fat diet/streptozotocin-induced diabetic obese mice after they received 20 and 100 mg/kg THC for 14 weeks. THC upregulated UCP-1 in adipose tissue and elevated adiponectin levels in the circulation. THC upregulated the AdipoR1/R2-APPL1-mediated pathway in the liver and skeletal muscle, which contributes to improved insulin signaling, glucose utilization, and lipid metabolism. Furthermore, THC treatment significantly (p < 0.05) preserved islet mass, reduced apoptosis, and restored defective insulin expression in the pancreatic ß-cells of diabetic obese mice, which was accompanied by an elevation of AdipoR1 and APPL1. These results demonstrated a potential mechanism underlying the beneficial effects of THC against hyperglycemia via the adiponectin-AdipoR pathway, and thus, may lead to a novel therapeutic use for type 2 diabetes.


Assuntos
Adiponectina/metabolismo , Curcumina/análogos & derivados , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Dieta Hiperlipídica/efeitos adversos , Hipoglicemiantes , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/fisiologia , Insulina/metabolismo , Fitoterapia , Receptores de Adiponectina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Curcumina/farmacologia , Curcumina/uso terapêutico , Diabetes Mellitus Experimental/etiologia , Diabetes Mellitus Experimental/fisiopatologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estreptozocina , Regulação para Cima/efeitos dos fármacos
18.
PLoS One ; 16(12): e0259505, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34882677

RESUMO

PURPOSE: The purpose of this study was to investigate neuronal and vascular functional deficits in the retina and their association in a diabetic mouse model. We measured electroretinography (ERG) responses and choroidal and retinal blood flow (ChBF, RBF) with magnetic resonance imaging (MRI) in healthy and diabetic mice under basal conditions and under hypercapnic challenge. METHODS: Ins2Akita diabetic (Diab, n = 8) and age-matched, wild-type C57BL/6J mice (Ctrl, n = 8) were studied under room air and moderate hypercapnia (5% CO2). Dark-adapted ERG a-wave, b-wave, and oscillatory potentials (OPs) were measured for a series of flashes. Regional ChBF and RBF under air and hypercapnia were measured using MRI in the same mice. RESULTS: Under room air, Diab mice had compromised ERG b-wave and OPs (e.g., b-wave amplitude was 422.2±10.7 µV in Diab vs. 600.1±13.9 µV in Ctrl, p < 0.001). Under hypercapnia, OPs and b-wave amplitudes were significantly reduced in Diab (OPs by 30.3±3.0% in Diab vs. -3.0±3.6% in Ctrl, b-wave by 17.9±1.4% in Diab vs. 1.3±0.5% in Ctrl). Both ChBF and RBF had significant differences in regional blood flow, with Diab mice having substantially lower blood flow in the nasal region (ChBF was 5.4±1.0 ml/g/min in Diab vs. 8.6±1.0 ml/g/min in Ctrl, RBF was 0.91±0.10 ml/g/min in Diab vs. 1.52±0.24 ml/g/min in Ctrl). Under hypercapnia, ChBF increased in both Ctrl and Diab without significant group difference (31±7% in Diab vs. 17±7% in Ctrl, p > 0.05), but an increase in RBF was not detected for either group. CONCLUSIONS: Inner retinal neuronal function and both retinal and choroidal blood flow were impaired in Diab mice. Hypercapnia further compromised inner retinal neuronal function in diabetes, while the blood flow response was not affected, suggesting that the diabetic retina has difficulty adapting to metabolic challenges due to factors other than impaired blood flow regulation.


Assuntos
Corioide/irrigação sanguínea , Diabetes Mellitus Experimental/complicações , Hipercapnia/diagnóstico por imagem , Retina/fisiopatologia , Animais , Corioide/diagnóstico por imagem , Diabetes Mellitus Experimental/diagnóstico por imagem , Diabetes Mellitus Experimental/fisiopatologia , Eletrorretinografia , Hipercapnia/etiologia , Insulina/genética , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Retina/diagnóstico por imagem
19.
Biol Pharm Bull ; 44(12): 1894-1897, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34853274

RESUMO

The lusitropic effect of quercetin was examined on isolated ventricular myocardial tissue preparations from normal and streptozotocin-induced diabetic mice. The time required for 90% relaxation of the myocardium, which was prolonged in the diabetic mice, was shortened by quercetin in both normal and diabetic myocardia. This effect of quercetin was completely inhibited by cyclopiazonic acid but not by SEA0400. These results indicated that quercetin accelerates myocardial relaxation through activation of the sarco-endoplasmic reticulum Ca2+-ATPase.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Ventrículos do Coração/fisiopatologia , Contração Miocárdica/efeitos dos fármacos , Miocárdio , Extratos Vegetais/farmacologia , Quercetina/farmacologia , Disfunção Ventricular Esquerda/etiologia , Adenosina Trifosfatases/metabolismo , Compostos de Anilina/farmacologia , Animais , Cálcio/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Retículo Endoplasmático , Inibidores Enzimáticos , Ventrículos do Coração/metabolismo , Indóis/farmacologia , Masculino , Camundongos , Miocárdio/metabolismo , Miocárdio/patologia , Éteres Fenílicos/farmacologia , Extratos Vegetais/uso terapêutico , Plantas Comestíveis/química , Quercetina/uso terapêutico , Valores de Referência , Pressão Ventricular
20.
Biochem Biophys Res Commun ; 585: 68-74, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34801936

RESUMO

AIM: To examine the effect of diacerein on vascular dysfunction in type 2 diabetic rats and elucidate the mechanism of diacerein. METHODS: In a rat model, type 2 diabetes was induced by high-fat diet and streptozotocin. Vascular function was assessed in vascular reactivity experiment. The effect of diacerein (10 or 20 mg/kg/day) on blood glucose, inflammation and insulin signaling, and modulators in vascular tissue in diabetic rats were investigated by molecular and biochemical approaches. RESULTS: In this study, diacerein inhibited diabetes-induced vascular dysfunction. Diacerein treatment normalized blood glucose, insulin tolerance test, inflammatory cytokine levels and nitric oxide synthases expression in diabetic rats. Moreover, diacerein inhibited NF-κB and NLRP3 pathways and activated insulin signaling pathway related proteins IRS-1 and AKT in diabetic rats. CONCLUSION: Diacerein improved vascular function effectively in diabetic rats by suppressing inflammation and reducing insulin resistance. These results suggest that diacerein may represent a novel therapy for patients with diabetes.


Assuntos
Antraquinonas/farmacologia , Aorta Torácica/efeitos dos fármacos , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Inflamação/prevenção & controle , Resistência à Insulina , Animais , Antraquinonas/química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Aorta Torácica/metabolismo , Aorta Torácica/fisiopatologia , Glicemia/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Inflamação/metabolismo , Inflamação/fisiopatologia , Masculino , Estrutura Molecular , NF-kappa B/metabolismo , Óxido Nítrico Sintase/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA