Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Biotechnol Adv ; 33(2): 288-302, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25698505

RESUMO

Glycosylation of small molecules like specialized (secondary) metabolites has a profound impact on their solubility, stability or bioactivity, making glycosides attractive compounds as food additives, therapeutics or nutraceuticals. The subsequently growing market demand has fuelled the development of various biotechnological processes, which can be divided in the in vitro (using enzymes) or in vivo (using whole cells) production of glycosides. In this context, uridine glycosyltransferases (UGTs) have emerged as promising catalysts for the regio- and stereoselective glycosylation of various small molecules, hereby using uridine diphosphate (UDP) sugars as activated glycosyldonors. This review gives an extensive overview of the recently developed in vivo production processes using UGTs and discusses the major routes towards UDP-sugar formation. Furthermore, the use of interconverting enzymes and glycorandomization is highlighted for the production of unusual or new-to-nature glycosides. Finally, the technological challenges and future trends in UDP-sugar based glycosylation are critically evaluated and summarized.


Assuntos
Biotecnologia , Carboidratos/biossíntese , Glicosiltransferases/genética , Difosfato de Uridina/biossíntese , Sequência de Aminoácidos/genética , Catálise , Glicosilação , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Humanos , Especificidade por Substrato , Difosfato de Uridina/química
3.
J Biol Chem ; 287(2): 879-92, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22102281

RESUMO

There is increasing evidence that in several fungi, rhamnose-containing glycans are involved in processes that affect host-pathogen interactions, including adhesion, recognition, virulence, and biofilm formation. Nevertheless, little is known about the pathways for the synthesis of these glycans. We show that rhamnose is present in glycans isolated from the rice pathogen Magnaporthe grisea and from the plant pathogen Botryotinia fuckeliana. We also provide evidence that these fungi produce UDP-rhamnose. This is in contrast to bacteria where dTDP-rhamnose is the activated form of this sugar. In bacteria, formation of dTDP-rhamnose requires three enzymes. Here, we demonstrate that in fungi only two genes are required for UDP-Rha synthesis. The first gene encodes a UDP-glucose-4,6-dehydratase that converts UDP-glucose to UDP-4-keto-6-deoxyglucose. The product was shown by time-resolved (1)H NMR spectroscopy to exist in solution predominantly as a hydrated form along with minor amounts of a keto form. The second gene encodes a bifunctional UDP-4-keto-6-deoxyglucose-3,5-epimerase/-4-reductase that converts UDP-4-keto-6-deoxyglucose to UDP-rhamnose. Sugar composition analysis and gene expression studies at different stages of growth indicate that the synthesis of rhamnose-containing glycans is under tissue-specific regulation. Together, our results provide new insight into the formation of rhamnose-containing glycans during the fungal life cycle. The role of these glycans in the interactions between fungal pathogens and their hosts is discussed. Knowledge of the metabolic pathways involved in the formation of rhamnose-containing glycans may facilitate the development of drugs to combat fungal diseases in humans, as to the best of our knowledge mammals do not make these types of glycans.


Assuntos
Genes Fúngicos/fisiologia , Glucose/análogos & derivados , Magnaporthe/metabolismo , Açúcares de Uridina Difosfato/biossíntese , Difosfato de Uridina/análogos & derivados , Bactérias/genética , Bactérias/metabolismo , Sequência de Bases , Glucose/biossíntese , Glucose/genética , Magnaporthe/genética , Magnaporthe/patogenicidade , Dados de Sequência Molecular , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Difosfato de Uridina/biossíntese , Difosfato de Uridina/genética , Açúcares de Uridina Difosfato/genética
4.
Chem Biol ; 17(12): 1356-66, 2010 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-21168771

RESUMO

UDP-galactofuranose (UDP-Galf) is a substrate for two types of enzymes, UDP-galactopyranose mutase and galactofuranosyltransferases, which are present in many pathogenic organisms but absent from mammals. In particular, these enzymes are involved in the biosynthesis of cell wall galactan, a polymer essential for the survival of the causative agent of tuberculosis, Mycobacterium tuberculosis. We describe here the synthesis of derivatives of UDP-Galf modified at C-5 and C-6 using a chemoenzymatic route. In cell-free assays, these compounds prevented the formation of mycobacterial galactan, via the production of short "dead-end" intermediates resulting from their incorporation into the growing oligosaccharide chain. Modified UDP-furanoses thus constitute novel probes for the study of the two classes of enzymes involved in mycobacterial galactan assembly, and studies with these compounds may ultimately facilitate the future development of new therapeutic agents against tuberculosis.


Assuntos
Antituberculosos/química , Inibidores Enzimáticos/química , Galactanos/biossíntese , Galactose/análogos & derivados , Galactosiltransferases/antagonistas & inibidores , Difosfato de Uridina/análogos & derivados , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Galactanos/antagonistas & inibidores , Galactose/biossíntese , Galactose/química , Galactose/farmacologia , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Transferases Intramoleculares/antagonistas & inibidores , Transferases Intramoleculares/metabolismo , Klebsiella pneumoniae/enzimologia , Mycobacterium smegmatis/enzimologia , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Difosfato de Uridina/biossíntese , Difosfato de Uridina/química , Difosfato de Uridina/farmacologia
5.
Biochemistry ; 49(38): 8398-414, 2010 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-20799687

RESUMO

Bacillithiol (Cys-GlcN-malate, BSH) has recently been identified as a novel low-molecular weight thiol in Bacillus anthracis, Staphylococcus aureus, and several other Gram-positive bacteria lacking glutathione and mycothiol. We have now characterized the first two enzymes for the BSH biosynthetic pathway in B. anthracis, which combine to produce α-d-glucosaminyl l-malate (GlcN-malate) from UDP-GlcNAc and l-malate. The structure of the GlcNAc-malate intermediate has been determined, as have the kinetic parameters for the BaBshA glycosyltransferase (→GlcNAc-malate) and the BaBshB deacetylase (→GlcN-malate). BSH is one of only two natural products reported to contain a malyl glycoside, and the crystal structure of the BaBshA-UDP-malate ternary complex, determined in this work at 3.3 Å resolution, identifies several active-site interactions important for the specific recognition of l-malate, but not other α-hydroxy acids, as the acceptor substrate. In sharp contrast to the structures reported for the GlcNAc-1-d-myo-inositol-3-phosphate synthase (MshA) apo and ternary complex forms, there is no major conformational change observed in the structures of the corresponding BaBshA forms. A mutant strain of B. anthracis deficient in the BshA glycosyltransferase fails to produce BSH, as predicted. This B. anthracis bshA locus (BA1558) has been identified in a transposon-site hybridization study as required for growth, sporulation, or germination [Day, W. A., Jr., Rasmussen, S. L., Carpenter, B. M., Peterson, S. N., and Friedlander, A. M. (2007) J. Bacteriol. 189, 3296-3301], suggesting that the biosynthesis of BSH could represent a target for the development of novel antimicrobials with broad-spectrum activity against Gram-positive pathogens like B. anthracis. The metabolites that function in thiol redox buffering and homeostasis in Bacillus are not well understood, and we present a composite picture based on this and other recent work.


Assuntos
Bacillus anthracis/enzimologia , Cisteína/biossíntese , Cisteína/metabolismo , Bacillus anthracis/metabolismo , Sítios de Ligação , Boroidretos , Cisteína/análogos & derivados , Cisteína/química , Glucosamina/análogos & derivados , Glucosamina/biossíntese , Glucosamina/metabolismo , Glicopeptídeos , Glicosiltransferases/biossíntese , Glicosiltransferases/metabolismo , Inositol , Liases Intramoleculares , Peso Molecular , Oxirredução , Compostos de Sulfidrila/metabolismo , Difosfato de Uridina/biossíntese , Difosfato de Uridina/metabolismo
6.
Cell Microbiol ; 11(11): 1612-23, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19563461

RESUMO

Galactofuranose (Galf) is a major molecule found in cell wall polysaccharides, secreted glycoproteins, membrane lipophosphoglycans and sphingolipids of Aspergillus fumigatus. The initial step in the Galf synthetic pathway is the re-arrangement of UDP-galactopyranose to UDP-Galf through the action of UDP-galactopyranose mutase. A mutant lacking the AfUGM1 gene encoding the UDP-galactopyranose mutase has been constructed. In the mutant, though there is a moderate reduction in the mycelial growth associated with an increased branching, it remains as pathogenic and as resistant to cell wall inhibitors and phagocytes as the wild-type parental strain. The major phenotype seen is a modification of the cell wall surface that results in an increase in adhesion of the mutants to different inert surfaces (glass and plastic) and epithelial respiratory cells. The adhesive phenotype is due to the unmasking of the mannan consecutive to the removal of galactofuran by the ugm1 mutation. Removal of the mannan layer from the mutant surface by a mannosidase treatment abolishes mycelial adhesion to surfaces.


Assuntos
Aspergillus fumigatus/fisiologia , Adesão Celular , Galactose/análogos & derivados , Galactose/metabolismo , Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/ultraestrutura , Linhagem Celular , Células Epiteliais/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Galactose/biossíntese , Deleção de Genes , Humanos , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Microscopia Eletrônica de Varredura , Micélio/ultraestrutura , Esporos Fúngicos/crescimento & desenvolvimento , Difosfato de Uridina/análogos & derivados , Difosfato de Uridina/biossíntese
7.
Clin Pharmacol Ther ; 78(1): 81-8, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16003296

RESUMO

The tuberculostatic compound rifampin (INN, rifampicin) induces the expression of a number of drug metabolism-related genes involved in multidrug resistance (P-glycoprotein and multidrug resistance proteins 1 and 2), cytochromes (cytochrome P450 [CYP] 3A4), uridine diphosphate-glucuronosyltransferases, monoamine oxidases, and glutathione S -transferases. Drugs that depend on these enzymes for their metabolism are prone to drug interactions when coadministered with rifampin. A novel, clinically relevant drug interaction is described between rifampin and mycophenolate mofetil (MMF), a cornerstone immunosuppressive molecule used in solid organ transplantation. Long-term rifampin therapy caused a more than twofold reduction in dose-corrected mycophenolic acid (MPA) exposure (dose-interval area under the concentration curve from 0 to 12 hours [AUC 0-12]) when administered simultaneously in a heart-lung transplant recipient, whereas subsequent withdrawal of rifampin resulted in reversal of these changes after 2 weeks of washout (dose-corrected AUC 0-12 after rifampin withdrawal, 19.7 mg.h.L-1.g -1 versus 6.13 mg.h.L-1.g-1 before rifampin withdrawal [221% change]; dose-uncorrected AUC 0-12 after rifampin withdrawal, 29.6 mg.h/L [daily MMF dose, 3 g] versus 18.4 mg.h/L [daily MMF dose, 6 g] during rifampin administration [60.8% change]). Failure to recognize this drug interaction could potentially lead to MPA underexposure and loss of clinical efficacy. The effect of rifampin on MPA metabolism can, at least in part, be explained by simultaneous induction of renal, hepatic, and gastrointestinal uridine diphosphate-glucuronosyltransferases and organic anion transporters with subsequent functional inhibition of enterohepatic recirculation of MPA.


Assuntos
Interações Medicamentosas , Glucuronosiltransferase/biossíntese , Ácido Micofenólico/análogos & derivados , Ácido Micofenólico/uso terapêutico , Rifampina/uso terapêutico , Difosfato de Uridina/biossíntese , Área Sob a Curva , Doença Crônica , Relação Dose-Resposta a Droga , Esquema de Medicação , Quimioterapia Combinada , Circulação Êntero-Hepática/efeitos dos fármacos , Circulação Êntero-Hepática/fisiologia , Transplante de Coração-Pulmão , Histiocitose de Células de Langerhans/complicações , Histiocitose de Células de Langerhans/diagnóstico , Humanos , Hipertensão Pulmonar/complicações , Hipertensão Pulmonar/diagnóstico , Masculino , Taxa de Depuração Metabólica/efeitos dos fármacos , Pessoa de Meia-Idade , Ácido Micofenólico/sangue , Ácido Micofenólico/farmacologia , Farmacologia Clínica/educação , Farmacologia Clínica/métodos , Insuficiência Respiratória/complicações , Insuficiência Respiratória/diagnóstico , Rifampina/farmacologia , Tacrolimo/sangue , Tacrolimo/uso terapêutico , Fatores de Tempo , Suspensão de Tratamento
8.
Drug Metab Dispos ; 31(11): 1361-8, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14570768

RESUMO

Nicotine is considered the major addictive agent in tobacco. Tobacco users extensively metabolize nicotine to cotinine. Both nicotine and cotinine undergo N-glucuronidation. Human liver microsomes have been shown to catalyze the formation of these N-glucuronides. However, which UDP-glucuronosyltransferases contribute to this catalysis has not been identified. To identify these enzymes, we initially measured the rates of glucuronidation by 15 human liver microsome samples. Fourteen of the samples glucuronidated both nicotine and cotinine at rates ranging from 146 to 673 pmol/min/mg protein and 140 to 908 pmol/min/mg protein, respectively. The rates of nicotine glucuronidation and cotinine glucuronidation by these 14 samples were correlated, r = 0.97 (p < 0.0001). The glucuronidation of nicotine and cotinine by heterologously expressed UGT1A3, UGT1A4, and UGT1A9 was also determined. All three enzymes catalyzed the glucuronidation of nicotine. However, the rate of catalysis by UGT1A4 Supersomes was more than 30-fold greater than that by either UGT1A3 Supersomes or UGT1A9 Supersomes. Interestingly, when expressed per UGT1A protein, measured by a UGT1A specific antibody, cell lysate from V79-expressed UGT1A9 catalyzed nicotine glucuronidation at a rate 17-fold greater than did UGT1A9 Supersomes. UGT1A4 Supersomes also catalyzed cotinine N-glucuronidation, but at one-tenth the rate of nicotine glucuronidation. Cotinine glucuronidation by either UGT1A3 or UGT1A9 was not detected. Both propofol, a UGT1A9 substrate, and imipramine, a UGT1A4 substrate, inhibited the glucuronidation of nicotine and cotinine by human liver microsomes. Taken together, these data support a role for both UGT1A9 and UGT1A4 in the catalysis of nicotine and cotinine N-glucuronidation.


Assuntos
Cotinina/metabolismo , Glucuronídeos/metabolismo , Glucuronosiltransferase/biossíntese , Microssomos Hepáticos/enzimologia , Nicotina/metabolismo , Animais , Cotinina/química , Cricetinae , Regulação Enzimológica da Expressão Gênica/fisiologia , Glucuronídeos/química , Glucuronosiltransferase/genética , Humanos , Nicotina/química , Difosfato de Uridina/biossíntese , Difosfato de Uridina/genética
10.
Biosci Biotechnol Biochem ; 61(6): 956-9, 1997 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9214753

RESUMO

Enzymatic production of cytidine diphosphate choline (CDP-choline) using orotic acid and choline chloride as substrates was investigated using a 200-ml beaker as a reaction vessel. When Cornybacterium ammoniagenes KY13505 cells were used as the enzyme source, UMP was accumulated up to 28.6 g/liter (77.6 mM) from orotic acid after 26 h of reaction. In this reaction, UDP and UTP were also accumulated, but CTP, a direct precursor of CDP-choline, was not accumulated sufficiently. Escherichia coli JF646/pMW6 cells, which overproduce CTP synthetase by selfcloning of the pyrG gene, were used together with cells of KY12505 for the enzymatic reaction using orotic acid as a substrate. CTP was produced at 8.95 g/liter (15.1 mM) after 23 h of this reaction. To produce CDP-choline, two additional enzyme activities were needed. E. coli MM294/pUCK3 and MM294/pCC41 cells, which express a choline kinase from Saccharomyces cerevisiae (CKIase; encoded by the CKI gene) and a cholinephosphate cytidylyltransferase from S. cerevisiae (CCTase; encoded by the CCT gene) respectively, were added to this CTP-producing reaction system. After 23 h of the reaction using orotic acid and choline chloride as substrates, 7.7 g/liter (15.1 mM) of CDP-choline was accumulated without addition of ATP or phosphoribosylpyrophosphate (PRPP). ATP and PRPP required in the CDP-choline forming reaction system are biosynthesized by those cells using glucose as a substrate.


Assuntos
Carbono-Nitrogênio Ligases , Colina/metabolismo , Corynebacterium/enzimologia , Citidina Difosfato Colina/síntese química , Escherichia coli/enzimologia , Regulação Enzimológica da Expressão Gênica/genética , Ácido Orótico/metabolismo , Nucleotídeos de Pirimidina/biossíntese , Colina/química , Cromatografia Líquida de Alta Pressão , Corynebacterium/genética , Citidina Trifosfato/biossíntese , Escherichia coli/genética , Ligases/biossíntese , Ácido Orótico/química , Fosforribosil Pirofosfato/química , Fosforribosil Pirofosfato/metabolismo , Plasmídeos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Especificidade por Substrato , Difosfato de Uridina/biossíntese , Uridina Monofosfato/biossíntese , Uridina Monofosfato/química , Uridina Monofosfato/metabolismo , Uridina Trifosfato/biossíntese
11.
Anal Biochem ; 242(1): 1-7, 1996 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-8923956

RESUMO

A method to prepare UDP-galactofuranose (UDP-Galf) free of UDP-galactopyranose (UDP-Galp) is described. The UDP-Galf is synthesized enzymatically from UDP-Galp using the enzyme UDP-galactopyranose mutase. Treatment of UDP-Galp with the enzyme yields an equilibrium mixture of UDP-Galp and UDP-Galf in which UDP-Galf is approximately 7%. In spite of its low yield, the UDP-Galf is readily purified from starting UDP-Galp using a Dionex PA-100 ion exchange HPLC column. The purified UDP-Galf was characterized by chemical degradations, by electrospray mass spectrometry, and by several nuclear magnetic resonance techniques. In addition, an HPLC assay for the enzyme UDP-galactopyranose mutase is presented that requires 0.5 microgram of UDP-Galf per assay and can be used for both qualitative and quantitative measurements of the enzyme activity. These procedures should thus aid in the characterization of the enzymes involved in galactofuranosyl biosynthesis for the cell walls of Mycobacteria, for the lipophosphoglycan of Leishmania, and for other microorganisms where galactofuranosyl residues are found.


Assuntos
Proteínas de Bactérias/análise , Carboidratos Epimerases/análise , Cromatografia Líquida de Alta Pressão/métodos , Proteínas de Escherichia coli , Galactose/análogos & derivados , Transferases Intramoleculares , Difosfato de Uridina/análogos & derivados , Proteínas de Bactérias/metabolismo , Carboidratos Epimerases/metabolismo , Ensaio de Imunoadsorção Enzimática , Escherichia coli/enzimologia , Galactose/biossíntese , Galactose/química , Galactose/isolamento & purificação , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Espectrofotometria Ultravioleta , Difosfato de Uridina/biossíntese , Difosfato de Uridina/química , Difosfato de Uridina/isolamento & purificação
12.
Anal Biochem ; 232(2): 197-203, 1995 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-8747475

RESUMO

UTP, labeled with 15N and 13C (at all carbon atoms of the ribose moiety), was obtained enzymatically from [15N]uracil and [13C6]glucose. Eleven enzymes and suitable substrates reconstituted a metabolic pathway in which glucose was first transformed to 5-phosphoribosyl-1-pyrophosphate. The latter compound plus uracil yielded UMP in a second step by the reaction catalyzed by uracil phosphoribosyltransferase. UMP was subsequently phosphorylated to the corresponding di- and triphosphate. ATP, required for five phosphorylation reactions, was regenerated from creatine phosphate, whereas NADP+ necessary for the oxidation of glucose 6-phosphate and 6-phosphogluconate was recycled by glutamate dehydrogenase and excess of ammonia and alpha-oxoglutarate. Despite the number and complexity of the enzymatic steps, the synthesis of [15N, 13C]UTP is straightforward with an overall yield exceeding 60%. This method, extended and diversified to the synthesis of all natural ribonucleotides, is a more economical alternative for obtaining nucleic acids for structural analysis by heteronuclear NMR spectroscopy.


Assuntos
Marcação por Isótopo/métodos , Uridina Trifosfato/biossíntese , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Isótopos de Carbono , Enzimas/metabolismo , Proteínas Fúngicas/metabolismo , Glucose/metabolismo , Espectroscopia de Ressonância Magnética , NADP/metabolismo , Isótopos de Nitrogênio , Fosforilação , Proteínas Recombinantes/metabolismo , Ribulosefosfatos/biossíntese , Uracila/metabolismo , Difosfato de Uridina/biossíntese , Uridina Monofosfato/biossíntese , Uridina Trifosfato/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA