RESUMO
Reproductive function in mammals depends on the ability of progesterone (P4) to suppress pulsatile gonadotrophin-releasing hormone (GnRH) and luteinizing hormone (LH) secretion in a homeostatic-negative feedback loop. Previous research identified that cells upstream from GnRH neurons expressing the nuclear progesterone receptor (PGR) are required for P4-negative feedback. However, the identity of these cells and the mechanism by which they reduce GnRH/LH pulsatile secretion is unknown. We aimed to address the hypothesis that PGR expressed by a neural population in the arcuate nucleus recently identified as the GnRH pulse generator, cells expressing kisspeptin, neurokinin B, and dynorphin (KNDy cells), mediate P4-negative feedback. To achieve this, we used female mice with the PGR gene conditionally deleted from kisspeptin cells (KPRKO mice) and observed a substantial decrease in the percentage of KNDy neurons coexpressing PGR messenger RNA (mRNA) (11% in KPRKO mice vs 86% in wild-type [WT] mice). However, KPRKO mice did not display changes in the frequency or amplitude of LH pulses in diestrus or estrus, nor in the ability of exogenous P4 to blunt a postcastration increase in LH. Further, mRNA expression of arcuate kisspeptin and dynorphin, which are excitatory and inhibitory to GnRH secretion, respectively, remained unaltered in KPRKO mice compared to WT controls. Together, these findings show that the near-complete loss of PGR signaling from KNDy cells does not affect negative feedback regulation of GnRH pulse generation in mice, suggesting that feedback through this receptor can occur via a small number of KNDy cells or a yet unidentified cell population.
Assuntos
Núcleo Arqueado do Hipotálamo , Retroalimentação Fisiológica , Hormônio Liberador de Gonadotropina , Kisspeptinas , Hormônio Luteinizante , Camundongos Knockout , Progesterona , Receptores de Progesterona , Animais , Feminino , Kisspeptinas/metabolismo , Kisspeptinas/genética , Receptores de Progesterona/metabolismo , Receptores de Progesterona/genética , Hormônio Luteinizante/metabolismo , Camundongos , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/genética , Núcleo Arqueado do Hipotálamo/metabolismo , Progesterona/metabolismo , Dinorfinas/metabolismo , Dinorfinas/genética , Neurônios/metabolismo , Neurocinina B/genética , Neurocinina B/metabolismoRESUMO
G-protein coupled receptors help regulate cellular function and communication, and are targets of small molecule drug discovery efforts. Conventional techniques to probe these interactions require labels and large amounts of receptor to achieve satisfactory sensitivity. Here, we use frequency-locked optical microtoroids for label-free characterization of membrane interactions in vitro at zeptomolar concentrations for the kappa opioid receptor and its native agonist dynorphin A 1-13, as well as big dynorphin (dynorphin A and dynorphin B) using a supported biomimetic membrane. The measured affinity of the agonist dynorphin A 1-13 to the κ-opioid receptor was also measured and found to be 3.1 nM. Radioligand assays revealed a dissociation constant in agreement with this value (1.1 nM). The limit of detection for the κOR/DynA 1-13 was calculated as 180 zM. The binding of Cholera Toxin B-monosialotetrahexosyl ganglioside was also monitored in real-time and an equilibrium dissociation constant of 1.53 nM was found. Our biosensing platform provides a method for highly sensitive real-time characterization of membrane embedded protein binding kinetics that is rapid and label-free, for drug discovery and toxin screening among other applications.
Assuntos
Dinorfinas , Receptores Opioides kappa , Receptores Opioides kappa/metabolismo , Receptores Opioides kappa/agonistas , Dinorfinas/metabolismo , Toxina da Cólera/metabolismo , Técnicas Biossensoriais/métodos , Ligação Proteica , Humanos , Ensaio Radioligante/métodosRESUMO
A zinc metallopeptidase neurolysin (Nln) processes diverse bioactive peptides to regulate signaling in the mammalian nervous system. To understand how Nln interacts with various peptides with dissimilar sequences, we determined crystal structures of Nln in complex with diverse peptides including dynorphins, angiotensin, neurotensin, and bradykinin. The structures show that Nln binds these peptides in a large dumbbell-shaped interior cavity constricted at the active site, making minimal structural changes to accommodate different peptide sequences. The structures also show that Nln readily binds similar peptides with distinct registers, which can determine whether the peptide serves as a substrate or a competitive inhibitor. We analyzed the activities and binding of Nln toward various forms of dynorphin A peptides, which highlights the promiscuous nature of peptide binding and shows how dynorphin A (1-13) potently inhibits the Nln activity while dynorphin A (1-8) is efficiently cleaved. Our work provides insights into the broad substrate specificity of Nln and may aid in the future design of small molecule modulators for Nln.
Assuntos
Dinorfinas , Neurotensina , Humanos , Especificidade por Substrato , Dinorfinas/química , Dinorfinas/metabolismo , Neurotensina/química , Neurotensina/metabolismo , Metaloendopeptidases/metabolismo , Metaloendopeptidases/química , Metaloendopeptidases/antagonistas & inibidores , Ligação Proteica , Cristalografia por Raios X , Modelos Moleculares , Domínio Catalítico , Bradicinina/química , Bradicinina/metabolismo , Angiotensinas/metabolismo , Angiotensinas/química , Sequência de AminoácidosRESUMO
Dopamine (DA) neurons in the ventral tegmental area (VTA) respond to motivationally relevant cues, and circuit-specific signaling drives different aspects of motivated behavior. Orexin (ox; also known as hypocretin) and dynorphin (dyn) are coexpressed lateral hypothalamic (LH) neuropeptides that project to the VTA. These peptides have opposing effects on the firing activity of VTADA neurons via orexin 1 (Ox1R) or kappa opioid (KOR) receptors. Given that Ox1R activation increases VTADA firing, and KOR decreases firing, it is unclear how the coreleased peptides contribute to the net activity of DA neurons. We tested if optical stimulation of LHox/dyn neuromodulates VTADA neuronal activity via peptide release and if the effects of optically driven LHox/dyn release segregate based on VTADA projection targets including the basolateral amygdala (BLA) or the lateral or medial shell of the nucleus accumbens (lAcbSh, mAchSh). Using a combination of circuit tracing, optogenetics, and patch-clamp electrophysiology in male and female orexincre mice, we showed a diverse response of LHox/dyn optical stimulation on VTADA neuronal firing, which is not mediated by fast transmitter release and is blocked by antagonists to KOR and Ox1R signaling. Additionally, where optical stimulation of LHox/dyn inputs in the VTA inhibited firing of the majority of BLA-projecting VTADA neurons, optical stimulation of LHox/dyn inputs in the VTA bidirectionally affects firing of either lAcbSh- or mAchSh-projecting VTADA neurons. These findings indicate that LHox/dyn corelease may influence the output of the VTA by balancing ensembles of neurons within each population which contribute to different aspects of reward seeking.
Assuntos
Neurônios Dopaminérgicos , Dinorfinas , Orexinas , Área Tegmentar Ventral , Animais , Orexinas/metabolismo , Orexinas/farmacologia , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/fisiologia , Dinorfinas/metabolismo , Dinorfinas/farmacologia , Camundongos , Neurônios Dopaminérgicos/fisiologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Feminino , Vias Neurais/fisiologia , Vias Neurais/efeitos dos fármacos , Região Hipotalâmica Lateral/fisiologia , Região Hipotalâmica Lateral/efeitos dos fármacos , Camundongos Transgênicos , Optogenética , Receptores de Orexina/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/fisiologiaRESUMO
Neurons co-expressing kisspeptin, neurokinin B, and dynorphin A (KNDy neurons), located in the arcuate nucleus (ARC) of the hypothalamus, are indicated to be the gonadotropin-releasing hormone (GnRH) pulse generator. Dynorphin A is reported to suppress GnRH pulse generator activity. Nalfurafine is a selective agonist of the κ-opioid receptor (KOR), a receptor for dynorphin A, clinically used as an anti-pruritic drug. This study aimed to evaluate the effects of nalfurafine on GnRH pulse generator activity and luteinizing hormone (LH) pulses using female goats. Nalfurafine (0, 2, 4, 8, or 16 µg/head) was intravenously injected into ovariectomized Shiba goats. The multiple unit activity (MUA) in the ARC area was recorded, and plasma LH concentrations were measured 2 and 48 h before and after injection, respectively. The MUA volley interval during 0-2 h after injection was significantly increased in the nalfurafine 8 and 16 µg groups compared with the vehicle group. In 0-2 h after injection, the number of LH pulses was significantly decreased in the nalfurafine 8 and 16 µg groups, and the mean and baseline LH were significantly decreased in all nalfurafine-treated groups (2, 4, 8, and 16 µg) compared with the vehicle group. These results suggest that nalfurafine inhibits the activity of the GnRH pulse generator in the ARC, thus suppressing pulsatile LH secretion. Therefore, nalfurafine could be used as a reproductive inhibitor in mammals.
Assuntos
Núcleo Arqueado do Hipotálamo , Cabras , Hormônio Liberador de Gonadotropina , Morfinanos , Receptores Opioides kappa , Compostos de Espiro , Animais , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/metabolismo , Feminino , Compostos de Espiro/farmacologia , Compostos de Espiro/administração & dosagem , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/agonistas , Morfinanos/farmacologia , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Hormônio Luteinizante/sangue , Hormônio Luteinizante/metabolismo , Kisspeptinas/metabolismo , Dinorfinas/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurocinina B/metabolismoRESUMO
Neuropeptides are ubiquitous in the nervous system. Research into neuropeptides has been limited by a lack of experimental tools that allow for the precise dissection of their complex and diverse dynamics in a circuit-specific manner. Opioid peptides modulate pain, reward and aversion and as such have high clinical relevance. To illuminate the spatiotemporal dynamics of endogenous opioid signaling in the brain, we developed a class of genetically encoded fluorescence sensors based on kappa, delta and mu opioid receptors: κLight, δLight and µLight, respectively. We characterized the pharmacological profiles of these sensors in mammalian cells and in dissociated neurons. We used κLight to identify electrical stimulation parameters that trigger endogenous opioid release and the spatiotemporal scale of dynorphin volume transmission in brain slices. Using in vivo fiber photometry in mice, we demonstrated the utility of these sensors in detecting optogenetically driven opioid release and observed differential opioid release dynamics in response to fearful and rewarding conditions.
Assuntos
Técnicas Biossensoriais , Optogenética , Animais , Técnicas Biossensoriais/métodos , Camundongos , Optogenética/métodos , Neurônios/metabolismo , Humanos , Dinorfinas/metabolismo , Dinorfinas/genética , Masculino , Peptídeos Opioides/metabolismo , Peptídeos Opioides/genética , Células HEK293 , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Neuropeptídeos/metabolismo , Neuropeptídeos/genética , Receptores Opioides/metabolismo , Receptores Opioides/genética , Estimulação Elétrica , RecompensaRESUMO
Kappa opioid receptor (KOR) antagonists have potential therapeutic applications in the treatment of stress-induced relapse to substance abuse and mood disorders. The dynorphin A analog arodyn (Ac[Phe1,2,3,Arg4,D-Ala8]dynorphin A-(1-11)-NH2) exhibits potent and selective kappa opioid receptor antagonism. Multiple cyclizations in longer peptides, such as dynorphin and its analogs, can extend the conformational constraint to additional regions of the peptide beyond what is typically constrained by a single cyclization. Here, we report the design, synthesis, and pharmacological evaluation of a bicyclic arodyn analog with two constraints in the opioid peptide sequence. The peptide, designed based on structure-activity relationships of monocyclic arodyn analogs, was synthesized by solid-phase peptide synthesis and cyclized by sequential ring-closing metathesis (RCM) in the C- and N-terminal sequences. Molecular modeling studies suggest similar interactions of key aromatic and basic residues in the bicyclic peptide with KOR as found in the cryoEM structure of KOR-bound dynorphin, despite substantial differences in the backbone conformations of the two peptides. The bicyclic peptide's affinities at KOR and mu opioid receptors (MOR) were determined in radioligand binding assays, and its KOR antagonism was determined in the [35S]GTPγS assay in KOR-expressing cells. The bicyclic analog retains KOR affinity and selectivity (Ki = 26 nM, 97-fold selectivity over MOR) similar to arodyn and exhibits potent KOR antagonism in the dynorphin-stimulated [35S]GTPγS assay. This bicyclic peptide represents a promising advance in preparing cyclic opioid peptide ligands and opens avenues for the rational design of additional bicyclic opioid peptide analogs.
Assuntos
Dinorfinas , Receptores Opioides kappa , Receptores Opioides kappa/antagonistas & inibidores , Receptores Opioides kappa/metabolismo , Dinorfinas/química , Dinorfinas/farmacologia , Humanos , Animais , Relação Estrutura-Atividade , Modelos Moleculares , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/síntese química , Sequência de AminoácidosRESUMO
The pulsatile activity of gonadotropin-releasing hormone neurons (GnRH neurons) is a key factor in the regulation of reproductive hormones. This pulsatility is orchestrated by a network of neurons that release the neurotransmitters kisspeptin, neurokinin B, and dynorphin (KNDy neurons), and produce episodic bursts of activity driving the GnRH neurons. We show in this computational study that the features of coordinated KNDy neuron activity can be explained by a neural network in which connectivity among neurons is modular. That is, a network structure consisting of clusters of highly-connected neurons with sparse coupling among the clusters. This modular structure, with distinct parameters for intracluster and intercluster coupling, also yields predictions for the differential effects on synchronization of changes in the coupling strength within clusters versus between clusters.
Assuntos
Dinorfinas , Hormônio Liberador de Gonadotropina , Modelos Neurológicos , Rede Nervosa , Neurônios , Neurônios/fisiologia , Rede Nervosa/fisiologia , Animais , Dinorfinas/metabolismo , Dinorfinas/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Kisspeptinas/fisiologia , Neurocinina B/metabolismo , Neurocinina B/fisiologia , Biologia Computacional , Potenciais de Ação/fisiologia , Simulação por Computador , HumanosRESUMO
Mild traumatic brain injury (mTBI) increases the risk of affective disorders, anxiety and substance use disorder. The lateral habenula (LHb) plays an important role in pathophysiology of psychiatric disorders. Recently, we demonstrated a causal link between mTBI-induced LHb hyperactivity due to excitation/inhibition (E/I) imbalance and motivational deficits in male mice using a repetitive closed head injury mTBI model. A major neuromodulatory system that is responsive to traumatic brain injuries, influences affective states and also modulates LHb activity is the dynorphin/kappa opioid receptor (Dyn/KOR) system. However, the effects of mTBI on KOR neuromodulation of LHb function are unknown. Here, we first used retrograde tracing in male and female Cre mouse lines and identified several major KOR-expressing and two prominent Dyn-expressing inputs projecting to the mouse LHb, highlighting the medial prefrontal cortex (mPFC) and the ventromedial nucleus of the hypothalamus (VMH) as the main LHb-projecting Dyn inputs that regulate KOR signaling to the LHb. We then functionally evaluated the effects of in vitro KOR modulation of spontaneous synaptic activity within the LHb of male and female sham and mTBI mice at 4 week post-injury. We observed sex-specific differences in spontaneous release of glutamate and GABA from presynaptic terminals onto LHb neurons with higher levels of presynaptic glutamate and GABA release in females compared to male mice. However, KOR effects on the spontaneous E/I ratios and synaptic drive ratio within the LHb did not differ between male and female sham and mTBI mice. KOR activation generally suppressed spontaneous glutamatergic transmission without altering GABAergic transmission, resulting in a significant but sex-similar reduction in net spontaneous E/I and synaptic drive ratios in LHb neurons of sham mice. Following mTBI, while responses to KOR activation at LHb glutamatergic synapses remained intact, LHb GABAergic synapses acquired an additional sensitivity to KOR-mediated inhibition where we observed a reduction in GABA release probability in response to KOR stimulation in LHb neurons of mTBI mice. Further analysis of percent change in spontaneous synaptic ratios induced by KOR activation revealed that independent of sex mTBI switches KOR-driven synaptic inhibition of LHb neurons (normally observed in sham mice) in a subset of mTBI mice toward synaptic excitation resulting in mTBI-induced divergence of KOR actions within the LHb. Overall, we uncovered the sources of major Dyn/KOR-expressing synaptic inputs projecting to the mouse LHb. We demonstrate that an engagement of intra-LHb Dyn/KOR signaling provides a global KOR-driven synaptic inhibition within the mouse LHb independent of sex. The additional engagement of KOR-mediated action on LHb GABAergic transmission by mTBI could contribute to the E/I imbalance after mTBI, with Dyn/KOR signaling serving as a disinhibitory mechanism for LHb neurons of a subset of mTBI mice.
Assuntos
Concussão Encefálica , Habenula , Receptores Opioides kappa , Animais , Masculino , Receptores Opioides kappa/metabolismo , Feminino , Camundongos , Habenula/metabolismo , Concussão Encefálica/metabolismo , Concussão Encefálica/fisiopatologia , Sinapses/metabolismo , Dinorfinas/metabolismo , Ácido Glutâmico/metabolismo , Transmissão Sináptica , Camundongos Endogâmicos C57BLRESUMO
While early-life adversity has been associated with a higher risk of developing chronic pain in adulthood, the cellular and molecular mechanisms by which chronic stress during the neonatal period can persistently sensitize developing nociceptive circuits remain poorly understood. Here, we investigate the effects of early-life stress (ELS) on synaptic integration and intrinsic excitability in dynorphin-lineage (DYN) interneurons within the adult mouse superficial dorsal horn (SDH), which are important for inhibiting mechanical pain and itch. The administration of neonatal limited bedding between postnatal days (P)2 and P9 evoked sex-dependent effects on spontaneous glutamatergic signaling, as female SDH neurons exhibited a higher amplitude of miniature excitatory postsynaptic currents (mEPSCs) after ELS, while mEPSC frequency was reduced in DYN neurons of the male SDH. Furthermore, ELS decreased the frequency of miniature inhibitory postsynaptic currents selectively in female DYN neurons. As a result, ELS increased the balance of spontaneous excitation versus inhibition (E:I ratio) in mature DYN neurons of the female, but not male, SDH network. Nonetheless, ELS weakened the total primary afferent-evoked glutamatergic drive onto adult DYN neurons selectively in females, without modifying afferent-evoked inhibitory signaling onto the DYN population. Finally, ELS failed to significantly change the intrinsic membrane excitability of mature DYN neurons in either males or females. Collectively, these data suggest that ELS exerts a long-term influence on the properties of synaptic transmission onto DYN neurons within the adult SDH, which includes a reduction in the overall strength of sensory input onto this important subset of inhibitory interneurons. PERSPECTIVE: This study suggests that chronic stress during the neonatal period influences synaptic function within adult spinal nociceptive circuits in a sex-dependent manner. These findings yield new insight into the potential mechanisms by which early-life adversity might shape the maturation of pain pathways in the central nervous system (CNS).
Assuntos
Dinorfinas , Potenciais Pós-Sinápticos Excitadores , Estresse Psicológico , Animais , Feminino , Dinorfinas/metabolismo , Camundongos , Masculino , Estresse Psicológico/fisiopatologia , Estresse Psicológico/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Células do Corno Posterior/fisiologia , Interneurônios/fisiologia , Animais Recém-Nascidos , Camundongos Endogâmicos C57BL , Caracteres Sexuais , Potenciais Pós-Sinápticos Inibidores/fisiologiaRESUMO
The function of endogenous opioids spans from initiating behaviors that are critical for survival, to responding to rapidly changing environmental conditions. A network of interconnected systems throughout the body characterizes the endogenous opioid system (EOS). EOS receptors for beta-endorphin, enkephalin, dynorphin, and endomorphin underpin the diverse functions of the EOS across biological systems. This chapter presents a succinct yet comprehensive summary of the structure of the EOS, EOS receptors, and their relationship to other biological systems.
Assuntos
Analgésicos Opioides , Receptores Opioides , Animais , Humanos , Analgésicos Opioides/metabolismo , beta-Endorfina/metabolismo , Dinorfinas/metabolismo , Encefalinas/metabolismo , Peptídeos Opioides/metabolismo , Receptores Opioides/metabolismoRESUMO
The dynamic suppression of threat-related behavior as a function of environmental constraint is critical for survival in mammals, yet the neurobiological underpinnings remain largely unknown. In this issue of Neuron, Wang et al.1 identified prefrontal dynorphin-expressing neurons as key elements for tracking threat-related behavioral states and regulating fear suppression.
Assuntos
Dinorfinas , Medo , Neurônios , Córtex Pré-Frontal , Dinorfinas/metabolismo , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiologia , Neurônios/metabolismo , Animais , Medo/fisiologiaRESUMO
The physiology of reproduction has been of interest to researchers for centuries. The purpose of this work is to review the development of our knowledge on the neuroendocrine background of the regulation of ovulation. We first describe the development of the pituitary gland, the structure of the median eminence (ME), the connection between the hypothalamus and the pituitary gland, the ovarian and pituitary hormones involved in ovulation, and the pituitary cell composition. We recall the pioneer physiological and morphological investigations that drove development forward. The description of the supraoptic-paraventricular magnocellular and tuberoinfundibular parvocellular systems and recognizing the role of the hypophysiotropic area were major milestones in understanding the anatomical and physiological basis of reproduction. The discovery of releasing and inhibiting hormones, the significance of pulse and surge generators, the pulsatile secretion of the gonadotropin-releasing hormone (GnRH), and the subsequent pulsatility of luteinizing (LH) and follicle-stimulating hormones (FSH) in the human reproductive physiology were truly transformative. The roles of three critical neuropeptides, kisspeptin (KP), neurokinin B (NKB), and dynorphin (Dy), were also identified. This review also touches on the endocrine background of human infertility and assisted fertilization.
Assuntos
Sistemas Neurossecretores , Ovulação , Humanos , Ovulação/fisiologia , Feminino , Sistemas Neurossecretores/fisiologia , Sistemas Neurossecretores/metabolismo , Animais , Hipófise/metabolismo , Kisspeptinas/metabolismo , Neurocinina B/metabolismo , Hormônio Luteinizante/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Dinorfinas/metabolismo , Hipotálamo/metabolismo , Hipotálamo/fisiologiaRESUMO
In the early 2000s, metastin, an endogenous ligand for G protein-coupled receptor 54 (GPR54), was discovered in human placental extracts. In 2003, GPR54 receptor mutations were found in a family with congenital hypogonadotropic hypogonadism. Metastin was subsequently renamed kisspeptin after its coding gene, Kiss1. Since then, studies in mice and other animals have revealed that kisspeptin is located at the apex of the hypothalamic-pituitary-gonadal axis and regulates reproductive functions by modulating gonadotropin-releasing hormone (GnRH). In rodents, kisspeptin (Kiss1) neurons localize to two regions, the hypothalamic arcuate nucleus (ARC) and the anteroventral periventricular nucleus (AVPV). ARC Kiss1 neurons co-express neurokinin B (NKB) and dynorphin and are thus termed KNDy neurons. Kiss1 neurons in humans are concentrated in the infundibular nucleus (equivalent to the ARC), with few Kiss1 neurons localized to the preoptic area (equivalent to the AVPV), and the mechanisms underlying GnRH surge secretion in humans are poorly understood. However, peripheral administration of kisspeptin to humans promotes gonadotropin secretion, and administration of kisspeptin to patients with hypothalamic amenorrhea or congenital hypogonadotropic hypogonadism restores the pulsatile secretion of GnRH/luteinizing hormone. Thus, kisspeptin undoubtedly plays an important role in reproductive function in humans. Studies are currently underway to develop kisspeptin receptor agonists or antagonists for clinical application. Modification of KNDy neurons by NKB agonists/antagonists is also being attempted to develop therapeutic agents for various menstrual abnormalities, including polycystic ovary syndrome and menopausal hot flashes. Here, we review the role of kisspeptin in humans and its clinical applications.
Assuntos
Núcleo Arqueado do Hipotálamo , Hormônio Liberador de Gonadotropina , Kisspeptinas , Neurônios , Humanos , Kisspeptinas/metabolismo , Kisspeptinas/genética , Kisspeptinas/fisiologia , Neurônios/metabolismo , Animais , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Saúde Reprodutiva , Neurocinina B/metabolismo , Neurocinina B/genética , Hipogonadismo/genética , Hipogonadismo/metabolismo , Receptores de Kisspeptina-1/genética , Receptores de Kisspeptina-1/metabolismo , Dinorfinas/metabolismo , Dinorfinas/genética , Reprodução/fisiologiaRESUMO
The dynorphin peptides are the endogenous ligands for the kappa opioid receptor (KOR) and regulate food intake. Administration of dynorphin-A1-13 (DYN) in the paraventricular hypothalamic nucleus (PVN) increases palatable food intake, and this effect is blocked by co-administration of the orexin-A neuropeptide, which is co-released with DYN in PVN from neurons located in the lateral hypothalamus. While PVN administration of DYN increases palatable food intake, whether it increases food-seeking behaviors has yet to be examined. We tested the effects of DYN and norBNI (a KOR antagonist) on the seeking and consumption of sucrose using a progressive ratio (PR) and demand curve (DC) tasks. In PVN, DYN did not alter the sucrose breaking point (BP) in the PR task nor the elasticity or intensity of demand for sucrose in the DC task. Still, DYN reduced the delay in obtaining sucrose and increased licks during sucrose intake in the PR task, irrespective of the co-administration of orexin-A. In PVN, norBNI increased the delay in obtaining sucrose and reduced licks during sucrose intake in the PR task while increasing elasticity without altering intensity of demand in the DC task. However, subcutaneous norBNI reduced the BP for sucrose and increased the delay in obtaining sucrose in the PR task while reducing the elasticity of demand. Together, these data show different effects of systemic and PVN blockade of KOR on food-seeking, consummatory behaviors, and incentive motivation for sucrose and suggest that KOR activity in PVN is necessary but not sufficient to drive seeking behaviors for palatable food.
Assuntos
Dinorfinas , Motivação , Núcleo Hipotalâmico Paraventricular , Receptores Opioides kappa , Receptores Opioides kappa/metabolismo , Dinorfinas/farmacologia , Dinorfinas/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Animais , Masculino , Motivação/efeitos dos fármacos , Orexinas , Ratos , Ratos Sprague-Dawley , Naltrexona/farmacologia , Naltrexona/análogos & derivados , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Ingestão de Alimentos/psicologia , Sacarose , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/psicologia , Antagonistas de Entorpecentes/farmacologiaRESUMO
The kappa opioid receptor (KOR) system is implicated in dysphoria and as an "anti-reward system" during withdrawal from opioids. However, no clear consensus has been made in the field, as mixed findings have been reported regarding the relationship between the KOR system and opioid use. This review summarizes the studies to date on the KOR system and opioids. A systematic scoping review was reported following PRISMA guidelines and conducted based on the published protocol. Comprehensive searches of several databases were done in the following databases: MEDLINE, Embase, PsycINFO, Web of Science, Scopus, and Cochrane. We included preclinical and clinical studies that tested the administration of KOR agonists/antagonists or dynorphin and/or measured dynorphin levels or KOR expression during opioid intoxication or withdrawal from opioids. One hundred studies were included in the final analysis. Preclinical administration of KOR agonists decreased drug-seeking/taking behaviors and opioid withdrawal symptoms. KOR antagonists showed mixed findings, depending on the agent and/or type of withdrawal symptom. Administration of dynorphins attenuated opioid withdrawal symptoms both in preclinical and clinical studies. In the limited number of available studies, dynorphin levels were found to increase in cerebrospinal fluid (CSF) and peripheral blood lymphocytes (PBL) of opioid use disorder subjects (OUD). In animals, dynorphin levels and/or KOR expression showed mixed findings during opioid use. The KOR/dynorphin system appears to have a multifaceted and complex nature rather than simply functioning as an anti-reward system. Future research in well-controlled study settings is necessary to better understand the clinical role of the KOR system in opioid use.
Assuntos
Receptores Opioides kappa , Receptores Opioides kappa/metabolismo , Receptores Opioides kappa/agonistas , Humanos , Animais , Transtornos Relacionados ao Uso de Opioides/metabolismo , Analgésicos Opioides/farmacologia , Dinorfinas/metabolismo , Síndrome de Abstinência a Substâncias/metabolismoRESUMO
Prefrontal cortical (PFC) circuits provide top-down control of threat reactivity. This includes ventromedial PFC (vmPFC) circuitry, which plays a role in suppressing fear-related behavioral states. Dynorphin (Dyn) has been implicated in mediating negative affect and maladaptive behaviors induced by severe threats and is expressed in limbic circuits, including the vmPFC. However, there is a critical knowledge gap in our understanding of how vmPFC Dyn-expressing neurons and Dyn transmission detect threats and regulate expression of defensive behaviors. Here, we demonstrate that Dyn cells are broadly activated by threats and release Dyn locally in the vmPFC to limit passive defensive behaviors. We further demonstrate that vmPFC Dyn-mediated signaling promotes a switch of vmPFC networks to a fear-related state. In conclusion, we reveal a previously unknown role of vmPFC Dyn neurons and Dyn neuropeptidergic transmission in suppressing defensive behaviors in response to threats via state-driven changes in vmPFC networks.
Assuntos
Dinorfinas , Medo , Neurônios , Córtex Pré-Frontal , Animais , Dinorfinas/metabolismo , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/metabolismo , Medo/fisiologia , Camundongos , Masculino , Neurônios/fisiologia , Neurônios/metabolismo , Comportamento Animal/fisiologia , Rede Nervosa/fisiologia , Rede Nervosa/metabolismo , Camundongos Endogâmicos C57BLRESUMO
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder affecting 5-20% of reproductive-age women. However, the treatment of PCOS is mainly based on symptoms and not on its pathophysiology. Neuroendocrine disturbance, as shown by an elevated LH/FSH ratio in PCOS patients, was thought to be the central mechanism of the syndrome, especially in lean PCOS. LH and FSH secretion are influenced by GnRH pulsatility of GnRH neurons in the hypothalamus. Kisspeptin is the main regulator of GnRH secretion, whereas neurokinin B (NKB) and dynorphin regulate kisspeptin secretion in KNDy neurons. This study aims to deepen the understanding of the neuroendocrine disorder in lean PCOS patients and its potential pathophysiology-based therapy. A cross-sectional study was performed at Dr. Cipto Mangunkusumo Kencana Hospital and the IMERI UI HRIFP cluster with 110 lean PCOS patients as subjects. LH, FSH, LH/FSH ratio, kisspeptin, NKB, dynorphin, leptin, adiponectin, AMH, fasting blood glucose, fasting insulin, HOMA-IR, testosterone, and SHBG were measured. Bivariate and path analyses were performed to determine the relationship between variables. There was a negative association between dynorphin and kisspeptin, while NKB levels were not associated with kisspeptin. There was no direct association between kisspeptin and the LH/FSH ratio; interestingly, dynorphin was positively associated with the LH/FSH ratio in both bivariate and pathway analyses. AMH was positively correlated with the LH/FSH ratio in both analyses. Path analysis showed an association between dynorphin and kisspeptin levels in lean PCOS, while NKB was not correlated with kisspeptin. Furthermore, there was a correlation between AMH and the LH/FSH ratio, but kisspeptin levels did not show a direct significant relationship with the LH/FSH ratio. HOMA-IR was negatively associated with adiponectin levels and positively associated with leptin and FAI levels. In conclusion, AMH positively correlates with FAI levels and is directly associated with the LH/FSH ratio, showing its important role in neuroendocrinology in lean PCOS. From the path analysis, AMH was also an intermediary variable between HOMA-IR and FAI with the LH/FSH ratio. Interestingly, this study found a direct positive correlation between dynorphin and the LH/FSH ratio, while no association between kisspeptin and the LH/FSH ratio was found. Further research is needed to investigate AMH and dynorphin as potential therapeutic targets in the management of lean PCOS patients.
Assuntos
Hormônio Luteinizante , Síndrome do Ovário Policístico , Feminino , Humanos , Dinorfinas/metabolismo , Leptina , Kisspeptinas/metabolismo , Estudos Transversais , Adiponectina , Neurocinina B/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio FoliculoestimulanteRESUMO
Dynorphin is an endogenous opiate localized in many brain regions and spinal cord, but the activity of dynorphin neurons during sleep is unknown. Dynorphin is an inhibitory neuropeptide that is coreleased with orexin, an excitatory neuropeptide. We used microendoscopy to test the hypothesis that, like orexin, the dynorphin neurons are wake-active. Dynorphin-cre mice (nâ =â 3) were administered rAAV8-Ef1a-Con/Foff 2.0-GCaMP6M into the zona incerta-perifornical area, implanted with a GRIN lens (gradient reflective index), and electrodes to the skull that recorded sleep. One month later, a miniscope imaged calcium fluorescence in dynorphin neurons during multiple bouts of wake, non-rapid-eye movement (NREM), and rapid-eye movement (REM) sleep. Unbiased data analysis identified changes in calcium fluorescence in 64 dynorphin neurons. Most of the dynorphin neurons (72%) had the highest fluorescence during bouts of active and quiet waking compared to NREM or REM sleep; a subset (20%) were REM-max. Our results are consistent with the emerging evidence that the activity of orexin neurons can be classified as wake-max or REM-max. Since the two neuropeptides are coexpressed and coreleased, we suggest that dynorphin-cre-driven calcium sensors could increase understanding of the role of this endogenous opiate in pain and sleep.
Assuntos
Dinorfinas , Neurônios , Sono REM , Vigília , Zona Incerta , Animais , Camundongos , Dinorfinas/metabolismo , Dinorfinas/fisiologia , Neurônios/fisiologia , Orexinas/metabolismo , Orexinas/fisiologia , Sono REM/fisiologia , Vigília/fisiologia , Zona Incerta/fisiologia , Zona Incerta/fisiopatologiaRESUMO
Alcohol use disorder (AUD) remains a major public health concern. The dynorphin (DYN)/κ-opioid receptor (KOP) system is involved in actions of alcohol, particularly its withdrawal-associated negative affective states. This study tested the ability of LY2444296, a selective, short-acting, KOP antagonist, to decrease alcohol self-administration in dependent male and female Wistar rats at 8 h abstinence. Animals were trained to orally self-administer 10% alcohol (30 min/day for 21 sessions) and were made dependent via chronic intermittent alcohol vapor exposure for 6 weeks or exposed to air (nondependent). After 6 weeks, the effect of LY2444296 (0, 3, and 10 mg/kg, p.o.) was tested on alcohol self-administration at 8 h of abstinence. A separate cohort of rats was prepared in parallel, and their somatic withdrawal signs and alcohol self-administration were measured after LY2444296 administration at 8 h, 2 weeks, and 4 weeks abstinence. LY2444296 at 3 and 10 mg/kg significantly reduced physical signs of withdrawal in dependent rats at 8 h abstinence, only. Furthermore, 3 and 10 mg/kg selectively decreased alcohol self-administration in dependent rats at only 8 h abstinence. These results highlight the DYN/KOP system in actions of alcohol during acute abstinence, suggesting KOP antagonism could be beneficial for mitigating acute withdrawal signs and, in turn, significantly reduce excessive alcohol consumption associated with AUD.