Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.938
Filtrar
1.
Eur Rev Med Pharmacol Sci ; 27(10): 4735-4751, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37259757

RESUMO

OBJECTIVE: Epilepsy, a neurodegenerative disorder, continues to throw challenges in the therapeutic management. The current study sought to ascertain if the therapeutic interactions between piracetam and diethylstilbestrol may prevent grand-mal seizures in rats. MATERIALS AND METHODS: Piracetam (PIR; 10 and 20 mg/kg) and diethylstilbestrol (DES; 10 and 20 mg/kg) alone as a low-dose combination were administered to rats for 14 days. The electroshock (MES; 180 mA, 220 V for 0.20 s) was delivered via auricular electrodes on the last day of treatment and rats were monitored for convulsive behavior. To elucidate the mechanism, hippocampal mechanistic target of rapamycin (mTOR) and interleukin (IL)-1ß, IL-6 and tumor necrotic factor-alpha (TNF-α) levels were quantified. Hippocampal histopathology was conducted to study the neuroprotective effect of drug/s. In vitro studies and in silico studies were conducted in parallel. RESULTS: To our surprise, the low dose of the combination regimen of PIR (10 mg/kg) and DES (10 mg/kg) unfolded synergistic anti-seizure potential, with brimming neuroprotective properties. The mechanism could be related to a significant reduction in the levels of hippocampal mTOR and proinflammatory cytokines. The docking scores revealed higher affinities for phosphatidylinositol 3-kinase (PI3K) in co-bound complex, and when docking DES first, while better affinities for protein kinase B (Akt) were revealed when docking PIR first (both drugs bind cooperatively as well). This indicated that the entire PI3K/Akt/mTOR signaling pathway is intercepted by the said combination. In addition, the % of cell viability of HEK-293 cells [pre-exposed to pentylenetetrazol (PTZ)] was increased by 327.29% compared to PTZ-treated cells (toxic control; 85.16%). CONCLUSIONS: We are the first to report the promising efficacy of the combination (PIR 10 mg/kg + DES 10 mg/kg) to restrain seizures and epileptogenic changes induced by electroshock by a novel mechanism involving inhibiting the PI3K/Akt/mTOR signaling.


Assuntos
Piracetam , Proteínas Proto-Oncogênicas c-akt , Animais , Humanos , Ratos , Citocinas/metabolismo , Dietilestilbestrol/farmacologia , Células HEK293 , Interleucina-6 , Pentilenotetrazol/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Piracetam/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
2.
PLoS One ; 18(3): e0280421, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36928065

RESUMO

A synthetic estrogen, diethylstilbestrol (DES), is known to cause adult vaginal carcinoma by neonatal administration of DES to mice. However, the carcinogenic process remains unclear. By Cap Analysis of Gene Expression method, we found that neonatal DES exposure up-regulated inflammatory Cxcl chemokines 2, 3, 5, and 7 located in the 5qE1 region in the vaginal epithelium of mice 70 days after birth. When we examined the gene expressions of these genes much earlier stages, we found that neonatal DES exposure increased these Cxcl chemokine genes expression even after 17 days after birth. It implies the DES-mediated persistent activation of inflammatory genes. Intriguingly, we also detected DES-induced non-coding RNAs from a region approximately 100 kb far from the Cxcl5 gene. The non-coding RNA up-regulation by DES exposure was confirmed on the 17-day vagina and continued throughout life, which may responsible for the activation of Cxcl chemokines located in the same region, 5qE1. This study shows that neonatal administration of DES to mice causes long-lasting up-regulation of inflammatory Cxcl chemokines in the vaginal epithelium. DES-mediated inflammation may be associated with the carcinogenic process.


Assuntos
Quimiocinas CXC , Dietilestilbestrol , Congêneres do Estradiol , Animais , Feminino , Camundongos , Animais Recém-Nascidos , Carcinógenos/farmacologia , Dietilestilbestrol/efeitos adversos , Dietilestilbestrol/farmacologia , Epitélio/patologia , Congêneres do Estradiol/efeitos adversos , Congêneres do Estradiol/farmacologia , Vagina/metabolismo , Neoplasias Vaginais/induzido quimicamente , Quimiocinas CXC/efeitos dos fármacos , Quimiocinas CXC/metabolismo
3.
Epigenetics ; 18(1): 2139986, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36328762

RESUMO

Clinically, developmental exposure to the endocrine disrupting chemical, diethylstilboestrol (DES), results in long-term male and female infertility. Experimentally, developmental exposure to DES results in abnormal reproductive tract phenotypes in male and female mice. Previously, we reported that neonatal DES exposure causes ERα-mediated aberrations in the transcriptome and in DNA methylation in seminal vesicles (SVs) of adult mice. However, only a subset of DES-altered genes could be explained by changes in DNA methylation. We hypothesized that alterations in histone modification may also contribute to the altered transcriptome during SV development. To test this idea, we performed a series of genome-wide analyses of mouse SVs at pubertal and adult developmental stages in control and DES-exposed wild-type and ERα knockout mice. Neonatal DES exposure altered ERα-mediated mRNA and lncRNA expression in adult SV, including genes encoding chromatin-modifying proteins that can impact histone H3K27ac modification. H3K27ac patterns, particularly at enhancers, and DNA methylation were reprogrammed over time during normal SV development and after DES exposure. Some of these reprogramming changes were ERα-dependent, but others were ERα-independent. A substantial number of DES-altered genes had differential H3K27ac peaks at nearby enhancers. Comparison of gene expression changes, H3K27ac marks and DNA methylation marks between adult SV and adult uterine tissue from ovariectomized mice neonatally exposed to DES revealed that most of the epigenetic changes and altered genes were distinct in the two tissues. These findings indicate that the effects of developmental DES exposure cause reprogramming of reproductive tract tissue differentiation through multiple epigenetic mechanisms.


Assuntos
Dietilestilbestrol , Receptor alfa de Estrogênio , Animais , Camundongos , Masculino , Feminino , Dietilestilbestrol/farmacologia , Receptor alfa de Estrogênio/genética , Metilação de DNA , Estudo de Associação Genômica Ampla , Epigênese Genética , Expressão Gênica
4.
Life Sci Alliance ; 6(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36384894

RESUMO

The role of the alternate G protein-coupled estrogen receptor 1 (GPER1) in colorectal cancer (CRC) development and progression is unclear, not least because of conflicting clinical and experimental evidence for pro- and anti-tumorigenic activities. Here, we show that low concentrations of the estrogenic GPER1 ligands, 17ß-estradiol, bisphenol A, and diethylstilbestrol cause the generation of lagging chromosomes in normal colon and CRC cell lines, which manifest in whole chromosomal instability and aneuploidy. Mechanistically, (xeno)estrogens triggered centrosome amplification by inducing centriole overduplication that leads to transient multipolar mitotic spindles, chromosome alignment defects, and mitotic laggards. Remarkably, we could demonstrate a significant role of estrogen-activated GPER1 in centrosome amplification and increased karyotype variability. Indeed, both gene-specific knockdown and inhibition of GPER1 effectively restored normal centrosome numbers and karyotype stability in cells exposed to 17ß-estradiol, bisphenol A, or diethylstilbestrol. Thus, our results reveal a novel link between estrogen-activated GPER1 and the induction of key CRC-prone lesions, supporting a pivotal role of the alternate estrogen receptor in colon neoplastic transformation and tumor progression.


Assuntos
Centrossomo , Estrogênios , Receptores de Estrogênio , Receptores Acoplados a Proteínas G , Humanos , Centrossomo/metabolismo , Instabilidade Cromossômica/genética , Colo , Dietilestilbestrol/farmacologia , Estradiol/farmacologia , Estrogênios/farmacologia , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
5.
Biochem Biophys Res Commun ; 617(Pt 2): 18-24, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35689838

RESUMO

Endometriosis is known to be a gynaecological condition characterised by persistent inflammation and abnormal development of endometrial stroma and glands. Researchers require a rodent model to analyse the disease environment. Animal models are the best option for investigating the etiology and effective treatment of debilitating illnesses in women since rodents, like humans, menstruate. In order to develop the model system, diethylstilbestrol (DES) was examined for its ability to induce endometriosis in rats by investigating its effect on the estrus cycle, hormones, and key markers. The results demonstrated that animals given DES had an erratic estrus cycle and aberrant hormone levels. Histomorphology revealed the development of an endometriosis environment with degenerative epithelium and enlarged glandular cells after DES induction. The higher levels of estrogen, progesterone, and MCP-1 were shown in the endometriosis induced animals. Endometriosis-induced groups had decreased levels of HOXA10 and HOXA11 and increased levels of VEGF and COX-2. Finally, the DES demonstrated endometriosis induction efficacy, implying that it might be a viable replacement for endometriosis induction.


Assuntos
Endometriose , Animais , Dietilestilbestrol/farmacologia , Endometriose/induzido quimicamente , Endométrio , Feminino , Humanos , Progesterona , Ratos , Receptores de Progesterona
6.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34281152

RESUMO

Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer-related mortality; thus, therapeutic targets continue to be developed. Anoctamin1 (ANO1), a novel drug target considered for the treatment of NSCLC, is a Ca2+-activated chloride channel (CaCC) overexpressed in various carcinomas. It plays an important role in the development of cancer; however, the role of ANO1 in NSCLC is unclear. In this study, diethylstilbestrol (DES) was identified as a selective ANO1 inhibitor using high-throughput screening. We found that DES inhibited yellow fluorescent protein (YFP) fluorescence reduction caused by ANO1 activation but did not inhibit cystic fibrosis transmembrane conductance regulator channel activity or P2Y activation-related cytosolic Ca2+ levels. Additionally, electrophysiological analyses showed that DES significantly reduced ANO1 channel activity, but it more potently reduced ANO1 protein levels. DES also inhibited the viability and migration of PC9 cells via the reduction in ANO1, phospho-ERK1/2, and phospho-EGFR levels. Moreover, DES induced apoptosis by increasing caspase-3 activity and PARP-1 cleavage in PC9 cells, but it did not affect the viability of hepatocytes. These results suggest that ANO1 is a crucial target in the treatment of NSCLC, and DES may be developed as a potential anti-NSCLC therapeutic agent.


Assuntos
Anoctamina-1/antagonistas & inibidores , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Dietilestilbestrol/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Anoctamina-1/metabolismo , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Dietilestilbestrol/metabolismo , Humanos , Neoplasias Pulmonares , Proteínas de Neoplasias/metabolismo , Transdução de Sinais
7.
Differentiation ; 118: 34-40, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33707128

RESUMO

The development of the female reproductive tract can be divided into three parts consisting of Müllerian duct organogenesis, pre-sexual maturation organ development, and post-sexual maturation hormonal regulation. In primates, Müllerian duct organogenesis proceeds in an estrogen independent fashion based on transcriptional pathways that are suppressed in males by the presence of AMH and SRY. However, clinical experience indicates that exposure to xenoestrogens such as diethylstilbestrol (DES) during critical periods including late organogenesis and pre-sexual maturational development can have substantial effects on uterine morphology, and confer increased risk of disease states later in life. Recent evidence has demonstrated that these effects are in part due to epigenetic regulation of gene expression, both in the form of aberrant CpG methylation, and accompanying histone modifications. While xenoestrogens and selective estrogen receptor modulators (SERMS) both can induce non-canonical binding confirmations in estrogen receptors, the primate specific fetal estrogens Estriol and Estetrol may act in a similar fashion to alter gene expression through tissue specific epigenetic modulation.


Assuntos
Metilação de DNA/genética , Estrogênios/genética , Genitália Feminina/crescimento & desenvolvimento , Organogênese/genética , Animais , Metilação de DNA/efeitos dos fármacos , Dietilestilbestrol/farmacologia , Epigênese Genética/genética , Estradiol/metabolismo , Estrogênios/metabolismo , Feminino , Genitália Feminina/metabolismo , Humanos , Ductos Paramesonéfricos/efeitos dos fármacos , Ductos Paramesonéfricos/crescimento & desenvolvimento , Ductos Paramesonéfricos/metabolismo , Organogênese/efeitos dos fármacos , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Útero/efeitos dos fármacos , Útero/crescimento & desenvolvimento
8.
Eur J Drug Metab Pharmacokinet ; 46(1): 105-118, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33064293

RESUMO

BACKGROUND AND OBJECTIVES: Previous studies have revealed that sulfation, as mediated by the estrogen-sulfating cytosolic sulfotransferase (SULT) SULT1E1, is involved in the metabolism of 17ß-estradiol (E2), 4-hydroxytamoxifen (4OH-tamoxifen), and diethylstilbestrol in humans. It is an interesting question whether the genetic polymorphisms of SULT1E1, the gene that encodes the SULT1E1 enzyme, may impact on the metabolism of E2 and these two drug compounds through sulfation. METHODS: In this study, five missense coding single nucleotide polymorphisms of the SULT1E1 gene were selected to investigate the sulfating activity of the coded SULT1E1 allozymes toward E2, 4OH-tamoxifen, and diethylstilbestrol. Corresponding cDNAs were generated by site-directed mutagenesis, and recombinant SULT1E1 allozymes were bacterially expressed, affinity-purified, and characterized using enzymatic assays. RESULTS: Purified SULT1E1 allozymes were shown to display differential sulfating activities toward E2, 4OH-tamoxifen, and diethylstilbestrol. Kinetic analysis revealed further distinct Km (reflecting substrate affinity) and Vmax (reflecting catalytic activity) values of the five SULT1E1 allozymes with E2, 4OH-tamoxifen, and diethylstilbestrol as substrates. CONCLUSIONS: Taken together, these findings highlighted the significant differences in E2-, as well as the drug-sulfating activities of SULT1E1 allozymes, which may have implications in the differential metabolism of E2, 4OH-tamoxifen, and diethylstilbestrol in individuals with different SULT1E1 genotypes.


Assuntos
Dietilestilbestrol/metabolismo , Estradiol/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Sulfotransferases/genética , Sulfotransferases/metabolismo , Tamoxifeno/análogos & derivados , Dietilestilbestrol/farmacologia , Relação Dose-Resposta a Droga , Estradiol/farmacologia , Antagonistas de Estrogênios/metabolismo , Antagonistas de Estrogênios/farmacologia , Estrogênios/metabolismo , Estrogênios/farmacologia , Estrogênios não Esteroides/metabolismo , Estrogênios não Esteroides/farmacologia , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Estrutura Secundária de Proteína , Sulfotransferases/química , Tamoxifeno/metabolismo , Tamoxifeno/farmacologia
9.
Differentiation ; 118: 4-23, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33189416

RESUMO

In the early 1960's, at Professor Bern's laboratory, University of California, Berkeley) in the US, Takasugi discovered ovary-independent, persistent vaginal changes in mice exposed neonatally to estrogen, which resulted in vaginal cancer later in life. Reproductive abnormalities in rodents were reported as a result of perinatal exposure to various estrogenic chemicals. Ten years later, vaginal cancers were reported in young women exposed in utero to the synthetic estrogen diethylstilbestrol (DES) and this has been called the "DES syndrome". The developing organism is particularly sensitive to developmental exposure to estrogens inducing long-term changes in various organs including the reproductive organs. The molecular mechanism underlying the persistent vaginal changes induced by perinatal estrogen exposure was partly demonstrated. Persistent phosphorylation and sustained expression of EGF-like growth factors, lead to estrogen receptor α (ESR1) activation, and then persistent vaginal epithelial cell proliferation. Agents which are weakly estrogenic by postnatal criteria may have major developmental effects, especially during a critical perinatal period. The present review outlines various studies conducted by four generations of investigators all under the influence of Prof. Bern. The studies include reports of persistent changes induced by neonatal androgen exposure, analyses of estrogen responsive genes, factors determining epithelial differentiation in the Müllerian duct, ESR and growth factor signaling, and polyovular follicles in mammals. This review is then expanded to the studies on the effects of environmental estrogens on wildlife and endocrine disruption in Daphnids.


Assuntos
Receptor alfa de Estrogênio/genética , Estrogênios/toxicidade , Hormônios Esteroides Gonadais/metabolismo , Neoplasias Vaginais/genética , Animais , Animais Recém-Nascidos , Proliferação de Células/efeitos dos fármacos , Dietilestilbestrol/farmacologia , Estrogênios/análogos & derivados , Feminino , Hormônios Esteroides Gonadais/biossíntese , Humanos , Camundongos , Ductos Paramesonéfricos/efeitos dos fármacos , Ductos Paramesonéfricos/metabolismo , Ductos Paramesonéfricos/patologia , Gravidez , Vagina/efeitos dos fármacos , Vagina/metabolismo , Vagina/patologia , Neoplasias Vaginais/induzido quimicamente , Neoplasias Vaginais/patologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-32710933

RESUMO

Hormonal sex reversal can produce monosex fish stocks and provide insights into their gamity and reproductive physiology. However, paradoxical effects have been reported in several fish species that remain largely ignored as anomalies, particularly those of masculinisation. As a first step, this study examined reproductive viability of paradoxically masculinised Gambusia holbrooki produced following oral administration (20-100 mg/kg feed) of a feminizing hormone diethylstilbestrol (DES). Contrary to expectation, all treatment groups produced 100% male populations. Survival, mating behaviour, gamete production, breeding output as well as expression of anti-Mullerian hormone (amh), ovarian (cyp19a1a) and brain (cyp19a1b) aromatase of masculinised fish were also examined. Survival (≤ 54.1 ± 7.3%) at termination of DES treatment was significantly lower compared with controls (88.6 ± 4.3%) but remained unaffected post treatment. Gonopodium thrusting frequency (33 ± 9.8 per 10 min) was not significantly different to untreated males just as sperm abundance (3.9 ± 1.5 × 108/male) and their motility (88.6 ± 29.1%). Importantly, paradoxically masculinised fish mated with virgin females and produced clutch sizes (22 ± 4) and progeny survival (87.0 ± %) that were comparable to that of untreated males. Masculinised testes showed high amh and low cyp19a1a expression, a pattern resembling those of untreated males. Production of paradoxically sex-reversed males with a capability to produce viable offspring has not been reported previously in this or other fish species. The outcomes support a feed-back regulation of oestrogenic pathways in this viviparous fish and could be useful for ecological applications such as controlling invasive fish populations.


Assuntos
Ciprinodontiformes/fisiologia , Dietilestilbestrol/farmacologia , Ovário/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Testículo/efeitos dos fármacos , Animais , Hormônio Antimülleriano/metabolismo , Aromatase/genética , Aromatase/metabolismo , Transtornos do Desenvolvimento Sexual/induzido quimicamente , Estrogênios não Esteroides/farmacologia , Feminino , Masculino , Ovário/fisiologia , Espermatozoides/efeitos dos fármacos , Espermatozoides/fisiologia , Testículo/fisiologia
11.
Zygote ; 28(4): 322-332, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32340635

RESUMO

Transparent Casper zebrafish allow studies of vertebrate sexual maturation and gonad development in vivo. Casper gonad dynamics can be observed longitudinally over time and non-invasively. Gonad maturation and reproduction are complex processes subject to disruption by endocrine-disrupting chemicals (EDCs), such as diethylstilbestrol (DES). DES was used as a 'proof of principle' to ascertain the usefulness of the Casper model to determine EDC effects on gonad maturation. Puberty onset in control juvenile Casper zebrafish (N = 43) averaged 13.2 weeks post fertilization (WPF) for females and included increased vent size, while in males puberty occurred at 11.7 WPF along with maintenance of small vents. DES treatment for 6 days in early juveniles (N = 20) induced an average delay in puberty of 5 weeks in females and 10 weeks in males. DES induced loss of breeding tubercles and vent enlargement in post-pubescent males. Puberty in control fish was correlated with an average body length of 1.7 cm for males and 1.8 cm for females. Increased testes opacity, small vent and breeding tubercles denoted male puberty. Puberty in females was defined as ovarian follicle diameters reaching 400 µm with increasingly opaque follicles and by an increased vent size. These results are like those for wild-type zebrafish and indicate that the Casper model is a useful system for studying gonad dynamics in vivo. Future use of transgenic reporter lines in Casper will allow new avenues of investigation into the reproductive biology of this vertebrate model.


Assuntos
Folículo Ovariano/crescimento & desenvolvimento , Maturidade Sexual/fisiologia , Testículo/crescimento & desenvolvimento , Peixe-Zebra/crescimento & desenvolvimento , Animais , Animais Geneticamente Modificados , Dietilestilbestrol/farmacologia , Disruptores Endócrinos/farmacologia , Feminino , Masculino , Folículo Ovariano/citologia , Folículo Ovariano/efeitos dos fármacos , Ovário/efeitos dos fármacos , Ovário/crescimento & desenvolvimento , Maturidade Sexual/efeitos dos fármacos , Testículo/efeitos dos fármacos , Peixe-Zebra/genética
12.
Toxicol Ind Health ; 36(1): 41-53, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31914870

RESUMO

Endocrine disrupting chemicals (EDCs) are defined as exogenous substances that can alter the development and functioning of the endocrine system. The Wnt signaling pathway is an evolutionarily conserved pathway consisting of proteins that transmit cell-to-cell receptors through cell surface receptors, regulating important aspects of cell migration, polarity, neural formation, and organogenesis, which determines the fate of the cell during embryonic development. Although the effects of EDCs have been studied in terms of many molecular mechanisms; because of its critical role in embryogenesis, the Wnt pathway is of special interest in EDC exposure. This review provides information about the effects of EDC exposure on the Wnt/ß-catenin pathway focusing on studies on bisphenol A, di-(2-ethylhexyl) phthalate, diethylstilbestrol, cadmium, and 2,3,7,8-tetrachlorodibenzo-p-dioxin.


Assuntos
Disruptores Endócrinos/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/fisiologia , Compostos Benzidrílicos/farmacologia , Cádmio/farmacologia , Dietilexilftalato/farmacologia , Dietilestilbestrol/farmacologia , Humanos , Fenóis/farmacologia , Dibenzodioxinas Policloradas/farmacologia
13.
Phytomedicine ; 66: 153113, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31790901

RESUMO

BACKGROUND: Natural killer (NK) cells play important roles in immune responses and have been wildly used in immunotherapy. Nevertheless, some limitations remain. It is urgent to explore novel and safe strategies to enhance NK cell activity. PURPOSE: The aim of this study was to investigate the immuno-stimulatory effects and to reveal the molecular mechanism of LJ101019C, a derivative of a natural small-molecule compounds cajanine, on NK cells. METHODS: Cell proliferation was examined by CCK8 assay, then we used the cytotoxicity detection kit to detect the cytotoxicity of NK cells. The change of cell cycle, intracellular reactive oxygen species (ROS) level and mitochondrial mass were evaluated by FACS and Operetta high-content image analysis, respectively. Furthermore, the IFN-γ secretion of NK cells were measured by ELISA. The Kv1.3 protein expression and function were detected by western blot and patch-clamp technique, respectively. The role of Kv1.3 in AKT/mTOR pathway activation was determined by western blot. RESULTS: The results showed that LJ101019C at relatively low concentrations (0.05-0.1 µM) significantly increased the proliferation of NK cells. And 1 µM LJ101019C could elevate the proportion of NK cells in the S-phase of the cell cycle (*p < 0.1). Furthermore, the cytotoxic effects of NK cells targeting MIA PaCa-2 cells were significantly enhanced by 0.1 and 1 µM LJ101019C, and were associated with the enhanced secretion of IFN-γ by NK cells (*p < 0.1; **p < 0.05). 0.1 and 1 µM LJ101019C increased intracellular levels of ROS (**p < 0.05), and 0.1 µM LJ101019C elevated mitochondrial mass (*p < 0.1). Electrophysiological recordings indicated that LJ101019C led to a remarkably increase the Kv1.3 current density. Moreover, western blot results indicated that LJ101019C elevated Kv1.3 protein expression and activated AKT/mTOR signaling via increasing the expression of Kv1.3 in NK cells. CONCLUSION: LJ101019C increases the proliferation and the cytotoxicity of NK cells at relatively low concentrations. The mechanism is the activation of AKT/mTOR signaling pathway driven by up-regulation of Kv1.3 in NK cells. These suggest LJ101019C is a promising candidate for improving the efficacy of NK cell-based immunotherapies.


Assuntos
Dietilestilbestrol/análogos & derivados , Canal de Potássio Kv1.3/efeitos dos fármacos , Neoplasias/terapia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dietilestilbestrol/química , Dietilestilbestrol/farmacologia , Feminino , Humanos , Imunoterapia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
14.
Mol Cancer Res ; 17(12): 2369-2382, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31597742

RESUMO

Early-life exposure to estrogenic chemicals can increase cancer risk, likely by disrupting normal patterns of cellular differentiation. Female mice exposed neonatally to the synthetic estrogen diethylstilbestrol (DES) develop metaplastic and neoplastic uterine changes as adults. Abnormal endometrial glands express the oncofetal protein sine oculis homeobox 1 (SIX1) and contain cells with basal [cytokeratin (CK)14+/18-] and poorly differentiated features (CK14+/18+), strongly associating SIX1 with aberrant differentiation and cancer. Here, we tested whether SIX1 expression is necessary for abnormal endometrial differentiation and DES-induced carcinogenesis by using Pgr-cre to generate conditional knockout mice lacking uterine Six1 (Six1 d/d). Interestingly, corn oil (CO) vehicle-treated Six1 d/d mice develop focal endometrial glandular dysplasia and features of carcinoma in situ as compared with CO wild-type Six1 (Six1 +/+) mice. Furthermore, Six1 d/d mice neonatally exposed to DES had a 42% higher incidence of endometrial cancer relative to DES Six1 +/+ mice. Although DES Six1 d/d mice had >10-fold fewer CK14+/18- basal cells within the uterine horns as compared with DES Six1 +/+ mice, the appearance of CK14+/18+ cells remained a feature of neoplastic lesions. These findings suggest that SIX1 is required for normal endometrial epithelial differentiation, CK14+/18+ cells act as a cancer progenitor population, and SIX1 delays DES-induced endometrial carcinogenesis by promoting basal differentiation of CK14+/18+ cells. In human endometrial biopsies, 35% of malignancies showed CK14+/18+ expression, which positively correlated with tumor stage and grade and was not present in normal endometrium. IMPLICATIONS: Aberrant epithelial differentiation is a key feature in both the DES mouse model of endometrial cancer and human endometrial cancer. The association of CK14+/18+ cells with human endometrial cancer provides a novel cancer biomarker and could lead to new therapeutic strategies.


Assuntos
Dietilestilbestrol/toxicidade , Hiperplasia Endometrial/genética , Neoplasias do Endométrio/genética , Estrogênios/toxicidade , Proteínas de Homeodomínio/genética , Animais , Animais Recém-Nascidos , Carcinogênese/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Óleo de Milho/farmacologia , Dietilestilbestrol/farmacologia , Modelos Animais de Doenças , Hiperplasia Endometrial/induzido quimicamente , Hiperplasia Endometrial/patologia , Neoplasias do Endométrio/induzido quimicamente , Neoplasias do Endométrio/patologia , Endométrio/efeitos dos fármacos , Endométrio/patologia , Células Epiteliais/efeitos dos fármacos , Estrogênios/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Queratina-14/genética , Camundongos
15.
Mech Dev ; 160: 103582, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31634535

RESUMO

Important aspects of vertebrate reproduction, such as gametogenesis, involve changes in organs found deep internally and thus not easily studied directly in most living vertebrates due to obscuring pigment and overlying tissues. Transparent lines of zebrafish, especially the Casper double mutant, allow direct observation and analysis of reproductive events in the gonads in vivo. The natural production of fertilized eggs in zebrafish is a complex process involving oogenesis, spermatogenesis, mating behavior, endocrine and neurological processes with inputs from the environment including light, temperature and nutrition. While these factors play important roles, the hypothalamic-pituitary-gonadal axis (HPGA) is central in the regulation of embryo output. Endocrine disrupting compounds (EDCs) include a variety of pollutants often present in the environment. EDCs may have direct effects on the HPGA or indirect effects through toxic action on supporting organs such as the liver or kidney. Estrogenic compounds such as diethylstilbestrol (DES) have been reported to affect reproduction in a variety of species including man. In this study, the effects of DES on reproduction were determined in a novel way by using transparent Casper zebrafish that allow direct visualization of gonad status over time. Changes in gonad status with DES treatment were correlated with effects on secondary sex characteristics (i.e., genital vent size and breeding tubercles) spawning and embryo production. The results suggest that the Casper zebrafish is a useful model for studying dynamics of reproductive events in vertebrate gonads in vivo and for determining effects of EDCs on zebrafish reproduction.


Assuntos
Gônadas/fisiologia , Reprodução/fisiologia , Caracteres Sexuais , Peixe-Zebra/fisiologia , Animais , Dietilestilbestrol/farmacologia , Feminino , Gônadas/anatomia & histologia , Gônadas/efeitos dos fármacos , Masculino , Tamanho do Órgão/efeitos dos fármacos , Ovário/efeitos dos fármacos , Ovário/fisiologia , Reprodução/efeitos dos fármacos , Testículo/anatomia & histologia , Testículo/efeitos dos fármacos
16.
Rev Iberoam Micol ; 36(3): 115-119, 2019.
Artigo em Espanhol | MEDLINE | ID: mdl-31300300

RESUMO

BACKGROUND: Candida albicans is a microorganism frequently involved in several infections; the patient's oral cavity, caries niches or periodontal disease can sometimes be the reservoir.. The fungal resistance to the available treatments, among other reasons, has led to the search for new antifungal alternatives. AIMS: To carry out a comparative study of the in vitro effects of diethylstilboestrol (DES) and fluconazole (FLZ) on the growth of clinical strains of C. albicans. METHODS: Seven strains of C. albicans were used: a) one FLZ-sensitive culture collection strain, ATCC 90028 (ATCC); b) four oral isolates from four oncological patients with periodontal disease (period 8, 9, 10, and 11); and c) two oral isolates from an AIDS patient with oropharyngeal candidiasis: one FLZ- sensitive (2-76), and another FLZ- resistant (12-99). The MIC was evaluated by standard spectrophotometric techniques using the CLSI (M27-A3) guidelines. The inhibitory concentration 50% (IC50) was calculated using functional analysis with the Graph Pad software. RESULTS: DES inhibited the growth of all C. albicans strains, whether sensitive or resistant to FLZ. Experimental data fitted non-linear functions of inhibitor concentration versus response. Minimum inhibitory concentrations (MIC) for DES and FLZ were as follows: 28.18µg/ml and 4.90µg/ml (ATCC); 17.16µg/ml and 3.14µg/ml (period); 27.64µg/ml and 4.22µg/ml (2-76); 6.16µg/ml and 438.19µg/ml (12-99), respectively. CONCLUSIONS: DES showed antifungal activity on all clinical C. albicans strains isolated from patients with dental and medical diseases. It showed the highest potency on the FLZ-resistant isolate.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Dietilestilbestrol/farmacologia , Farmacorresistência Fúngica , Fluconazol/farmacologia , Humanos , Testes de Sensibilidade Microbiana
17.
In Vivo ; 33(4): 1095-1102, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31280197

RESUMO

BACKGROUND/AIM: Perinatal diethylstilbestrol (DES) treatment induces the polyovular follicle containing two or more oocytes in a follicle of mouse ovary through estrogen receptor (ER) ß. The aim of the study was to investigate the direct effects of DES on the neonatal mouse ovary and the gene expression of activins. MATERIALS AND METHODS: Ovaries from neonatal wild-type (WT) or ERß- knockout (ERßKO) mice were organ-cultured in a serum-free medium with or without DES, and polyovular follicle induction and expression of activin signaling related genes were examined. RESULTS: The polyovular follicle and cyst incidence in DES-treated organ-cultured ovaries from WT mice, but not from ERßKO mice, was significantly higher than that of control non-treated cultures. DES altered inhibin (Inh) a, Inhba and Inhbb expression in organ-cultured ovaries from C57BL/6J mice, while no change in Inha and an increase of Inhbb were observed by DES, in both WT and ERßKO mice. CONCLUSION: Alterations in activin signaling are involved in the polyovular follicle induction by DES.


Assuntos
Ativinas/genética , Dietilestilbestrol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Ovário/efeitos dos fármacos , Ovário/metabolismo , Ativinas/metabolismo , Animais , Animais Recém-Nascidos , Biomarcadores , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Feminino , Inibinas/genética , Inibinas/metabolismo , Camundongos , Camundongos Knockout , Folículo Ovariano/citologia , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/metabolismo , RNA Mensageiro/genética
18.
Chem Res Toxicol ; 32(6): 1002-1013, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-30924335

RESUMO

Numerous chemicals have been reported to exert estrogen-like endocrine disrupting effects via a receptor binding mechanism that directly interacts with the ligand binding domain of estrogen receptor α (ERα). However, not only their binding affinities to ERα but also their interference in specific cell and tissue functions are clearly different. In this regard, significant regulation differences among three representative estrogenic chemicals (diethylstilbestrol (DES), bisphenol A (BPA), and diarylpropionitrile (DPN)), well-known ERα agonists with very similar structures, have been observed. Molecular dynamics simulation is used to explore the underlying mechanism of different regulation effects induced by the similar estrogen-like chemicals. The DES-induced 12 Å motion of the H9-H10 loop markedly expands the negative electrostatic potential surface of the AF-2 domain, which is consistent with the over-regulation effect of the agonist. In comparison, the 3 Å motion induced by BPA and DPN corresponds to the low-regulation effect of the chemicals. Cross-correlation analysis indicates that the different ERα motions and resulting surface feature of AF-2 domain are brought by the distinguished binding modes of the agonists. Moreover, only hydrophobic DES with estrogen-like size and flexibility has a high binding affinity of -23.47 kcal/mol binding free energy. Both the hydrophilic group in DPN and the small molecular size of BPA dramatically decrease the agonist binding ability, and their binding free energies are only -12.43 kcal/mol and -11.82 kcal/mol, respectively. Our study demonstrates that similar chemicals interact differently with ERα and induce different allosteric effects, which explains the observed regulation diversity.


Assuntos
Compostos Benzidrílicos/farmacologia , Dietilestilbestrol/farmacologia , Receptor alfa de Estrogênio/agonistas , Simulação de Dinâmica Molecular , Nitrilas/farmacologia , Fenóis/farmacologia , Propionatos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Humanos , Ligantes , Estrutura Molecular , Análise de Componente Principal
19.
Histochem Cell Biol ; 151(4): 291-303, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30511269

RESUMO

Diethylstilbestrol (DES), an estrogen agonist, increases prolactin (PRL) cells through transdifferentiation of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) cells to PRL cells as well as proliferation of PRL cells in adult male mouse pituitary. Since hyperacetylation of histone H3 is implicated in the regulation of activation of various genes, we examined the effect of DES on the state of histone H3 acetylation. DES significantly reduced the immunohistochemical signal for acetylated histone H3 at lysine 9 (H3K9ac) in PRL, LH and FSH cells, but not for H3K18ac or H3K23ac. DES-treated mice were injected intraperitoneally with HDAC inhibitors (HDACi), sodium phenylbutyrate (NaPB) or valproic acid (VPA), to mimic the acetylation level of histone H3. As expected, HDACi treatment restored the level of H3K9ac expression in these cells, and also inhibited DES-induced increase in PRL cells. Furthermore, NaPB and VPA also abrogated the effects of DES on the population density of both LH and FSH cells. Similarly, the numbers of proliferating and apoptotic cells in the pituitary in NaPB- or VPA-treated mice were comparable to those of the control mice. Considered together, these results indicated that the acetylation level of histone H3 plays an important role in DES-induced transdifferentiation of LH to PRL cells as well as proliferation of PRL cells.


Assuntos
Transdiferenciação Celular/efeitos dos fármacos , Gonadotrofos/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Lactotrofos/efeitos dos fármacos , Fenilbutiratos/farmacologia , Hipófise/efeitos dos fármacos , Ácido Valproico/farmacologia , Acetilação/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dietilestilbestrol/administração & dosagem , Dietilestilbestrol/farmacologia , Gonadotrofos/citologia , Inibidores de Histona Desacetilases/administração & dosagem , Histonas/análise , Histonas/biossíntese , Injeções Intraperitoneais , Lactotrofos/citologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Fenilbutiratos/administração & dosagem , Hipófise/metabolismo , Coelhos , Ácido Valproico/administração & dosagem
20.
Adv Clin Exp Med ; 28(1): 45-50, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30141283

RESUMO

BACKGROUND: Seed cells - mesenchymal stem cells (MSCs) - appear to be an attractive tool in the context of tissue engineering. Bone marrow represents the main source of MSCs for both experimental and clinical studies. However, the number limitation of bone marrow MSCs (BMSCs) and decreased function caused by proliferation make the search for adequate alternative sources of these cells for autologous and allogenic transplant necessary. OBJECTIVES: This study was aimed to investigate the roles of cajanine isolated from the extracts of Cajanus cajan L. Millsp. in the proliferation and differentiation of BMSCs, and to discover the mechanism of proliferation of BMSCs promoted by cajanine. MATERIAL AND METHODS: Bone marrow mesenchymal stem cells were cultured in high-glucose Dulbecco's Modified Eagle's Medium (DMEM) and osteogenic differentiation was induced by adding dexamethasone, ascorbic acid and ß-glycerophosphate supplements. Bone marrow MSCs were cultured in medium without cajanine or supplemented with cajanine. The information about the proliferation and osteogenic differentiation of BMSCs was collated. The osteogenic differentiation potential of BMSCs was also assessed at the 3rd passage by Von Kossa staining. To observe cell signal transduction changes of BMSCs after culturing them with cajanine for 24 h, the western blot analysis was performed to detect phosphorylated cell cycle proteins and activated cyclins. RESULTS: After osteogenic induction, the differentiation of BMSCs was accelerated by cajanine treatment. Osteogenesis markers were upregulated by cajanine treatment at both protein and mRNA levels. Cajanine obviously promoted the proliferation of BMSCs. After BMSCs were cultured with cajanine for 24 h, the cell cycle regulator proteins were phosphorylated or upregulated. CONCLUSIONS: Cajanine can promote the expansion efficiency of BMSCs, at the same time keeping their multi-differentiation potential. Cajanine can activate the cell cycle signal transduction pathway, thus inducing cells to enter the G1/S phase and accelerating cells entering the G2/M phase. This study can contribute to the development of cajanine-based drugs in tissue engineering.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Cajanus/química , Proliferação de Células/efeitos dos fármacos , Dietilestilbestrol/análogos & derivados , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Diferenciação Celular , Células Cultivadas , Dietilestilbestrol/isolamento & purificação , Dietilestilbestrol/farmacologia , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Extratos Vegetais , Plantas Medicinais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA