Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24.596
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38717874

RESUMO

Computer-aided diagnosis (CAD) plays a crucial role in the clinical application of Alzheimer's disease (AD). In particular, convolutional neural network (CNN)-based methods are highly sensitive to subtle changes caused by brain atrophy in medical images (e.g., magnetic resonance imaging, MRI). Due to computational resource constraints, most CAD methods focus on quantitative features in specific regions, neglecting the holistic nature of the images, which poses a challenge for a comprehensive understanding of pathological changes in AD. To address this issue, we propose a lightweight dual multi-level hybrid pyramid convolutional neural network (DMA-HPCNet) to aid clinical diagnosis of AD. Specifically, we introduced ResNet as the backbone network and modularly extended the hybrid pyramid convolution (HPC) block and the dual multi-level attention (DMA) module. Among them, the HPC block is designed to enhance the acquisition of information at different scales, and the DMA module is proposed to sequentially extract different local and global representations from the channel and spatial domains. Our proposed DMA-HPCNet method was evaluated on baseline MRI slices of 443 subjects from the ADNI dataset. Experimental results show that our proposed DMA-HPCNet model performs efficiently in AD-related classification tasks with low computational cost.


Assuntos
Algoritmos , Doença de Alzheimer , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/classificação , Doença de Alzheimer/diagnóstico , Humanos , Imageamento por Ressonância Magnética/métodos , Diagnóstico por Computador/métodos , Atrofia , Encéfalo/diagnóstico por imagem , Idoso , Feminino , Masculino , Aprendizado Profundo , Bases de Dados Factuais
2.
BMC Oral Health ; 24(1): 598, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778322

RESUMO

BACKGROUND: Machine learning (ML) through artificial intelligence (AI) could provide clinicians and oral pathologists to advance diagnostic problems in the field of potentially malignant lesions, oral cancer, periodontal diseases, salivary gland disease, oral infections, immune-mediated disease, and others. AI can detect micro-features beyond human eyes and provide solution in critical diagnostic cases. OBJECTIVE: The objective of this study was developing a software with all needed feeding data to act as AI-based program to diagnose oral diseases. So our research question was: Can we develop a Computer-Aided Software for accurate diagnosis of oral diseases based on clinical and histopathological data inputs? METHOD: The study sample included clinical images, patient symptoms, radiographic images, histopathological images and texts for the oral diseases of interest in the current study (premalignant lesions, oral cancer, salivary gland neoplasms, immune mediated oral mucosal lesions, oral reactive lesions) total oral diseases enrolled in this study was 28 diseases retrieved from the archives of oral maxillofacial pathology department. Total 11,200 texts and 3000 images (2800 images were used for training data to the program and 100 images were used as test data to the program and 100 cases for calculating accuracy, sensitivity& specificity). RESULTS: The correct diagnosis rates for group 1 (software users), group 2 (microscopic users) and group 3 (hybrid) were 87%, 90.6, 95% respectively. The reliability for inter-observer value was done by calculating Cronbach's alpha and interclass correlation coefficient. The test revealed for group 1, 2 and 3 the following values respectively 0.934, 0.712 & 0.703. All groups showed acceptable reliability especially for Diagnosis Oral Diseases Software (DODS) that revealed higher reliability value than other groups. However, The accuracy, sensitivity & specificity of this software was lower than those of oral pathologists (master's degree). CONCLUSION: The correct diagnosis rate of DODS was comparable to oral pathologists using standard microscopic examination. The DODS program could be utilized as diagnostic guidance tool with high reliability & accuracy.


Assuntos
Inteligência Artificial , Doenças da Boca , Software , Humanos , Doenças da Boca/patologia , Doenças da Boca/diagnóstico , Doenças da Boca/diagnóstico por imagem , Diagnóstico por Computador/métodos , Sensibilidade e Especificidade , Neoplasias Bucais/patologia , Neoplasias Bucais/diagnóstico por imagem , Neoplasias Bucais/diagnóstico , Aprendizado de Máquina
3.
Int J Chron Obstruct Pulmon Dis ; 19: 1061-1067, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38765765

RESUMO

Chronic Obstructive Pulmonary Disease (COPD), as one of the major global health threat diseases, particularly in China, presents a high prevalence and mortality rate. Early diagnosis is crucial for controlling disease progression and improving patient prognosis. However, due to the lack of significant early symptoms, the awareness and diagnosis rates of COPD remain low. Against this background, primary healthcare institutions play a key role in identifying high-risk groups and early diagnosis. With the development of Artificial Intelligence (AI) technology, its potential in enhancing the efficiency and accuracy of COPD screening is evident. This paper discusses the characteristics of high-risk groups for COPD, current screening methods, and the application of AI technology in various aspects of screening. It also highlights challenges in AI application, such as data privacy, algorithm accuracy, and interpretability. Suggestions for improvement, such as enhancing AI technology dissemination, improving data quality, promoting interdisciplinary cooperation, and strengthening policy and financial support, aim to further enhance the effectiveness and prospects of AI technology in COPD screening at primary healthcare institutions in China.


Assuntos
Inteligência Artificial , Diagnóstico Precoce , Programas de Rastreamento , Valor Preditivo dos Testes , Atenção Primária à Saúde , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/epidemiologia , China/epidemiologia , Programas de Rastreamento/métodos , Fatores de Risco , Diagnóstico por Computador , Pulmão/fisiopatologia , Medição de Risco , Reprodutibilidade dos Testes , Prognóstico
4.
Sci Data ; 11(1): 512, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760418

RESUMO

Given the high prevalence of lung cancer, an accurate diagnosis is crucial. In the diagnosis process, radiologists play an important role by examining numerous radiology exams to identify different types of nodules. To aid the clinicians' analytical efforts, computer-aided diagnosis can streamline the process of identifying pulmonary nodules. For this purpose, medical reports can serve as valuable sources for automatically retrieving image annotations. Our study focused on converting medical reports into nodule annotations, matching textual information with manually annotated data from the Lung Nodule Database (LNDb)-a comprehensive repository of lung scans and nodule annotations. As a result of this study, we have released a tabular data file containing information from 292 medical reports in the LNDb, along with files detailing nodule characteristics and corresponding matches to the manually annotated data. The objective is to enable further research studies in lung cancer by bridging the gap between existing reports and additional manual annotations that may be collected, thereby fostering discussions about the advantages and disadvantages between these two data types.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Bases de Dados Factuais , Nódulo Pulmonar Solitário/diagnóstico por imagem , Diagnóstico por Computador
5.
Sci Rep ; 14(1): 10714, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730250

RESUMO

A prompt diagnosis of breast cancer in its earliest phases is necessary for effective treatment. While Computer-Aided Diagnosis systems play a crucial role in automated mammography image processing, interpretation, grading, and early detection of breast cancer, existing approaches face limitations in achieving optimal accuracy. This study addresses these limitations by hybridizing the improved quantum-inspired binary Grey Wolf Optimizer with the Support Vector Machines Radial Basis Function Kernel. This hybrid approach aims to enhance the accuracy of breast cancer classification by determining the optimal Support Vector Machine parameters. The motivation for this hybridization lies in the need for improved classification performance compared to existing optimizers such as Particle Swarm Optimization and Genetic Algorithm. Evaluate the efficacy of the proposed IQI-BGWO-SVM approach on the MIAS dataset, considering various metric parameters, including accuracy, sensitivity, and specificity. Furthermore, the application of IQI-BGWO-SVM for feature selection will be explored, and the results will be compared. Experimental findings demonstrate that the suggested IQI-BGWO-SVM technique outperforms state-of-the-art classification methods on the MIAS dataset, with a resulting mean accuracy, sensitivity, and specificity of 99.25%, 98.96%, and 100%, respectively, using a tenfold cross-validation datasets partition.


Assuntos
Algoritmos , Neoplasias da Mama , Máquina de Vetores de Suporte , Humanos , Neoplasias da Mama/diagnóstico , Feminino , Mamografia/métodos , Diagnóstico por Computador/métodos
6.
Comput Biol Med ; 175: 108440, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701589

RESUMO

The diagnosis of ankylosing spondylitis (AS) can be complex, necessitating a comprehensive assessment of medical history, clinical symptoms, and radiological evidence. This multidimensional approach can exacerbate the clinical burden and increase the likelihood of diagnostic inaccuracies, which may result in delayed or overlooked cases. Consequently, supplementary diagnostic techniques for AS have become a focal point in clinical research. This study introduces an enhanced optimization algorithm, SCJAYA, which incorporates salp swarm foraging behavior with cooperative predation strategies into the JAYA algorithm framework, noted for its robust optimization capabilities that emulate the evolutionary dynamics of biological organisms. The integration of salp swarm behavior is aimed at accelerating the convergence speed and enhancing the quality of solutions of the classical JAYA algorithm while the cooperative predation strategy is incorporated to mitigate the risk of convergence on local optima. SCJAYA has been evaluated across 30 benchmark functions from the CEC2014 suite against 9 conventional meta-heuristic algorithms as well as 9 state-of-the-art meta-heuristic counterparts. The comparative analyses indicate that SCJAYA surpasses these algorithms in terms of convergence speed and solution precision. Furthermore, we proposed the bSCJAYA-FKNN classifier: an advanced model applying the binary version of SCJAYA for feature selection, with the aim of improving the accuracy in diagnosing and prognosticating AS. The efficacy of the bSCJAYA-FKNN model was substantiated through validation on 11 UCI public datasets in addition to an AS-specific dataset. The model exhibited superior performance metrics-achieving an accuracy rate, specificity, Matthews correlation coefficient (MCC), F-measure, and computational time of 99.23 %, 99.52 %, 0.9906, 99.41 %, and 7.2800 s, respectively. These results not only underscore its profound capability in classification but also its substantial promise for the efficient diagnosis and prognosis of AS.


Assuntos
Algoritmos , Espondilite Anquilosante , Espondilite Anquilosante/diagnóstico , Humanos , Lógica Fuzzy , Diagnóstico por Computador/métodos
7.
Comput Biol Med ; 175: 108483, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704900

RESUMO

The timely and accurate diagnosis of breast cancer is pivotal for effective treatment, but current automated mammography classification methods have their constraints. In this study, we introduce an innovative hybrid model that marries the power of the Extreme Learning Machine (ELM) with FuNet transfer learning, harnessing the potential of the MIAS dataset. This novel approach leverages an Enhanced Quantum-Genetic Binary Grey Wolf Optimizer (Q-GBGWO) within the ELM framework, elevating its performance. Our contributions are twofold: firstly, we employ a feature fusion strategy to optimize feature extraction, significantly enhancing breast cancer classification accuracy. The proposed methodological motivation stems from optimizing feature extraction for improved breast cancer classification accuracy. The Q-GBGWO optimizes ELM parameters, demonstrating its efficacy within the ELM classifier. This innovation marks a considerable advancement beyond traditional methods. Through comparative evaluations against various optimization techniques, the exceptional performance of our Q-GBGWO-ELM model becomes evident. The classification accuracy of the model is exceptionally high, with rates of 96.54 % for Normal, 97.24 % for Benign, and 98.01 % for Malignant classes. Additionally, the model demonstrates a high sensitivity with rates of 96.02 % for Normal, 96.54 % for Benign, and 97.75 % for Malignant classes, and it exhibits impressive specificity with rates of 96.69 % for Normal, 97.38 % for Benign, and 98.16 % for Malignant classes. These metrics are reflected in its ability to classify three different types of breast cancer accurately. Our approach highlights the innovative integration of image data, deep feature extraction, and optimized ELM classification, marking a transformative step in advancing early breast cancer detection and enhancing patient outcomes.


Assuntos
Neoplasias da Mama , Aprendizado de Máquina , Humanos , Neoplasias da Mama/diagnóstico por imagem , Feminino , Mamografia/métodos , Diagnóstico por Computador/métodos
8.
BMC Pediatr ; 24(1): 361, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38783283

RESUMO

BACKGROUND: Noonan syndrome (NS) is a rare genetic disease, and patients who suffer from it exhibit a facial morphology that is characterized by a high forehead, hypertelorism, ptosis, inner epicanthal folds, down-slanting palpebral fissures, a highly arched palate, a round nasal tip, and posteriorly rotated ears. Facial analysis technology has recently been applied to identify many genetic syndromes (GSs). However, few studies have investigated the identification of NS based on the facial features of the subjects. OBJECTIVES: This study develops advanced models to enhance the accuracy of diagnosis of NS. METHODS: A total of 1,892 people were enrolled in this study, including 233 patients with NS, 863 patients with other GSs, and 796 healthy children. We took one to 10 frontal photos of each subject to build a dataset, and then applied the multi-task convolutional neural network (MTCNN) for data pre-processing to generate standardized outputs with five crucial facial landmarks. The ImageNet dataset was used to pre-train the network so that it could capture generalizable features and minimize data wastage. We subsequently constructed seven models for facial identification based on the VGG16, VGG19, VGG16-BN, VGG19-BN, ResNet50, MobileNet-V2, and squeeze-and-excitation network (SENet) architectures. The identification performance of seven models was evaluated and compared with that of six physicians. RESULTS: All models exhibited a high accuracy, precision, and specificity in recognizing NS patients. The VGG19-BN model delivered the best overall performance, with an accuracy of 93.76%, precision of 91.40%, specificity of 98.73%, and F1 score of 78.34%. The VGG16-BN model achieved the highest AUC value of 0.9787, while all models based on VGG architectures were superior to the others on the whole. The highest scores of six physicians in terms of accuracy, precision, specificity, and the F1 score were 74.00%, 75.00%, 88.33%, and 61.76%, respectively. The performance of each model of facial recognition was superior to that of the best physician on all metrics. CONCLUSION: Models of computer-assisted facial recognition can improve the rate of diagnosis of NS. The models based on VGG19-BN and VGG16-BN can play an important role in diagnosing NS in clinical practice.


Assuntos
Síndrome de Noonan , Humanos , Síndrome de Noonan/diagnóstico , Criança , Feminino , Masculino , Pré-Escolar , Redes Neurais de Computação , Lactente , Adolescente , Reconhecimento Facial Automatizado/métodos , Diagnóstico por Computador/métodos , Sensibilidade e Especificidade , Estudos de Casos e Controles
9.
Stud Health Technol Inform ; 314: 183-184, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38785028

RESUMO

Melanoma represents an extremely aggressive type of skin lesion. Despite its high mortality rate, when detected in its initial stage, the projected five-year survival rate is notably high. The advancement of Artificial Intelligence in recent years has facilitated the creation of diverse solutions aimed at assisting medical diagnosis. This proposal presents an architecture for melanoma classification.


Assuntos
Melanoma , Neoplasias Cutâneas , Melanoma/classificação , Humanos , Neoplasias Cutâneas/classificação , Inteligência Artificial , Diagnóstico por Computador/métodos
10.
Sci Rep ; 14(1): 8071, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580700

RESUMO

Over recent years, researchers and practitioners have encountered massive and continuous improvements in the computational resources available for their use. This allowed the use of resource-hungry Machine learning (ML) algorithms to become feasible and practical. Moreover, several advanced techniques are being used to boost the performance of such algorithms even further, which include various transfer learning techniques, data augmentation, and feature concatenation. Normally, the use of these advanced techniques highly depends on the size and nature of the dataset being used. In the case of fine-grained medical image sets, which have subcategories within the main categories in the image set, there is a need to find the combination of the techniques that work the best on these types of images. In this work, we utilize these advanced techniques to find the best combinations to build a state-of-the-art lumber disc herniation computer-aided diagnosis system. We have evaluated the system extensively and the results show that the diagnosis system achieves an accuracy of 98% when it is compared with human diagnosis.


Assuntos
Deslocamento do Disco Intervertebral , Humanos , Deslocamento do Disco Intervertebral/diagnóstico por imagem , Diagnóstico por Computador/métodos , Algoritmos , Aprendizado de Máquina , Computadores
11.
Biomed Phys Eng Express ; 10(3)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38599202

RESUMO

A lot of underdeveloped nations particularly in Africa struggle with cancer-related, deadly diseases. Particularly in women, the incidence of breast cancer is rising daily because of ignorance and delayed diagnosis. Only by correctly identifying and diagnosing cancer in its very early stages of development can be effectively treated. The classification of cancer can be accelerated and automated with the aid of computer-aided diagnosis and medical image analysis techniques. This research provides the use of transfer learning from a Residual Network 18 (ResNet18) and Residual Network 34 (ResNet34) architectures to detect breast cancer. The study examined how breast cancer can be identified in breast mammography pictures using transfer learning from ResNet18 and ResNet34, and developed a demo app for radiologists using the trained models with the best validation accuracy. 1, 200 datasets of breast x-ray mammography images from the National Radiological Society's (NRS) archives were employed in the study. The dataset was categorised as implant cancer negative, implant cancer positive, cancer negative and cancer positive in order to increase the consistency of x-ray mammography images classification and produce better features. For the multi-class classification of the images, the study gave an average accuracy for binary classification of benign or malignant cancer cases of 86.7% validation accuracy for ResNet34 and 92% validation accuracy for ResNet18. A prototype web application showcasing ResNet18 performance has been created. The acquired results show how transfer learning can improve the accuracy of breast cancer detection, providing invaluable assistance to medical professionals, particularly in an African scenario.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Mamografia/métodos , Mama/diagnóstico por imagem , Diagnóstico por Computador , Aprendizado de Máquina
12.
Int Ophthalmol ; 44(1): 191, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653842

RESUMO

Optical Coherence Tomography (OCT) is widely recognized as the leading modality for assessing ocular retinal diseases, playing a crucial role in diagnosing retinopathy while maintaining a non-invasive modality. The increasing volume of OCT images underscores the growing importance of automating image analysis. Age-related diabetic Macular Degeneration (AMD) and Diabetic Macular Edema (DME) are the most common cause of visual impairment. Early detection and timely intervention for diabetes-related conditions are essential for preventing optical complications and reducing the risk of blindness. This study introduces a novel Computer-Aided Diagnosis (CAD) system based on a Convolutional Neural Network (CNN) model, aiming to identify and classify OCT retinal images into AMD, DME, and Normal classes. Leveraging CNN efficiency, including feature learning and classification, various CNN, including pre-trained VGG16, VGG19, Inception_V3, a custom from scratch model, BCNN (VGG16) 2 , BCNN (VGG19) 2 , and BCNN (Inception_V3) 2 , are developed for the classification of AMD, DME, and Normal OCT images. The proposed approach has been evaluated on two datasets, including a DUKE public dataset and a Tunisian private dataset. The combination of the Inception_V3 model and the extracted feature from the proposed custom CNN achieved the highest accuracy value of 99.53% in the DUKE dataset. The obtained results on DUKE public and Tunisian datasets demonstrate the proposed approach as a significant tool for efficient and automatic retinal OCT image classification.


Assuntos
Aprendizado Profundo , Degeneração Macular , Edema Macular , Tomografia de Coerência Óptica , Humanos , Tomografia de Coerência Óptica/métodos , Degeneração Macular/diagnóstico , Edema Macular/diagnóstico , Edema Macular/diagnóstico por imagem , Edema Macular/etiologia , Retinopatia Diabética/diagnóstico , Retinopatia Diabética/diagnóstico por imagem , Redes Neurais de Computação , Retina/diagnóstico por imagem , Retina/patologia , Diagnóstico por Computador/métodos , Idoso , Feminino , Masculino
13.
Comput Biol Med ; 173: 108370, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564854

RESUMO

The transformer architecture has achieved remarkable success in medical image analysis owing to its powerful capability for capturing long-range dependencies. However, due to the lack of intrinsic inductive bias in modeling visual structural information, the transformer generally requires a large-scale pre-training schedule, limiting the clinical applications over expensive small-scale medical data. To this end, we propose a slimmable transformer to explore intrinsic inductive bias via position information for medical image segmentation. Specifically, we empirically investigate how different position encoding strategies affect the prediction quality of the region of interest (ROI) and observe that ROIs are sensitive to different position encoding strategies. Motivated by this, we present a novel Hybrid Axial-Attention (HAA) that can be equipped with pixel-level spatial structure and relative position information as inductive bias. Moreover, we introduce a gating mechanism to achieve efficient feature selection and further improve the representation quality over small-scale datasets. Experiments on LGG and COVID-19 datasets prove the superiority of our method over the baseline and previous works. Internal workflow visualization with interpretability is conducted to validate our success better; the proposed slimmable transformer has the potential to be further developed into a visual software tool for improving computer-aided lesion diagnosis and treatment planning.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico por imagem , Diagnóstico por Computador , Software , Fluxo de Trabalho , Processamento de Imagem Assistida por Computador
14.
Neural Netw ; 175: 106296, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38653077

RESUMO

Structural magnetic resonance imaging (sMRI) has shown great clinical value and has been widely used in deep learning (DL) based computer-aided brain disease diagnosis. Previous DL-based approaches focused on local shapes and textures in brain sMRI that may be significant only within a particular domain. The learned representations are likely to contain spurious information and have poor generalization ability in other diseases and datasets. To facilitate capturing meaningful and robust features, it is necessary to first comprehensively understand the intrinsic pattern of the brain that is not restricted within a single data/task domain. Considering that the brain is a complex connectome of interlinked neurons, the connectional properties in the brain have strong biological significance, which is shared across multiple domains and covers most pathological information. In this work, we propose a connectional style contextual representation learning model (CS-CRL) to capture the intrinsic pattern of the brain, used for multiple brain disease diagnosis. Specifically, it has a vision transformer (ViT) encoder and leverages mask reconstruction as the proxy task and Gram matrices to guide the representation of connectional information. It facilitates the capture of global context and the aggregation of features with biological plausibility. The results indicate that CS-CRL achieves superior accuracy in multiple brain disease diagnosis tasks across six datasets and three diseases and outperforms state-of-the-art models. Furthermore, we demonstrate that CS-CRL captures more brain-network-like properties, and better aggregates features, is easier to optimize, and is more robust to noise, which explains its superiority in theory.


Assuntos
Encéfalo , Aprendizado Profundo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Encefalopatias/diagnóstico , Encefalopatias/fisiopatologia , Redes Neurais de Computação , Diagnóstico por Computador/métodos
15.
Respir Res ; 25(1): 177, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658980

RESUMO

BACKGROUND: Computer Aided Lung Sound Analysis (CALSA) aims to overcome limitations associated with standard lung auscultation by removing the subjective component and allowing quantification of sound characteristics. In this proof-of-concept study, a novel automated approach was evaluated in real patient data by comparing lung sound characteristics to structural and functional imaging biomarkers. METHODS: Patients with cystic fibrosis (CF) aged > 5y were recruited in a prospective cross-sectional study. CT scans were analyzed by the CF-CT scoring method and Functional Respiratory Imaging (FRI). A digital stethoscope was used to record lung sounds at six chest locations. Following sound characteristics were determined: expiration-to-inspiration (E/I) signal power ratios within different frequency ranges, number of crackles per respiratory phase and wheeze parameters. Linear mixed-effects models were computed to relate CALSA parameters to imaging biomarkers on a lobar level. RESULTS: 222 recordings from 25 CF patients were included. Significant associations were found between E/I ratios and structural abnormalities, of which the ratio between 200 and 400 Hz appeared to be most clinically relevant due to its relation with bronchiectasis, mucus plugging, bronchial wall thickening and air trapping on CT. The number of crackles was also associated with multiple structural abnormalities as well as regional airway resistance determined by FRI. Wheeze parameters were not considered in the statistical analysis, since wheezing was detected in only one recording. CONCLUSIONS: The present study is the first to investigate associations between auscultatory findings and imaging biomarkers, which are considered the gold standard to evaluate the respiratory system. Despite the exploratory nature of this study, the results showed various meaningful associations that highlight the potential value of automated CALSA as a novel non-invasive outcome measure in future research and clinical practice.


Assuntos
Biomarcadores , Fibrose Cística , Sons Respiratórios , Humanos , Estudos Transversais , Masculino , Feminino , Estudos Prospectivos , Adulto , Fibrose Cística/fisiopatologia , Fibrose Cística/diagnóstico por imagem , Adulto Jovem , Adolescente , Auscultação/métodos , Tomografia Computadorizada por Raios X/métodos , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Criança , Estudo de Prova de Conceito , Diagnóstico por Computador/métodos , Pessoa de Meia-Idade
16.
Med Image Anal ; 94: 103158, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569379

RESUMO

Magnetic resonance (MR) images collected in 2D clinical protocols typically have large inter-slice spacing, resulting in high in-plane resolution and reduced through-plane resolution. Super-resolution technique can enhance the through-plane resolution of MR images to facilitate downstream visualization and computer-aided diagnosis. However, most existing works train the super-resolution network at a fixed scaling factor, which is not friendly to clinical scenes of varying inter-slice spacing in MR scanning. Inspired by the recent progress in implicit neural representation, we propose a Spatial Attention-based Implicit Neural Representation (SA-INR) network for arbitrary reduction of MR inter-slice spacing. The SA-INR aims to represent an MR image as a continuous implicit function of 3D coordinates. In this way, the SA-INR can reconstruct the MR image with arbitrary inter-slice spacing by continuously sampling the coordinates in 3D space. In particular, a local-aware spatial attention operation is introduced to model nearby voxels and their affinity more accurately in a larger receptive field. Meanwhile, to improve the computational efficiency, a gradient-guided gating mask is proposed for applying the local-aware spatial attention to selected areas only. We evaluate our method on the public HCP-1200 dataset and the clinical knee MR dataset to demonstrate its superiority over other existing methods.


Assuntos
Diagnóstico por Computador , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Articulação do Joelho , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos
17.
Med Image Anal ; 94: 103149, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574542

RESUMO

The variation in histologic staining between different medical centers is one of the most profound challenges in the field of computer-aided diagnosis. The appearance disparity of pathological whole slide images causes algorithms to become less reliable, which in turn impedes the wide-spread applicability of downstream tasks like cancer diagnosis. Furthermore, different stainings lead to biases in the training which in case of domain shifts negatively affect the test performance. Therefore, in this paper we propose MultiStain-CycleGAN, a multi-domain approach to stain normalization based on CycleGAN. Our modifications to CycleGAN allow us to normalize images of different origins without retraining or using different models. We perform an extensive evaluation of our method using various metrics and compare it to commonly used methods that are multi-domain capable. First, we evaluate how well our method fools a domain classifier that tries to assign a medical center to an image. Then, we test our normalization on the tumor classification performance of a downstream classifier. Furthermore, we evaluate the image quality of the normalized images using the Structural similarity index and the ability to reduce the domain shift using the Fréchet inception distance. We show that our method proves to be multi-domain capable, provides a very high image quality among the compared methods, and can most reliably fool the domain classifier while keeping the tumor classifier performance high. By reducing the domain influence, biases in the data can be removed on the one hand and the origin of the whole slide image can be disguised on the other, thus enhancing patient data privacy.


Assuntos
Corantes , Neoplasias , Humanos , Corantes/química , Coloração e Rotulagem , Algoritmos , Diagnóstico por Computador , Processamento de Imagem Assistida por Computador/métodos
18.
Med Image Anal ; 94: 103157, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574544

RESUMO

Computer-aided detection and diagnosis systems (CADe/CADx) in endoscopy are commonly trained using high-quality imagery, which is not representative for the heterogeneous input typically encountered in clinical practice. In endoscopy, the image quality heavily relies on both the skills and experience of the endoscopist and the specifications of the system used for screening. Factors such as poor illumination, motion blur, and specific post-processing settings can significantly alter the quality and general appearance of these images. This so-called domain gap between the data used for developing the system and the data it encounters after deployment, and the impact it has on the performance of deep neural networks (DNNs) supportive endoscopic CAD systems remains largely unexplored. As many of such systems, for e.g. polyp detection, are already being rolled out in clinical practice, this poses severe patient risks in particularly community hospitals, where both the imaging equipment and experience are subject to considerable variation. Therefore, this study aims to evaluate the impact of this domain gap on the clinical performance of CADe/CADx for various endoscopic applications. For this, we leverage two publicly available data sets (KVASIR-SEG and GIANA) and two in-house data sets. We investigate the performance of commonly-used DNN architectures under synthetic, clinically calibrated image degradations and on a prospectively collected dataset including 342 endoscopic images of lower subjective quality. Additionally, we assess the influence of DNN architecture and complexity, data augmentation, and pretraining techniques for improved robustness. The results reveal a considerable decline in performance of 11.6% (±1.5) as compared to the reference, within the clinically calibrated boundaries of image degradations. Nevertheless, employing more advanced DNN architectures and self-supervised in-domain pre-training effectively mitigate this drop to 7.7% (±2.03). Additionally, these enhancements yield the highest performance on the manually collected test set including images with lower subjective quality. By comprehensively assessing the robustness of popular DNN architectures and training strategies across multiple datasets, this study provides valuable insights into their performance and limitations for endoscopic applications. The findings highlight the importance of including robustness evaluation when developing DNNs for endoscopy applications and propose strategies to mitigate performance loss.


Assuntos
Diagnóstico por Computador , Redes Neurais de Computação , Humanos , Diagnóstico por Computador/métodos , Endoscopia Gastrointestinal , Processamento de Imagem Assistida por Computador/métodos
19.
Comput Biol Med ; 174: 108428, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631117

RESUMO

Diabetic retinopathy (DR) is a kind of ocular complication of diabetes, and its degree grade is an essential basis for early diagnosis of patients. Manual diagnosis is a long and expensive process with a specific risk of misdiagnosis. Computer-aided diagnosis can provide more accurate and practical treatment recommendations. In this paper, we propose a multi-view joint learning DR diagnostic model called RT2Net, which integrates the global features of fundus images and the local detailed features of vascular images to reduce the limitations of single fundus image learning. Firstly, the original image is preprocessed using operations such as contrast-limited adaptive histogram equalization, and the vascular structure of the extracted DR image is segmented. Then, the vascular image and fundus image are input into two branch networks of RT2Net for feature extraction, respectively, and the feature fusion module adaptively fuses the feature vectors' output from the branch networks. Finally, the optimized classification model is used to identify the five categories of DR. This paper conducts extensive experiments on the public datasets EyePACS and APTOS 2019 to demonstrate the method's effectiveness. The accuracy of RT2Net on the two datasets reaches 88.2% and 85.4%, and the area under the receiver operating characteristic curve (AUC) is 0.98 and 0.96, respectively. The excellent classification ability of RT2Net for DR can significantly help patients detect and treat lesions early and provide doctors with a more reliable diagnosis basis, which has significant clinical value for diagnosing DR.


Assuntos
Retinopatia Diabética , Diagnóstico por Computador , Retinopatia Diabética/diagnóstico por imagem , Retinopatia Diabética/diagnóstico , Humanos , Diagnóstico por Computador/métodos , Interpretação de Imagem Assistida por Computador/métodos , Aprendizado de Máquina
20.
Sci Rep ; 14(1): 9715, 2024 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678100

RESUMO

The tendency of skin diseases to manifest in a unique and yet similar appearance, absence of enough competent dermatologists, and urgency of diagnosis and classification on time and accurately, makes the need of machine aided diagnosis blatant. This study is conducted with the purpose of broadening the research in skin disease diagnosis with computer by traversing the capabilities of deep Learning algorithms to classify two skin diseases noticeably close in appearance, Psoriasis and Lichen Planus. The resemblance between these two skin diseases is striking, often resulting in their classification within the same category. Despite this, there is a dearth of research focusing specifically on these diseases. A customized 50 layers ResNet-50 architecture of convolutional neural network is used and the results are validated through fivefold cross-validation, threefold cross-validation, and random split. By utilizing advanced data augmentation and class balancing techniques, the diversity of the dataset has increased, and the dataset imbalance has been minimized. ResNet-50 has achieved an accuracy of 89.07%, sensitivity of 86.46%, and specificity of 86.02%. With their promising results, these algorithms make the potential of machine aided diagnosis clear. Deep Learning algorithms could provide assistance to physicians and dermatologists by classification of skin diseases, with similar appearance, in real-time.


Assuntos
Aprendizado Profundo , Líquen Plano , Psoríase , Humanos , Psoríase/diagnóstico , Líquen Plano/diagnóstico , Líquen Plano/classificação , Diagnóstico por Computador/métodos , Algoritmos , Redes Neurais de Computação , Masculino , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA