Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(6): e0297215, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38875297

RESUMO

Dianthus barbatus linn. is widely used in gardens, mainly as flower beds and flower borders. The effects of different gradients of P on the growth and root morphology of Dianthus barbatus were studied to explore its morphological and physiological responses and adaptive strategies. Hence, this study provides a theoretical basis and practical guidance for D. barbatus production. Two soil substrates, namely loess and vegetable soil, and five phosphorus concentration gradients were set; no phosphorus application was used as the control. The morphology and physiology of D. barbatus were also investigated. Low-to-medium- and low-phosphorus treatments promoted the growth of D. barbatus in the above and underground parts of the plants grown on both substrates. Chlorophyll content, flower quantity, and acid phosphatase activity in the rhizosphere soil were significantly increased in the H1 and H2 treatments of loess and in the C4 treatment of vegetable soil. Thus, D. barbatus seems to reduce the damage caused by phosphorus stress by increasing chlorophyll content and root acid phosphatase activity. The latter was significantly higher in vegetable soil than in loess. Vegetable soil was more conducive to D. barbatus growth than loess.


Assuntos
Clorofila , Dianthus , Fósforo , Raízes de Plantas , Solo , Fósforo/metabolismo , Solo/química , Clorofila/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Dianthus/crescimento & desenvolvimento , Dianthus/metabolismo , Dianthus/fisiologia , Fosfatase Ácida/metabolismo , Flores/metabolismo , Flores/crescimento & desenvolvimento , Rizosfera
2.
Int J Mol Sci ; 24(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37298450

RESUMO

Carnations are one of the most popular ornamental flowers in the world with varied flower colors that have long attracted breeders and consumers alike. The differences in carnation flower color are mainly the result of the accumulation of flavonoid compounds in the petals. Anthocyanins are a type of flavonoid compound that produce richer colors. The expression of anthocyanin biosynthetic genes is mainly regulated by MYB and bHLH transcription factors. However, these TFs have not been comprehensively reported in popular carnation cultivars. Herein, 106 MYB and 125 bHLH genes were identified in the carnation genome. Gene structure and protein motif analyses show that members of the same subgroup have similar exon/intron and motif organization. Phylogenetic analysis combining the MYB and bHLH TFs from Arabidopsis thaliana separates the carnation DcaMYBs and DcabHLHs into 20 subgroups each. Gene expression (RNAseq) and phylogenetic analysis shows that DcaMYB13 in subgroup S4 and DcabHLH125 in subgroup IIIf have similar expression patterns to those of DFR, ANS, and GT/AT, which regulate anthocyanin accumulation, in the coloring of carnations, and in red-flowered and white-flowered carnations, DcaMYB13 and DcabHLH125 are likely the key genes responsible for the formation of red petals in carnations. These results lay a foundation for the study of MYB and bHLH TFs in carnations and provide valuable information for the functional verification of these genes in studies of tissue-specific regulation of anthocyanin biosynthesis.


Assuntos
Antocianinas , Dianthus , Humanos , Antocianinas/metabolismo , Dianthus/metabolismo , Filogenia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Flavonoides/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
3.
Plant Physiol ; 192(1): 546-564, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36623846

RESUMO

Petal senescence is controlled by a complex regulatory network. Epigenetic regulation like histone modification influences chromatin state and gene expression. However, the involvement of histone methylation in regulating petal senescence remains poorly understood. Here, we found that the trimethylation of histone H3 at Lysine 4 (H3K4me3) is increased during ethylene-induced petal senescence in carnation (Dianthus caryophyllus L.). H3K4me3 levels were positively associated with the expression of transcription factor DcWRKY75, ethylene biosynthetic genes 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (DcACS1), and ACC oxidase (DcACO1), and senescence associated genes (SAGs) DcSAG12 and DcSAG29. Further, we identified that carnation ARABIDOPSIS HOMOLOG OF TRITHORAX1 (DcATX1) encodes a histone lysine methyltransferase which can methylate H3K4. Knockdown of DcATX1 delayed ethylene-induced petal senescence in carnation, which was associated with the down-regulated expression of DcWRKY75, DcACO1, and DcSAG12, whereas overexpression of DcATX1 exhibited the opposite effects. DcATX1 promoted the transcription of DcWRKY75, DcACO1, and DcSAG12 by elevating the H3K4me3 levels within their promoters. Overall, our results demonstrate that DcATX1 is a H3K4 methyltransferase that promotes the expression of DcWRKY75, DcACO1, DcSAG12 and potentially other downstream target genes by regulating H3K4me3 levels, thereby accelerating ethylene-induced petal senescence in carnation. This study further indicates that epigenetic regulation is important for plant senescence processes.


Assuntos
Dianthus , Dianthus/genética , Dianthus/metabolismo , Histona Metiltransferases/genética , Histona Metiltransferases/metabolismo , Histonas/metabolismo , Epigênese Genética , Etilenos/metabolismo
4.
Chemosphere ; 312(Pt 1): 137258, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36402351

RESUMO

Toxic heavy metal contaminants seriously affect plant growth and human health. Reducing the accumulation of toxic metals by phytoremediation is an effective way to solve this environmental problem. Dianthus spiculifolius Schur is an ornamental plant with strong cold and drought tolerance. Because of its fast growth, well-developed root system, and large accumulation of biomass, D. spiculifolius has potential applications as a heavy metal hyperaccumulator. Therefore, the aim of this study was evaluate the ability of D. spiculifolius and other Dianthus species to remediate heavy metals, with an ultimate goal to identify available genetic resources for toxic metal removal. The cadmium (Cd) and lead (Pb) tolerance and accumulation of six Dianthus species were analyzed comparatively in physiological and biochemical experiments. Compared with the other Dianthus species, D. spiculifolius showed higher tolerance to, and greater accumulation of, Cd and Pb. Second-generation transcriptome analysis indicated that glutathione transferase activity was increased and the glutathione metabolism pathway was enriched with genes encoding antioxidant enzymes (DsGST, DsGST3, DsGSTU10, DsGGCT2-1, and DsIDH-2) that were up-regulated under Cd/Pb treatment by RT-qPCR in D. spiculifolius. When expressed in yeast, DsGST, DsGST3, DsGSTU10 and DsIDH-2 enhanced Cd or Pb tolerance. These results indicate that D. spiculifolius has potential applications as a new ornamental hyperaccumulator plant, and that antioxidant enzymes might be involved in regulating Cd/Pb accumulation and detoxification. The findings of this study reveal some novel genetic resources that can be used to breed new plant varieties that tolerate and accumulate heavy metals.


Assuntos
Dianthus , Metais Pesados , Poluentes do Solo , Humanos , Cádmio/toxicidade , Cádmio/metabolismo , Dianthus/genética , Dianthus/metabolismo , Chumbo/toxicidade , Chumbo/metabolismo , Antioxidantes/metabolismo , Melhoramento Vegetal , Biodegradação Ambiental , Metais Pesados/metabolismo , Plantas/metabolismo , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo
5.
Protoplasma ; 260(3): 807-819, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36264387

RESUMO

Plant heat shock protein 90 (Hsp90) participates in various physiological processes including protein folding, degradation, and signal transduction. However, the DcHsp90 gene family in carnation (Dianthus caryophyllus L.) has not been systematically analyzed. We thoroughly examined and comprehensively analyzed the carnation DcHsp90 gene family in this study and discovered 9 DcHsp90 genes. Based on the phylogenetic examination, DcHsp90 proteins may be divided into two groups. DcHsp90 structural features were similar but varied between groups. Promoter analysis revealed the presence of many cis-acting elements, most of which were connected to growth and development, hormones, and stress. DcHsp90 genes may play distinct functions in heat stress response, according to gene expression analyses. The DcHsp90-6 was isolated, and its role in the reaction to heat stress was studied. Thermotolerance and superoxide dismutase activity in transgenic seedlings were enhanced by Arabidopsis overexpression of DcHsp90-6. After heat stress, transgenic plants' electrolyte leakage and malondialdehyde levels were much lower than wild-type plants. Furthermore, overexpression of DcHsp90-6 altered the expressions of stress-responsive genes such as AtHsp101, AtHsp90, AtGolS1, AtRS4/5, and AtHsfB1. This study provides comprehensive information on the DcHsp90 gene family and suggests that overexpressed DcHsp90-6 positively regulates thermotolerance highlighting the adaptation mechanism of carnation under heat stress.


Assuntos
Arabidopsis , Dianthus , Syzygium , Termotolerância , Dianthus/genética , Dianthus/metabolismo , Syzygium/genética , Syzygium/metabolismo , Filogenia , Resposta ao Choque Térmico , Arabidopsis/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo
6.
Planta ; 256(1): 2, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624182

RESUMO

MAIN CONCLUSION: 33 heat shock protein 20 (Hsp20) genes were identified from the carnation genome whose expression were altered by abiotic stresses. DcHsp17.8 may function to improve the heat resistance of Arabidopsis. Heat shock proteins 20 (Hsp20s) mainly function as molecular chaperones that play crucial roles in relieving abiotic stresses such as heat stress. In this study, we identified and characterized 33 DcHsp20 genes from the carnation genome that were classified into 9 subfamilies. Gene structure analysis showed that 25 DcHsp20 genes contained 1 intron whilst the remaining 8 DcHsp20 genes did not contain introns. Motif analysis found that DcHsp20 proteins were relatively conserved. Cis-regulatory elements analysis of the Hsp20 promoters revealed a number of cis-regulatory elements that regulate growth and development, hormone and stress responses. Gene expression analysis revealed that DcHsp20 genes had multiple response patterns to heat stress. The largest range of induction occurred in DcHsp17.8 after 1 h of heat stress. Under cold stress, or treatment with saline or abscisic acid, the expression of most DcHsp20 genes was inhibited. To further understand the function of DcHsp20 genes in response to heat stress, we overexpressed DcHsp17.8 in Arabidopis and the plants showed improved heat tolerance, O2- and H2O2 activities and photosynthetic capacity with reduced relative electrolyte leakage and malondialdehyde content. Gene expression analysis revealed that DcHsp17.8 modulated the expression of genes involved in antioxidant enzyme synthesis. Our data provided a solid foundation for the further detailed study of DcHsp20 genes.


Assuntos
Arabidopsis , Dianthus , Syzygium , Termotolerância , Arabidopsis/genética , Arabidopsis/metabolismo , Dianthus/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Syzygium/metabolismo , Termotolerância/genética
7.
Plant Biotechnol J ; 20(6): 1182-1196, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35247284

RESUMO

Carnation (Dianthus caryophyllus) is one of the most popular ornamental flowers in the world. Although numerous studies on carnations exist, the underlying mechanisms of flower color, fragrance, and the formation of double flowers remain unknown. Here, we employed an integrated multi-omics approach to elucidate the genetic and biochemical pathways underlying the most important ornamental features of carnation flowers. First, we assembled a high-quality chromosome-scale genome (636 Mb with contig N50 as 14.67 Mb) of D. caryophyllus, the 'Scarlet Queen'. Next, a series of metabolomic datasets was generated with a variety of instrumentation types from different parts of the flower at multiple stages of development to assess spatial and temporal differences in the accumulation of pigment and volatile compounds. Finally, transcriptomic data were generated to link genomic, biochemical, and morphological patterns to propose a set of pathways by which ornamental traits such as petal coloration, double flowers, and fragrance production are formed. Among them, the transcription factors bHLHs, MYBs, and a WRKY44 homolog are proposed to be important in controlling petal color patterning and genes such as coniferyl alcohol acetyltransferase and eugenol synthase are involved in the synthesis of eugenol. The integrated dataset of genomics, transcriptomics, and metabolomics presented herein provides an important foundation for understanding the underlying pathways of flower development and coloration, which in turn can be used for selective breeding and gene editing for the development of novel carnation cultivars.


Assuntos
Dianthus , Dianthus/anatomia & histologia , Dianthus/genética , Dianthus/metabolismo , Eugenol , Flores , Fenótipo , Fatores de Transcrição/genética
8.
Sci Rep ; 10(1): 15256, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938985

RESUMO

Although yellow and orange petal colors are derived from carotenoids in many plant species, this has not yet been demonstrated for the order Caryophyllales, which includes carnations. Here, we identified a carnation cultivar with pale yellow flowers that accumulated carotenoids in petals. Additionally, some xanthophyll compounds were esterified, as is the case for yellow flowers in other plant species. Ultrastructural analysis showed that chromoplasts with numerous plastoglobules, in which flower-specific carotenoids accumulate, were present in the pale yellow petals. RNA-seq and RT-qPCR analyses indicated that the expression levels of genes for carotenoid biosynthesis and esterification in pale yellow and pink petals (that accumulate small amounts of carotenoids) were similar or lower than in green petals (that accumulate substantial amounts of carotenoids) and white petals (that accumulate extremely low levels of carotenoids). Pale yellow and pink petals had a considerably lower level of expression of genes for carotenoid degradation than white petals, suggesting that reduced degradation activity caused accumulation of carotenoids. Our results indicate that some carnation cultivars can synthesize and accumulate esterified carotenoids. By manipulating the rate of biosynthesis and esterification of carotenoids in these cultivars, it should be feasible to produce novel carnation cultivars with vivid yellow flowers.


Assuntos
Vias Biossintéticas , Carotenoides/metabolismo , Dianthus/crescimento & desenvolvimento , Plastídeos/metabolismo , Carotenoides/química , Dianthus/genética , Dianthus/metabolismo , Esterificação , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Plastídeos/genética , Análise de Sequência de RNA
9.
Sci Rep ; 9(1): 1287, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718569

RESUMO

The plant hormone ethylene was identified as important triggering factor and primary regulator of flower senescence in many species. Consequently, application of chemical inhibitors of ethylene biosynthesis and action is used to extend the longevity of ethylene-sensitive flowers. Here, we show that the peptide NOP-1, a biological derived from the nuclear localization signal of ethylene regulator EIN2 tightly binds to the ethylene receptor of carnation plants - a model to study flower senescence. When applied on cut flowers the peptide biological delays petal senescence similar to previously identified and currently used chemical inhibitors, but offers significant advances to these chemicals in biodegradability, sustainability and ecotoxicity. Our bioinformatic analysis of a wide range of ethylene receptors indicates complete sequence conservation of the anticipated NOP-1 binding site in flower species supporting a widespread use of the peptide on flowering ornamentals to delay senescence and decay in cut flowers. We anticipate our innovative approach to extend flower longevity by a new class of biomolecules such as peptides, peptide analogues and peptide mimetics will significantly advance our technological capability to delay flower senescence and expand vase-life of cut flowers in a sustainable and environmentally friendly manner.


Assuntos
Dianthus/metabolismo , Etilenos/metabolismo , Flores/metabolismo , Peptídeos/farmacologia , Proteínas de Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Rosa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Peptídeos/química
10.
Molecules ; 23(8)2018 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-30060619

RESUMO

Aquaporins (AQPs) are associated with the transport of water and other small solutes across biological membranes. Genome-wide identification and characterization will pave the way for further insights into the AQPs' roles in the commercial carnation (Dianthus caryophyllus). This study focuses on the analysis of AQPs in carnation (DcaAQPs) involved in flower opening processes. Thirty DcaAQPs were identified and grouped to five subfamilies: nine PIPs, 11 TIPs, six NIPs, three SIPs, and one XIP. Subsequently, gene structure, protein motifs, and co-expression network of DcaAQPs were analyzed and substrate specificity of DcaAQPs was predicted. qRT-PCR, RNA-seq, and semi-qRTRCR were used for DcaAQP genes expression analysis. The analysis results indicated that DcaAQPs were relatively conserved in gene structure and protein motifs, that DcaAQPs had significant differences in substrate specificity among different subfamilies, and that DcaAQP genes' expressions were significantly different in roots, stems, leaves and flowers. Five DcaAQP genes (DcaPIP1;3, DcaPIP2;2, DcaPIP2;5, DcaTIP1;4, and DcaTIP2;2) might play important roles in flower opening process. However, the roles they play are different in flower organs, namely, sepals, petals, stamens, and pistils. Overall, this study provides a theoretical basis for further functional analysis of DcaAQPs.


Assuntos
Aquaporinas/genética , Dianthus/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Motivos de Aminoácidos , Aquaporinas/metabolismo , Sequência Conservada , Dianthus/anatomia & histologia , Dianthus/classificação , Dianthus/metabolismo , Éxons , Flores/anatomia & histologia , Flores/metabolismo , Perfilação da Expressão Gênica , Ontologia Genética , Íntrons , Anotação de Sequência Molecular , Família Multigênica , Especificidade de Órgãos , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo
11.
Int J Mol Sci ; 19(2)2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29414886

RESUMO

Plant SWEETs (sugars will eventually be exported transporters) play a role in plant growth and plant response to biotic and abiotic stresses. In the present study, DsSWEET12 from Dianthus spiculifolius was identified and characterized. Real-time quantitative PCR analysis revealed that DsSWEET12 expression was induced by sucrose starvation, mannitol, and hydrogen peroxide. Colocalization experiment showed that the DsSWEET12-GFP fusion protein was localized to the plasma membrane, which was labeled with FM4-64 dye, in Arabidopsis and suspension cells of D. spiculifolius. Compared to wild type plants, transgenic Arabidopsis seedlings overexpressing DsSWEET12 have longer roots and have a greater fresh weight, which depends on sucrose content. Furthermore, a relative root length analysis showed that transgenic Arabidopsis showed higher tolerance to osmotic and oxidative stresses. Finally, a sugar content analysis showed that the sucrose content in transgenic Arabidopsis was less than that in the wild type, while fructose and glucose contents were higher than those in the wild type. Taken together, our results suggest that DsSWEET12 plays an important role in seedling growth and plant response to osmotic and oxidative stress in Arabidopsis by influencing sugar metabolism.


Assuntos
Metabolismo dos Carboidratos , Dianthus/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Pressão Osmótica , Estresse Oxidativo , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Transporte Biológico , Dianthus/genética , Frutose/metabolismo , Glucose/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Plântula/genética , Plântula/metabolismo , Sacarose/metabolismo , Transcriptoma/genética
12.
Int J Mol Sci ; 19(1)2017 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-29295554

RESUMO

The present study depicted the role of silicon in limiting the hyperhydricity in shoot cultures of carnation through proteomic analysis. Four-week-old healthy shoot cultures of carnation "Purple Beauty" were sub-cultured on Murashige and Skoog medium followed with four treatments, viz. control (-Si/-Hyperhydricity), hyperhydric with no silicon treatment (-Si/+Hyperhydricity), hyperhydric with silicon treatment (+Si/+Hyperhydricity), and only silicon treated with no hyperhydricity (+Si/-Hyperhydricity). Comparing to control morphological features of hyperhydric carnations showed significantly fragile, bushy and lustrous leaf nature, while Si supply restored these effects. Proteomic investigation revealed that approximately seventy protein spots were differentially expressed under Si and/or hyperhydric treatments and were either up- or downregulated in abundance depending on their functions. Most of the identified protein spots were related to stress responses, photosynthesis, and signal transduction. Proteomic results were further confirmed through immunoblots by selecting specific proteins such as superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), PsaA, and PsbA. Moreover, protein-protein interaction was also performed on differentially expressed protein spots using specific bioinformatic tools. In addition, stress markers were analyzed by histochemical localization of hydrogen peroxide (H2O2) and singlet oxygen (O21-). In addition, the ultrastructure of chloroplasts in hyperhydric leaves significantly resulted in inefficiency of thylakoid lamella with the loss of grana but were recovered in silicon supplemented leaves. The proteomic study together with physiological analysis indicated that Si has a substantial role in upholding the hyperhydricity in in vitro grown carnation shoot cultures.


Assuntos
Dianthus/crescimento & desenvolvimento , Dianthus/metabolismo , Proteômica/métodos , Silício/farmacologia , Água/metabolismo , Benzidinas/metabolismo , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Nitroazul de Tetrazólio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Mapas de Interação de Proteínas , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
13.
Environ Sci Pollut Res Int ; 22(10): 7906-17, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25510617

RESUMO

Two contrasting ecotypes of Dianthus carthusianorum L., metallicolous (M) and nonmetallicolous (NM), were cultivated in hydroponics at 0-50 µM Cd for 14 days to compare their Cd accumulation, sensitivity and tolerance mechanisms. While both ecotypes contained similar concentrations of Cd in the shoots and roots, the M ecotype was more Cd-tolerant (as measured by fresh weight production and root and leaf viability). Both ecotypes accumulated phytochelatins (PCs) in response to Cd with a higher amount thereof found in the NM ecotype. Concentrations of PCs remained unchanged with increasing Cd concentrations in the root tissues, but their content in the shoots increased. The addition of L-buthionine-sulfoximine (BSO) diminished glutathione (GSH) accumulation and arrested PC production, which increased the sensitivity to Cd of the NM, but not M ecotype. Organic acids (malate and citrate) as well as proline accumulation did not change significantly after Cd exposition and was at the same level in both ecotypes. The enhanced Cd tolerance of the M ecotype of D. carthusianorum cannot be explained in terms of restricted Cd uptake and differential production of PCs, organic acids or proline; some other mechanisms must be involved in its adaptation to the high Cd content in the environment.


Assuntos
Cádmio/toxicidade , Dianthus/efeitos dos fármacos , Dianthus/metabolismo , Poluentes do Solo/toxicidade , Butionina Sulfoximina/farmacologia , Dianthus/genética , Monitoramento Ambiental , Glutationa/metabolismo , Compostos Orgânicos/metabolismo , Fitoquelatinas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Polônia , Prolina/metabolismo
14.
Molecules ; 19(11): 18747-66, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25405291

RESUMO

Higher plants can produce a wide variety of anthocyanin molecules through modification of the six common anthocyanin aglycons that they present. Thus, hydrophilic anthocyanin molecules can be formed and stabilized by glycosylation and acylation. Two types of glycosyltransferase (GT) and acyltransferase (AT) have been identified, namely cytoplasmic GT and AT and vacuolar GT and AT. Cytoplasmic GT and AT utilize UDP-sugar and acyl-CoA as donor molecules, respectively, whereas both vacuolar GT and AT use acyl-glucoses as donor molecules. In carnation plants, vacuolar GT uses aromatic acyl-glucoses as the glucose donor in vivo; independently, vacuolar AT uses malylglucose, an aliphatic acyl-glucose, as the acyl-donor. In delphinium and Arabidopsis, p-hydroxybenzoylglucose and sinapoylglucose are used in vivo as bi-functional donor molecules by vacuolar GT and AT, respectively. The evolution of these enzymes has allowed delphinium and Arabidopsis to utilize unique donor molecules for production of highly modified anthocyanins.


Assuntos
Antocianinas/biossíntese , Arabidopsis/metabolismo , Cinamatos/metabolismo , Delphinium/metabolismo , Dianthus/metabolismo , Glucosídeos/metabolismo , Acilação/fisiologia , Aciltransferases/metabolismo , Glucosiltransferases/metabolismo , Glicosilação , Proteínas de Plantas/metabolismo
15.
Ying Yong Sheng Tai Xue Bao ; 25(2): 419-26, 2014 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-24830241

RESUMO

A pot experiment was carried out under greenhouse condition to investigate the effects of different concentrations (0, 20, 40, 60, 80 and 100 mg x L(-1)) of exogenous AsA, GSH on Dianthus chinensis seedlings which were stressed by 50 mg x kg(-1) Cd in the soil. The results indicated that 50 mg x kg(-1) of Cd significantly inhibited the growth of D. chinensis seedlings. An appropriate concentration of exogenous AsA significantly improved the biomass, plant height, tiller number, GAT and APX activities, and AsA and GSH contents. However, with the increase of exogenous AsA concentration, the ameliorating effect decreased and prooxidant effect occurred. Exogenous GSH could replenish the non-enzymatic antioxidants of D. chinensis seedlings, but the changes of antioxidant enzyme activities were relatively slight. The main mechanisms of GSH to alleviate Cd toxicity might be promoting root PCs synthesis, thereby reducing the Cd concentration in the seedlings. Both 35-45 mg x L(-1) exogenous AsA and 55-65 mg x L(-1) exogenous GSH could alleviate the Cd toxicity on D. chinensis seedlings, and the former was superior to the latter.


Assuntos
Ácido Abscísico/química , Cádmio/química , Dianthus/crescimento & desenvolvimento , Glutationa/química , Antioxidantes/metabolismo , Dianthus/metabolismo , Oxirredução , Raízes de Plantas , Espécies Reativas de Oxigênio , Plântula/crescimento & desenvolvimento
16.
Phytochemistry ; 100: 60-5, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24512840

RESUMO

Dianthus carthusianorum is one of the dominant plant species colonising the Zn-Pb waste deposits in Boleslaw, Southern Poland. It differs in terms of morphology and genetics from ecotypes inhabiting non-metal-polluted areas. The response of waste-heap (metallicolous, M) and reference (nonmetallicolous, NM) ecotypes of D. carthusianorum to Pb in hydroponics was investigated and compared in this study. The plants of the M ecotype were more tolerant to Pb than these of the NM ecotype in spite of accumulation of higher concentrations of Pb. In both ecotypes, about 70-78% of Pb was retained in roots. In non Pb-treated plants, a higher glutathione (GSH) level was found in the M ecotype. After the Pb exposure, the GSH level decreased and was similar in both ecotypes. Lead treatment induced synthesis of phytochelatins (PCs) only in the plant roots, with significantly higher concentrations thereof detected in the NM ecotype. Malate and citrate concentrations were higher in the M ecotype; however, they did not change significantly upon any Pb treatment in either ecotype. The results indicated that neither PCs nor organic acids were responsible for the enhanced Pb tolerance of the waste-heap plants.


Assuntos
Dianthus/efeitos dos fármacos , Dianthus/fisiologia , Ecótipo , Chumbo/metabolismo , Chumbo/toxicidade , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Transporte Biológico , Ácido Cítrico/metabolismo , Dianthus/genética , Dianthus/metabolismo , Glutationa/metabolismo , Malatos/metabolismo , Fitoquelatinas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Zinco/metabolismo
17.
Physiol Plant ; 150(3): 446-62, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24117983

RESUMO

The rooting of stem cuttings is a common vegetative propagation practice in many ornamental species. A detailed analysis of the morphological changes occurring in the basal region of cultivated carnation cuttings during the early stages of adventitious rooting was carried out and the physiological modifications induced by exogenous auxin application were studied. To this end, the endogenous concentrations of five major classes of plant hormones [auxin, cytokinin (CK), abscisic acid, salicylic acid (SA) and jasmonic acid] and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid were analyzed at the base of stem cuttings and at different stages of adventitious root formation. We found that the stimulus triggering the initiation of adventitious root formation occurred during the first hours after their excision from the donor plant, due to the breakdown of the vascular continuum that induces auxin accumulation near the wounding. Although this stimulus was independent of exogenously applied auxin, it was observed that the auxin treatment accelerated cell division in the cambium and increased the sucrolytic activities at the base of the stem, both of which contributed to the establishment of the new root primordia at the stem base. Further, several genes involved in auxin transport were upregulated in the stem base either with or without auxin application, while endogenous CK and SA concentrations were specially affected by exogenous auxin application. Taken together our results indicate significant crosstalk between auxin levels, stress hormone homeostasis and sugar availability in the base of the stem cuttings in carnation during the initial steps of adventitious rooting.


Assuntos
Metabolismo dos Carboidratos , Dianthus/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Caules de Planta/metabolismo , Ácido Abscísico/metabolismo , Aminoácidos Cíclicos/metabolismo , Citocininas/metabolismo , Dianthus/efeitos dos fármacos , Dianthus/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Isopenteniladenosina/análogos & derivados , Isopenteniladenosina/metabolismo , Microscopia Eletrônica de Varredura , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/ultraestrutura , Caules de Planta/genética , Caules de Planta/ultraestrutura , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Salicilatos/metabolismo , Técnicas de Cultura de Tecidos
18.
Methods Mol Biol ; 1072: 573-91, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24136548

RESUMO

We are currently using a 2-DE-based proteomics approach to study plant responses to pathogenic fungi by using the carnation (Dianthus caryophyllus L)-Fusarium oxysporum f. sp. dianthi pathosystem. It is clear that the protocols for the first stages of a standard proteomics workflow must be optimized to each biological system and objectives of the research. The optimization procedure for the extraction and separation of proteins by 1-DE and 2-DE in the indicated system is reported. This strategy can be extrapolated to other plant-pathogen interaction systems in order to perform an evaluation of the changes in the host protein profile caused by the pathogen and to identify proteins which, at early stages, are involved or implicated in the plant defense response.


Assuntos
Dianthus/metabolismo , Dianthus/microbiologia , Eletroforese em Gel Bidimensional/métodos , Fusarium/fisiologia , Interações Hospedeiro-Patógeno , Proteínas de Plantas/isolamento & purificação , Coloração e Rotulagem
19.
J Exp Bot ; 64(16): 4923-37, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24078672

RESUMO

It has been generally thought that in ethylene-sensitive plants such as carnations, senescence proceeds irreversibly once the tissues have entered the climacteric phase. While pre-climacteric petal tissues have a lower sensitivity to ethylene, these tissues are converted to the climacteric phase at a critical point during flower development. In this study, it is demonstrated that the senescence process initiated by exogenous ethylene is reversible in carnation petals. Petals treated with ethylene for 12h showed sustained inrolling and senescence, while petals treated with ethylene for 10h showed inrolling followed by recovery from inrolling. Reverse transcription-PCR analysis revealed differential expression of genes involved in ethylene biosynthesis and ethylene signalling between 10h and 12h ethylene treatment. Ethylene treatment at or beyond 12h (threshold time) decreased the mRNA levels of the receptor genes (DcETR1, DcERS1, and DcERS2) and DcCTR genes, and increased the ethylene biosynthesis genes DcACS1 and DcACO1. In contrast, ethylene treatment under the threshold time caused a transient decrease in the receptor genes and DcCTR genes, and a transient increase in DcACS1 and DcACO1. Sustained DcACS1 accumulation is correlated with decreases in DcCTR genes and increase in DcEIL3 and indicates that tissues have entered the climacteric phase and that senescence proceeds irreversibly. Inhibition of ACS (1-aminocyclopropane-1-carboxylic acid synthase) prior to 12h ethylene exposure was not able to prevent reduction in transcripts of DcCTR genes, yet suppressed transcript of DcACS1 and DcACO1. This leads to the recovery from inrolling of the petals, indicating that DcACS1 may act as a signalling molecule in senescence of flowers.


Assuntos
Dianthus/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Plantas/genética , Dianthus/crescimento & desenvolvimento , Dianthus/metabolismo , Etilenos/biossíntese , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
20.
J Agric Food Chem ; 61(48): 11711-20, 2013 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-23646984

RESUMO

For 16 years, genetically modified flowers of carnation ( Dianthus caryophyllus ) have been sold to the floristry industry. The transgenic carnation carries a herbicide tolerance gene (a mutant gene encoding acetolactate synthase (ALS)) and has been modified to produce delphinidin-based anthocyanins in flowers, which conventionally bred carnation cannot produce. The modified flower color has been achieved by introduction of a gene encoding flavonoid 3',5'-hydroxylase (F3'5'H). Transgenic carnation flowers are produced in South America and are primarily distributed to North America, Europe, and Japan. Although a nonfood crop, the release of the genetically modified carnation varieties required an environmental risk impact assessment and an assessment of the potential for any increased risk of harm to human or animal health compared to conventionally bred carnation. The results of the health safety assessment and the experimental studies that accompanied them are described in this review. The conclusion from the assessments has been that the release of genetically modified carnation varieties which express F3'5'H and ALS genes and which accumulate delphinidin-based anthocyanins do not pose an increased risk of harm to human or animal health.


Assuntos
Acetolactato Sintase/genética , Sistema Enzimático do Citocromo P-450/genética , Dianthus/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Acetolactato Sintase/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Dianthus/química , Dianthus/metabolismo , Regulação da Expressão Gênica de Plantas , Humanos , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/metabolismo , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA