Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.499
Filtrar
1.
Methods Mol Biol ; 2828: 159-184, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39147977

RESUMO

Amoeboid cell motility is fundamental for a multitude of biological processes such as embryogenesis, immune responses, wound healing, and cancer metastasis. It is characterized by specific cell shape changes: the extension and retraction of membrane protrusions, known as pseudopodia. A common approach to investigate the mechanisms underlying this type of cell motility is to study phenotypic differences in the locomotion of mutant cell lines. To characterize such differences, methods are required to quantify the contour dynamics of migrating cells. AmoePy is a Python-based software package that provides tools for cell segmentation, contour detection as well as analyzing and simulating contour dynamics. First, a digital representation of the cell contour as a chain of nodes is extracted from each frame of a time-lapse microscopy recording of a moving cell. Then, the dynamics of these nodes-referred to as virtual markers-are tracked as the cell contour evolves over time. From these data, various quantities can be calculated that characterize the contour dynamics, such as the displacement of the virtual markers or the local stretching rate of the marker chain. Their dynamics is typically visualized in space-time plots, the so-called kymographs, where the temporal evolution is displayed for the different locations along the cell contour. Using AmoePy, you can straightforwardly create kymograph plots and videos from stacks of experimental bright-field or fluorescent images of motile cells. A hands-on guide on how to install and use AmoePy is provided in this chapter.


Assuntos
Movimento Celular , Software , Processamento de Imagem Assistida por Computador/métodos , Imagem com Lapso de Tempo/métodos , Quimografia/métodos , Dictyostelium/citologia , Dictyostelium/fisiologia , Dictyostelium/crescimento & desenvolvimento , Pseudópodes
2.
Methods Mol Biol ; 2814: 223-245, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38954209

RESUMO

Dictyostelium represents a stripped-down model for understanding how cells make decisions during development. The complete life cycle takes around a day and the fully differentiated structure is composed of only two major cell types. With this apparent reduction in "complexity," single cell transcriptomics has proven to be a valuable tool in defining the features of developmental transitions and cell fate separation events, even providing causal information on how mechanisms of gene expression can feed into cell decision-making. These scientific outputs have been strongly facilitated by the ease of non-disruptive single cell isolation-allowing access to more physiological measures of transcript levels. In addition, the limited number of cell states during development allows the use of more straightforward analysis tools for handling the ensuing large datasets, which provides enhanced confidence in inferences made from the data. In this chapter, we will outline the approaches we have used for handling Dictyostelium single cell transcriptomic data, illustrating how these approaches have contributed to our understanding of cell decision-making during development.


Assuntos
Dictyostelium , Perfilação da Expressão Gênica , Análise de Célula Única , Transcriptoma , Dictyostelium/genética , Dictyostelium/crescimento & desenvolvimento , Análise de Célula Única/métodos , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Análise da Expressão Gênica de Célula Única
3.
Cell Signal ; 121: 111292, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38986731

RESUMO

The social amoeba Dictyostelium discoideum has been studied for close to a century to better understand conserved cellular and developmental processes. The life cycle of this model eukaryote is composed of a unicellular growth phase and a multicellular developmental phase that is induced by starvation. When starved, individual cells undergo chemotactic aggregation to form multicellular mounds that develop into slugs. Terminal differentiation of cells within slugs forms fruiting bodies, each composed of a stalk that supports a mass of viable spores that germinate and restart the life cycle when nutrients become available. Calcium-dependent cell adhesion protein A (CadA) and countin (CtnA) are two proteins that regulate adhesion and aggregation, respectively, during the early stages of D. discoideum development. While the functions of these proteins have been well-studied, the mechanisms regulating their trafficking are not fully understood. In this study, we reveal pathways and cellular components that regulate the intracellular and extracellular amounts of CadA and CtnA during aggregation. During growth and starvation, CtnA localizes to cytoplasmic vesicles and punctae. We show that CtnA is glycosylated and this post-translational modification is required for its secretion. Upon autophagy induction, a signal peptide for secretion facilitates the release of CtnA from cells via a pathway involving the µ subunit of the AP3 complex (Apm3) and the WASP and SCAR homolog, WshA. Additionally, CtnA secretion is negatively regulated by the D. discoideum orthologs of the human non-selective cation channel mucolipin-1 (Mcln) and sorting receptor sortilin (Sort1). As for CadA, it localizes to the cell periphery in growth-phase and starved cells. The intracellular and extracellular amounts of CadA are modulated by autophagy genes (atg1, atg9), Apm3, WshA, and Mcln. We integrate these data with previously published findings to generate a comprehensive model summarizing the trafficking of CadA and CtnA in D. discoideum. Overall, this study enhances our understanding of protein trafficking during D. discoideum aggregation, and more broadly, provides insight into the multiple pathways that regulate protein trafficking and secretion in all eukaryotes.


Assuntos
Dictyostelium , Transporte Proteico , Proteínas de Protozoários , Dictyostelium/metabolismo , Dictyostelium/crescimento & desenvolvimento , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Adesão Celular
4.
Cells ; 13(14)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39056773

RESUMO

Autophagy is a degradative recycling process central to the maintenance of homeostasis in all eukaryotes. By ensuring the degradation of damaged mitochondria, it plays a key role in maintaining mitochondrial health and function. Of the highly conserved autophagy proteins, autophagy-related protein 1 (Atg1) is essential to the process. The involvement of these proteins in intracellular signalling pathways, including those involving mitochondrial function, are still being elucidated. Here the role of Atg1 was investigated in the simple model organism Dictyostelium discoideum using an atg1 null mutant and mutants overexpressing or antisense-inhibiting atg1. When evaluated against the well-characterised outcomes of mitochondrial dysfunction in this model, altered atg1 expression resulted in an unconventional set of phenotypic outcomes in growth, endocytosis, multicellular development, and mitochondrial homeostasis. The findings here show that Atg1 is involved in a tightly regulated signal transduction pathway coordinating energy-consuming processes such as cell growth and multicellular development, along with nutrient status and energy production. Furthermore, Atg1's effects on energy homeostasis indicate a peripheral ancillary role in the mitochondrial signalling network, with effects on energy balance rather than direct effects on electron transport chain function. Further research is required to tease out these complex networks. Nevertheless, this study adds further evidence to the theory that autophagy and mitochondrial signalling are not opposing but rather linked, yet strictly controlled, homeostatic mechanisms.


Assuntos
Autofagia , Dictyostelium , Endocitose , Mitocôndrias , Dictyostelium/crescimento & desenvolvimento , Dictyostelium/metabolismo , Dictyostelium/genética , Mitocôndrias/metabolismo , Autofagia/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Transdução de Sinais , Homeostase , Mutação/genética
5.
Biomolecules ; 14(7)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39062545

RESUMO

Cell-to-cell communication is fundamental to the organization and functionality of multicellular organisms. Intercellular signals orchestrate a variety of cellular responses, including gene expression and protein function changes, and contribute to the integrated functions of individual tissues. Dictyostelium discoideum is a model organism for cell-to-cell interactions mediated by chemical signals and multicellular formation mechanisms. Upon starvation, D. discoideum cells exhibit coordinated cell aggregation via cyclic adenosine 3',5'-monophosphate (cAMP) gradients and chemotaxis, which facilitates the unicellular-to-multicellular transition. During this process, the calcium signaling synchronizes with the cAMP signaling. The resulting multicellular body exhibits organized collective migration and ultimately forms a fruiting body. Various signaling molecules, such as ion signals, regulate the spatiotemporal differentiation patterns within multicellular bodies. Understanding cell-to-cell and ion signaling in Dictyostelium provides insight into general multicellular formation and differentiation processes. Exploring cell-to-cell and ion signaling enhances our understanding of the fundamental biological processes related to cell communication, coordination, and differentiation, with wide-ranging implications for developmental biology, evolutionary biology, biomedical research, and synthetic biology. In this review, I discuss the role of ion signaling in cell motility and development in D. discoideum.


Assuntos
Movimento Celular , AMP Cíclico , Dictyostelium , Transdução de Sinais , Dictyostelium/metabolismo , Dictyostelium/crescimento & desenvolvimento , Dictyostelium/genética , Dictyostelium/citologia , AMP Cíclico/metabolismo , Quimiotaxia , Comunicação Celular , Íons/metabolismo , Diferenciação Celular , Sinalização do Cálcio
6.
Molecules ; 29(9)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38731634

RESUMO

Cellular slime molds are excellent model organisms in the field of cell and developmental biology because of their simple developmental patterns. During our studies on the identification of bioactive molecules from secondary metabolites of cellular slime molds toward the development of novel pharmaceuticals, we revealed the structural diversity of secondary metabolites. Cellular slime molds grow by feeding on bacteria, such as Klebsiella aerogenes and Escherichia coli, without using medium components. Although changing the feeding bacteria is expected to affect dramatically the secondary metabolite production, the effect of the feeding bacteria on the production of secondary metabolites is not known. Herein, we report the isolation and structure elucidation of clavapyrone (1) from Dictyostelium clavatum, intermedipyrone (2) from D. magnum, and magnumiol (3) from D. intermedium. These compounds are not obtained from usual cultural conditions with Klebsiella aerogenes but obtained from coincubated conditions with Pseudomonas spp. The results demonstrate the diversity of the secondary metabolites of cellular slime molds and suggest that widening the range of feeding bacteria for cellular slime molds would increase their application potential in drug discovery.


Assuntos
Dictyostelium , Pseudomonas , Pironas , Metabolismo Secundário , Cromatografia em Camada Fina , Técnicas de Cocultura , Dictyostelium/crescimento & desenvolvimento , Dictyostelium/metabolismo , Descoberta de Drogas , Pseudomonas/metabolismo , Pironas/química , Pironas/isolamento & purificação , Pironas/metabolismo , Estrutura Molecular
7.
Biol Cell ; 116(5): e2300067, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537110

RESUMO

BACKGROUND INFORMATION: Two pore channels (TPCs) are voltage-gated ion channel superfamily members that release Ca2+ from acidic intracellular stores and are ubiquitously present in both animals and plants. Starvation initiates multicellular development in Dictyostelium discoideum. Increased intracellular calcium levels bias Dictyostelium cells towards the stalk pathway and thus we decided to analyze the role of TPC2 in development, differentiation, and autophagy. RESULTS: We showed TPC2 protein localizes in lysosome-like acidic vesicles and the in situ data showed stalk cell biasness. Deletion of tpc2 showed defective and delayed development with formation of multi-tipped structures attached to a common base, while tpc2OE cells showed faster development with numerous small-sized aggregates and wiry fruiting bodies. The tpc2OE cells showed higher intracellular cAMP levels as compared to the tpc2- cells while pinocytosis was found to be higher in the tpc2- cells. Also, TPC2 regulates cell-substrate adhesion and cellular morphology. Under nutrient starvation, deletion of tpc2 reduced autophagic flux as compared to Ax2. During chimera formation, tpc2- cells showed a bias towards the prestalk/stalk region while tpc2OE cells showed a bias towards the prespore/spore region. tpc2 deficient strain exhibits aberrant cell-type patterning and loss of distinct boundary between the prestalk/prespore regions. CONCLUSION: TPC2 is required for effective development and differentiation in Dictyostelium and supports autophagic cell death and cell-type patterning. SIGNIFICANCE: Decreased calcium due to deletion of tpc2 inhibit autophagic flux.


Assuntos
Autofagia , Dictyostelium , Proteínas de Protozoários , Dictyostelium/genética , Dictyostelium/metabolismo , Dictyostelium/citologia , Dictyostelium/crescimento & desenvolvimento , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Deleção de Genes , Canais de Cálcio/metabolismo , Canais de Cálcio/genética , Cálcio/metabolismo , Diferenciação Celular
8.
Nat Commun ; 13(1): 319, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35031602

RESUMO

Natural selection should favour generalist predators that outperform specialists across all prey types. Two genetic solutions could explain why intraspecific variation in predatory performance is, nonetheless, widespread: mutations beneficial on one prey type are costly on another (antagonistic pleiotropy), or mutational effects are prey-specific, which weakens selection, allowing variation to persist (relaxed selection). To understand the relative importance of these alternatives, we characterised natural variation in predatory performance in the microbial predator Dictyostelium discoideum. We found widespread nontransitive differences among strains in predatory success across different bacterial prey, which can facilitate stain coexistence in multi-prey environments. To understand the genetic basis, we developed methods for high throughput experimental evolution on different prey (REMI-seq). Most mutations (~77%) had prey-specific effects, with very few (~4%) showing antagonistic pleiotropy. This highlights the potential for prey-specific effects to dilute selection, which would inhibit the purging of variation and prevent the emergence of an optimal generalist predator.


Assuntos
Dictyostelium/genética , Comportamento Alimentar , Bactérias/metabolismo , Evolução Biológica , Dictyostelium/crescimento & desenvolvimento , Dictyostelium/fisiologia , Cadeia Alimentar , Mutação
9.
PLoS One ; 17(1): e0262632, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35030217

RESUMO

In the field of cell and tissue engineering, there is an increasing demand for techniques to spatially control the adhesion of cells to substrates of desired sizes and shapes. Here, we describe two novel methods for fabricating a substrate for adhesion of cells to a defined area. In the first method, the surface of the coverslip or plastic dish was coated with Lipidure, a non-adhesive coating material, and air plasma was applied through a mask with holes, to confer adhesiveness to the surface. In the second method, after the surface of the coverslip was coated with gold by sputtering and then with Lipidure; the Lipidure coat was locally removed using a novel scanning laser ablation method. These methods efficiently confined cells within the adhesive area and enabled us to follow individual cells for a longer duration, compared to the currently available commercial substrates. By following single cells within the confined area, we were able to observe several new aspects of cell behavior in terms of cell division, cell-cell collisions, and cell collision with the boundary between adhesive and non-adhesive areas.


Assuntos
Adesão Celular/fisiologia , Engenharia Celular/métodos , Metacrilatos/química , Fosforilcolina/análogos & derivados , Adesividade , Adesivos/química , Adesão Celular/genética , Dictyostelium/efeitos dos fármacos , Dictyostelium/crescimento & desenvolvimento , Dictyostelium/metabolismo , Lipídeos/química , Fosforilcolina/química , Plásticos/química , Propriedades de Superfície , Engenharia Tecidual/métodos
10.
Genes (Basel) ; 12(10)2021 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-34681022

RESUMO

Gene duplications generate new genes that can contribute to expression changes and the evolution of new functions. Genomes often consist of gene families that undergo expansions, some of which occur in specific lineages that reflect recent adaptive diversification. In this study, lineage-specific genes and gene family expansions were studied across five dictyostelid species to determine when and how they are expressed during multicellular development. Lineage-specific genes were found to be enriched among genes with biased expression (predominant expression in one developmental stage) in each species and at most developmental time points, suggesting independent functional innovations of new genes throughout the phylogeny. Biased duplicate genes had greater expression divergence than their orthologs and paralogs, consistent with subfunctionalization or neofunctionalization. Lineage-specific expansions in particular had biased genes with both molecular signals of positive selection and high expression, suggesting adaptive genetic and transcriptional diversification following duplication. Our results present insights into the potential contributions of lineage-specific genes and families in generating species-specific phenotypes during multicellular development in dictyostelids.


Assuntos
Dictyostelium/genética , Evolução Molecular , Filogenia , Dictyostelium/crescimento & desenvolvimento , Duplicação Gênica/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Genoma/genética , Especificidade da Espécie
11.
Cells ; 10(9)2021 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-34571889

RESUMO

Aberrant centrosome activities in mutants of Dictyostelium discoideum result in anomalies of mitotic spindles that affect the reliability of chromosome segregation. Genetic instabilities caused by these deficiencies are tolerated in multinucleate cells, which can be produced by electric-pulse induced cell fusion as a source for aberrations in the mitotic apparatus of the mutant cells. Dual-color fluorescence labeling of the microtubule system and the chromosomes in live cells revealed the variability of spindle arrangements, of centrosome-nuclear interactions, and of chromosome segregation in the atypical mitoses observed.


Assuntos
Segregação de Cromossomos , Dictyostelium/genética , Instabilidade Genômica , Mitose , Mutação , Fuso Acromático/genética , Dictyostelium/crescimento & desenvolvimento , Dictyostelium/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Fuso Acromático/patologia , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo
12.
Cells ; 10(9)2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34572033

RESUMO

The Dictyostelium centrosome is a nucleus-associated body with a diameter of approx. 500 nm. It contains no centrioles but consists of a cylindrical layered core structure surrounded by a microtubule-nucleating corona. At the onset of mitosis, the corona disassembles and the core structure duplicates through growth, splitting, and reorganization of the outer core layers. During the last decades our research group has characterized the majority of the 42 known centrosomal proteins. In this work we focus on the conserved, previously uncharacterized Cep192 protein. We use superresolution expansion microscopy (ExM) to show that Cep192 is a component of the outer core layers. Furthermore, ExM with centrosomal marker proteins nicely mirrored all ultrastructurally known centrosomal substructures. Furthermore, we improved the proximity-dependent biotin identification assay (BioID) by adapting the biotinylase BioID2 for expression in Dictyostelium and applying a knock-in strategy for the expression of BioID2-tagged centrosomal fusion proteins. Thus, we were able to identify various centrosomal Cep192 interaction partners, including CDK5RAP2, which was previously allocated to the inner corona structure, and several core components. Studies employing overexpression of GFP-Cep192 as well as depletion of endogenous Cep192 revealed that Cep192 is a key protein for the recruitment of corona components during centrosome biogenesis and is required to maintain a stable corona structure.


Assuntos
Centrossomo/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Dictyostelium/metabolismo , Microtúbulos/metabolismo , Mitose , Proteínas de Protozoários/metabolismo , Proteínas Cromossômicas não Histona/genética , Dictyostelium/crescimento & desenvolvimento , Proteínas de Protozoários/genética , Fuso Acromático
13.
Cells ; 10(5)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067877

RESUMO

Wound repair of cell membranes is essential for cell survival. Myosin II contributes to wound pore closure by interacting with actin filaments in larger cells; however, its role in smaller cells is unclear. In this study, we observed wound repair in dividing cells for the first time. The cell membrane in the cleavage furrow, where myosin II localized, was wounded by laserporation. Upon wounding, actin transiently accumulated, and myosin II transiently disappeared from the wound site. Ca2+ influx from the external medium triggered both actin and myosin II dynamics. Inhibition of calmodulin reduced both actin and myosin II dynamics. The wound closure time in myosin II-null cells was the same as that in wild-type cells, suggesting that myosin II is not essential for wound repair. We also found that disassembly of myosin II filaments by phosphorylation did not contribute to their disappearance, indicating a novel mechanism for myosin II delocalization from the cortex. Furthermore, we observed that several furrow-localizing proteins such as GAPA, PakA, myosin heavy chain kinase C, PTEN, and dynamin disappeared upon wounding. Herein, we discuss the possible mechanisms of myosin dynamics during wound repair.


Assuntos
Divisão Celular , Dictyostelium/metabolismo , Miosina Tipo II/metabolismo , Proteínas de Protozoários/metabolismo , Cicatrização , Cálcio/metabolismo , Sinalização do Cálcio , Dictyostelium/genética , Dictyostelium/crescimento & desenvolvimento , Cinética , Microscopia de Fluorescência , Microscopia de Vídeo , Mutação , Miosina Tipo II/genética , Proteínas de Protozoários/genética , Imagem com Lapso de Tempo
14.
Protein Expr Purif ; 186: 105923, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34062238

RESUMO

Poly (ADP-ribose) polymerase-1 (PARP-1) is a multifunctional protein that is associated with various biological processes like chromatin remodeling, DNA damage, cell death etc. In Dictyostelium discoideum, PARP-1 has also been implicated in cellular differentiation and development. However, its interacting proteins during multicellular development are not yet explored. Hence, the present study aims to identify PARP-1 interacting proteins during multicellular development of D. discoideum. BRCA1 C-terminus (BRCT) domain of PARP-1, which is mainly involved in protein-protein interactions was cloned in pGEX4T1 vector and developmental interactome of PARP-1 were analyzed by affinity purification-mass spectrometry. These interactions were further confirmed by in-silico protein-protein docking analysis, which led to identification of the proteins that show high affinity for BRCT domain. Initially, the protein structures were modeled on SWISS MODEL and PHYRE2 servers, refined by 3Drefine and validated by PROCHECK. Further, interaction sites of BRCT and the conserved regions in all interacting proteins were predicted using cons-PPISP and ConSurf, respectively. Finally, protein-protein docking analysis was done by HADDOCK. Our results identified 19 possible BRCT interacting proteins during D. discoideum development. Furthermore, interacting residues involved in the interactions and functional regions were explored. This is the first report where PARP-1's developmental interactome in D. discoideum is well established. The current findings demonstrate PARP-1's developmental interactome in D. discoideum and provide the groundwork to understand its regulated functions in developmental biology which would undoubtedly extend our perception towards developmental diseases in higher complex organisms and their treatment.


Assuntos
Dictyostelium , Estágios do Ciclo de Vida/genética , Poli(ADP-Ribose) Polimerase-1 , Proteínas de Protozoários , Sítios de Ligação/genética , Bases de Dados de Proteínas , Dictyostelium/enzimologia , Dictyostelium/genética , Dictyostelium/crescimento & desenvolvimento , Espectrometria de Massas , Simulação de Acoplamento Molecular , Poli(ADP-Ribose) Polimerase-1/química , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Mapas de Interação de Proteínas/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
15.
Genes (Basel) ; 12(5)2021 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-33923051

RESUMO

The slime mold Dictyostelium discoideum's life cycle includes different unicellular and multicellular stages that provide a convenient model for research concerning intracellular and intercellular mechanisms influencing mitochondria's structure and function. We aim to determine the differences between the mitochondria isolated from the slime mold regarding its early developmental stages induced by starvation, namely the unicellular (U), aggregation (A) and streams (S) stages, at the bioenergetic and proteome levels. We measured the oxygen consumption of intact cells using the Clarke electrode and observed a distinct decrease in mitochondrial coupling capacity for stage S cells and a decrease in mitochondrial coupling efficiency for stage A and S cells. We also found changes in spare respiratory capacity. We performed a wide comparative proteomic study. During the transition from the unicellular stage to the multicellular stage, important proteomic differences occurred in stages A and S relating to the proteins of the main mitochondrial functional groups, showing characteristic tendencies that could be associated with their ongoing adaptation to starvation following cell reprogramming during the switch to gluconeogenesis. We suggest that the main mitochondrial processes are downregulated during the early developmental stages, although this needs to be verified by extending analogous studies to the next slime mold life cycle stages.


Assuntos
Dictyostelium/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Mitocondriais/metabolismo , Proteoma/metabolismo , Proteínas de Protozoários/metabolismo , Dictyostelium/genética , Dictyostelium/crescimento & desenvolvimento , Metabolismo Energético , Estágios do Ciclo de Vida , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteoma/genética , Proteínas de Protozoários/genética
16.
PLoS One ; 16(4): e0250704, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33909675

RESUMO

In this report, we extend our previous characterization of Dictyostelium discoideum glutathione S-transferase (DdGST) enzymes that are expressed in the eukaryotic model organism. Transcript profiling of gstA1-gstA5 (alpha class) genes in vegetative, log phase cells identified gstA2 and gstA3 with highest expression (6-7.5-fold, respectively) when compared to other gstA transcripts. Marked reductions in all gstA transcripts occurred under starvation conditions, with gstA2 and gstA3 exhibiting the largest decreases (-96% and -86.6%, respectively). When compared to their pre-starvation levels, there was also a 60 percent reduction in total GST activity. Glutathione (GSH) pull-down assay and mass spectroscopy detected three isozymes (DdGSTA1, DdGSTA2 and DdGSTA3) that were predominantly expressed in vegetative cells. Biochemical and kinetic comparisons between rDdGSTA2 and rDdGSTA3 shows higher activity of rDdGSTA2 to the CDNB (1-chloro-2,4-dinitrobenzene) substrate. RNAi-mediated knockdown of endogenous DdGSTA2 caused a 60 percent reduction in proliferation, delayed development, and altered morphogenesis of fruiting bodies, whereas overexpression of rDdGSTA2 enzyme had no effect. These findings corroborate previous studies that implicate a role for phase II GST enzymes in cell proliferation, homeostasis, and development in eukaryotic cells.


Assuntos
Dictyostelium/enzimologia , Glutationa Transferase/metabolismo , Proliferação de Células , Dictyostelium/crescimento & desenvolvimento , Glutationa Transferase/antagonistas & inibidores , Glutationa Transferase/genética , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Análise de Sequência de Proteína
17.
Microbiology (Reading) ; 167(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33646931

RESUMO

The social amoeba Dictyostelium discoideum is a versatile organism that is unusual in alternating between single-celled and multi-celled forms. It possesses highly-developed systems for cell motility and chemotaxis, phagocytosis, and developmental pattern formation. As a soil amoeba growing on microorganisms, it is exposed to many potential pathogens; it thus provides fruitful ways of investigating host-pathogen interactions and is emerging as an influential model for biomedical research.


Assuntos
Quimiotaxia , Dictyostelium/crescimento & desenvolvimento , Pesquisa Biomédica , Movimento Celular , Dictyostelium/classificação , Dictyostelium/genética , Dictyostelium/fisiologia , Genoma de Protozoário , Interações Hospedeiro-Patógeno , Modelos Biológicos , Filogenia
18.
Cell Microbiol ; 23(5): e13318, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33583106

RESUMO

Dictyostelium discoideum Sey1 is the single ortholog of mammalian atlastin 1-3 (ATL1-3), which are large homodimeric GTPases mediating homotypic fusion of endoplasmic reticulum (ER) tubules. In this study, we generated a D. discoideum mutant strain lacking the sey1 gene and found that amoebae deleted for sey1 are enlarged, but grow and develop similarly to the parental strain. The ∆sey1 mutant amoebae showed an altered ER architecture, and the tubular ER network was partially disrupted without any major consequences for other organelles or the architecture of the secretory and endocytic pathways. Macropinocytic and phagocytic functions were preserved; however, the mutant amoebae exhibited cumulative defects in lysosomal enzymes exocytosis, intracellular proteolysis, and cell motility, resulting in impaired growth on bacterial lawns. Moreover, ∆sey1 mutant cells showed a constitutive activation of the unfolded protein response pathway (UPR), but they still readily adapted to moderate levels of ER stress, while unable to cope with prolonged stress. In D. discoideum ∆sey1 the formation of the ER-associated compartment harbouring the bacterial pathogen Legionella pneumophila was also impaired. In the mutant amoebae, the ER was less efficiently recruited to the "Legionella-containing vacuole" (LCV), the expansion of the pathogen vacuole was inhibited at early stages of infection and intracellular bacterial growth was reduced. In summary, our study establishes a role of D. discoideum Sey1 in ER architecture, proteolysis, cell motility and intracellular replication of L. pneumophila.


Assuntos
Dictyostelium/fisiologia , Retículo Endoplasmático/ultraestrutura , GTP Fosfo-Hidrolases/metabolismo , Legionella pneumophila/fisiologia , Proteínas de Protozoários/metabolismo , Vacúolos/microbiologia , Dictyostelium/crescimento & desenvolvimento , Dictyostelium/microbiologia , Dictyostelium/ultraestrutura , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Retículo Endoplasmático Rugoso/microbiologia , Retículo Endoplasmático Rugoso/fisiologia , GTP Fosfo-Hidrolases/genética , Homeostase , Interações Hospedeiro-Patógeno , Legionella pneumophila/crescimento & desenvolvimento , Movimento , Muramidase/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Protozoários/genética , Vacúolos/fisiologia
19.
Int J Mol Sci ; 22(4)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572113

RESUMO

Calmodulin (CaM) is an essential calcium-binding protein within eukaryotes. CaM binds to calmodulin-binding proteins (CaMBPs) and influences a variety of cellular and developmental processes. In this study, we used immunoprecipitation coupled with mass spectrometry (LC-MS/MS) to reveal over 500 putative CaM interactors in the model organism Dictyostelium discoideum. Our analysis revealed several known CaMBPs in Dictyostelium and mammalian cells (e.g., myosin, calcineurin), as well as many novel interactors (e.g., cathepsin D). Gene ontology (GO) term enrichment and Search Tool for the Retrieval of Interacting proteins (STRING) analyses linked the CaM interactors to several cellular and developmental processes in Dictyostelium including cytokinesis, gene expression, endocytosis, and metabolism. The primary localizations of the CaM interactors include the nucleus, ribosomes, vesicles, mitochondria, cytoskeleton, and extracellular space. These findings are not only consistent with previous work on CaM and CaMBPs in Dictyostelium, but they also provide new insight on their diverse cellular and developmental roles in this model organism. In total, this study provides the first in vivo catalogue of putative CaM interactors in Dictyostelium and sheds additional light on the essential roles of CaM and CaMBPs in eukaryotes.


Assuntos
Proteínas de Ligação a Calmodulina/metabolismo , Calmodulina/metabolismo , Dictyostelium/crescimento & desenvolvimento , Proteínas de Protozoários/metabolismo , Proteínas de Ligação a Calmodulina/análise , Proliferação de Células , Cromatografia Líquida de Alta Pressão/métodos , Dictyostelium/citologia , Dictyostelium/metabolismo , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas/fisiologia , Proteômica/métodos , Proteínas de Protozoários/análise , Espectrometria de Massas em Tandem/métodos
20.
Exp Cell Res ; 397(2): 112364, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33188850

RESUMO

Poly (ADP-ribose) polymerase-1 (PARP1) is a DNA damage sensor that gets activated in proportion to the damage, helping cells to determine whether to repair the damage or initiate cell death processes. We have previously shown PARP1's significance in the developmental processes of Dictyostelium discoideum in addition to its role in oxidative stress and UV-C stress induced cell death. In this study, we show the significance of ROS in PARP1 mediated responses of D. discoideum under different stress conditions. Interestingly, our results suggest differential kinetics of PARP1 activation and implications of ROS in starvation and cadmium induced cell death events. Increased accumulation of Poly (ADP-ribose), a product of PARP activation, could be detected within minutes post cadmium stress, whereas PARP1 activation was only a later event with starvation. Starvation induced PARP1 activation was supported by the depletion of ATP and NAD+, while PARP inhibitor confers protective effect during starvation. During starvation, cell death is induced in two phases, a primary ROS driven PARP1 independent early necrotic phase followed by a PARP1 driven ROS dependent paraptotic phase; both of which comprise mitochondrial changes. Cadmium (Cd) exerted a dose-dependent effect on cell death; a low dose of 0.2 mM Cd led to paraptosis and a higher dose of 0.5 mM Cd led to necrosis in D. discoideum cells within 24 h. Interestingly, glutathione (GSH) exposure could rescue cells from Cd stress mediated cell death. Besides unicellular cell death, the developmental arrest induced by cadmium and oxidative stress could be rescued by reinstating the redox equilibrium using GSH. In conclusion, we underscore the significant link between PARP1 and ROS in regulating the process of cell death and development in D. discoideum.


Assuntos
Morte Celular , Dictyostelium/crescimento & desenvolvimento , Dictyostelium/metabolismo , Estresse Oxidativo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proteínas de Protozoários/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cádmio/toxicidade , Dictyostelium/efeitos dos fármacos , Mitocôndrias , Transdução de Sinais , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA