Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 919
Filtrar
1.
Molecules ; 29(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38999061

RESUMO

Kappa opioid receptor (KOR) antagonists have potential therapeutic applications in the treatment of stress-induced relapse to substance abuse and mood disorders. The dynorphin A analog arodyn (Ac[Phe1,2,3,Arg4,D-Ala8]dynorphin A-(1-11)-NH2) exhibits potent and selective kappa opioid receptor antagonism. Multiple cyclizations in longer peptides, such as dynorphin and its analogs, can extend the conformational constraint to additional regions of the peptide beyond what is typically constrained by a single cyclization. Here, we report the design, synthesis, and pharmacological evaluation of a bicyclic arodyn analog with two constraints in the opioid peptide sequence. The peptide, designed based on structure-activity relationships of monocyclic arodyn analogs, was synthesized by solid-phase peptide synthesis and cyclized by sequential ring-closing metathesis (RCM) in the C- and N-terminal sequences. Molecular modeling studies suggest similar interactions of key aromatic and basic residues in the bicyclic peptide with KOR as found in the cryoEM structure of KOR-bound dynorphin, despite substantial differences in the backbone conformations of the two peptides. The bicyclic peptide's affinities at KOR and mu opioid receptors (MOR) were determined in radioligand binding assays, and its KOR antagonism was determined in the [35S]GTPγS assay in KOR-expressing cells. The bicyclic analog retains KOR affinity and selectivity (Ki = 26 nM, 97-fold selectivity over MOR) similar to arodyn and exhibits potent KOR antagonism in the dynorphin-stimulated [35S]GTPγS assay. This bicyclic peptide represents a promising advance in preparing cyclic opioid peptide ligands and opens avenues for the rational design of additional bicyclic opioid peptide analogs.


Assuntos
Dinorfinas , Receptores Opioides kappa , Receptores Opioides kappa/antagonistas & inibidores , Receptores Opioides kappa/metabolismo , Dinorfinas/química , Dinorfinas/farmacologia , Humanos , Animais , Relação Estrutura-Atividade , Modelos Moleculares , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/síntese química , Sequência de Aminoácidos
2.
Appetite ; 200: 107504, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38768926

RESUMO

The dynorphin peptides are the endogenous ligands for the kappa opioid receptor (KOR) and regulate food intake. Administration of dynorphin-A1-13 (DYN) in the paraventricular hypothalamic nucleus (PVN) increases palatable food intake, and this effect is blocked by co-administration of the orexin-A neuropeptide, which is co-released with DYN in PVN from neurons located in the lateral hypothalamus. While PVN administration of DYN increases palatable food intake, whether it increases food-seeking behaviors has yet to be examined. We tested the effects of DYN and norBNI (a KOR antagonist) on the seeking and consumption of sucrose using a progressive ratio (PR) and demand curve (DC) tasks. In PVN, DYN did not alter the sucrose breaking point (BP) in the PR task nor the elasticity or intensity of demand for sucrose in the DC task. Still, DYN reduced the delay in obtaining sucrose and increased licks during sucrose intake in the PR task, irrespective of the co-administration of orexin-A. In PVN, norBNI increased the delay in obtaining sucrose and reduced licks during sucrose intake in the PR task while increasing elasticity without altering intensity of demand in the DC task. However, subcutaneous norBNI reduced the BP for sucrose and increased the delay in obtaining sucrose in the PR task while reducing the elasticity of demand. Together, these data show different effects of systemic and PVN blockade of KOR on food-seeking, consummatory behaviors, and incentive motivation for sucrose and suggest that KOR activity in PVN is necessary but not sufficient to drive seeking behaviors for palatable food.


Assuntos
Dinorfinas , Motivação , Núcleo Hipotalâmico Paraventricular , Receptores Opioides kappa , Receptores Opioides kappa/metabolismo , Dinorfinas/farmacologia , Dinorfinas/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Animais , Masculino , Motivação/efeitos dos fármacos , Orexinas , Ratos , Ratos Sprague-Dawley , Naltrexona/farmacologia , Naltrexona/análogos & derivados , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Ingestão de Alimentos/psicologia , Sacarose , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/psicologia , Antagonistas de Entorpecentes/farmacologia
3.
Biol Reprod ; 110(2): 275-287, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-37930247

RESUMO

The timing of puberty onset is reliant on increased gonadotropin-releasing hormone (GnRH). This elicits a corresponding increase in luteinizing hormone (LH) due to a lessening of sensitivity to the inhibitory actions of estradiol (E2). The mechanisms underlying the increase in GnRH release likely involve a subset of neurons within the arcuate (ARC) nucleus of the hypothalamus that contain kisspeptin, neurokinin B (NKB), and dynorphin (KNDy neurons). We aimed to determine if KNDy neurons in female sheep are critical for: timely puberty onset; the LH surge; and the response to an intravenous injection of the neurokinin-3 receptor (NK3R) agonist, senktide. Prepubertal ewes received injections aimed at the ARC containing blank-saporin (control, n = 5) or NK3-saporin (NK3-SAP, n = 6) to ablate neurons expressing NK3R. Blood samples taken 3/week for 65 days following surgery were assessed for progesterone to determine onset of puberty. Control ewes exhibited onset of puberty at 33.2 ± 3.9 days post sampling initiation, whereas 5/6 NK3-SAP treated ewes didn't display an increase in progesterone. After an artificial LH surge protocol, surge amplitude was lower in NK3-SAP ewes. Finally, ewes were treated with senktide to determine if an LH response was elicited. LH pulses were evident in both groups in the absence of injections, but the response to senktide vs saline was similar between groups. These results show that KNDy cells are necessary for timely puberty onset and for full expresson of the LH surge. The occurrence of LH pulses in NK3-SAP treated ewes may indicate a recovery from an apulsatile state.


Assuntos
Núcleo Arqueado do Hipotálamo , Hormônio Luteinizante , Fragmentos de Peptídeos , Substância P/análogos & derivados , Feminino , Animais , Ovinos , Hormônio Luteinizante/farmacologia , Núcleo Arqueado do Hipotálamo/metabolismo , Saporinas/farmacologia , Progesterona/farmacologia , Hormônio Liberador de Gonadotropina/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo , Neurocinina B/metabolismo , Dinorfinas/farmacologia , Dinorfinas/metabolismo , Kisspeptinas/metabolismo
4.
Bioelectrochemistry ; 154: 108527, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37531663

RESUMO

Dynorphin A (DynA) is an endogenous neuropeptide that besides acting as a ligand of the κ-opioid receptor, presents some non-opioid pathophysiological properties associated to its ability to induce cell permeability similarly to cell-penetrating peptides (CPPs). Here, we use electrophysiology experiments to show that amphiphilic DynA generates aqueous pores in neutral membranes similar to those reported previously in charged membranes, but we also find other events thermodynamically incompatible with voltage-driven ion channel activity (i.e. non-zero currents with no applied voltage in symmetric salt conditions, reversal potentials that exceed the theoretical limit for a given salt concentration gradient). By comparison with current traces generated by other amphiphilic molecule known to spontaneously cross membranes, we hypothesize that DynA could directly translocate across neutral bilayers, a feature never observed in charged membranes following the same electrophysiological protocol. Our findings suggest that DynA interaction with the cellular membrane is modulated by the lipid charge distribution, enabling either passive ionic transport via membrane remodeling and pore formation or by peptide direct internalization independent of cellular transduction pathways.


Assuntos
Dinorfinas , Bicamadas Lipídicas , Bicamadas Lipídicas/química , Dinorfinas/farmacologia , Dinorfinas/análise , Dinorfinas/química , Membrana Celular/metabolismo , Peptídeos/química , Canais Iônicos/metabolismo
5.
Future Med Chem ; 15(9): 791-808, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37227702

RESUMO

It is well established that endogenously produced dynorphin 1-17 (DYN 1-17) is susceptible to enzymatic degradation, producing a variety of unique fragments in different tissue matrices and disease pathologies. DYN 1-17 and its major biotransformation fragments have significant roles in neurological and inflammatory disorders upon interacting with opioid and non-opioid receptors at both central and peripheral levels, thus highlighting their potential as drug candidates. Nevertheless, their development as promising therapeutics is challenged by several issues. This review aims to provide the latest and comprehensive updates on DYN 1-17 biotransformed peptides, including their pharmacological roles, pharmacokinetic studies and relevant clinical trials. Challenges in their development as potential therapeutics and proposed solutions to overcome these limitations are also discussed.


This is a summary of published articles on the important roles of dynorphin 1-17 and its fragments in several disease pathologies, including neurological and inflammatory disorders. Dynorphin 1-17, which consists of 17 amino acids, is a substance produced in the human body that is easily degraded by the body's enzymes, producing a shorter chain of amino acids. For the past few decades, researchers have attempted to utilize these substances to treat the above-mentioned conditions. However, upon introduction, these substances are rapidly degraded by the enzymes, which hinder the molecules from reaching the site of action. Therefore, many studies have focused on addressing the degradation issue in order to benefit from the important role of dynorphin 1-17 and its fragments in treating respective diseases. Previous researchers have attempted structural modification of these substances by either changing the terminals of the amino acid chains or attaching them to other agents to increase the resistance of dynorphin 1-17 and its fragments toward enzymatic breakage. These substances were also incorporated into nano-sized delivery systems, which have been shown to protect the molecules while improving their delivery to different parts of the body. These results showed that the structurally modified dynorphin 1-17 and its fragments and their nano-sized delivery system could improve the stability of the molecules and allow them to be used to treat many conditions.


Assuntos
Dinorfinas , Peptídeos , Dinorfinas/farmacologia , Dinorfinas/metabolismo , Peptídeos/farmacologia , Peptídeos/metabolismo , Analgésicos Opioides , Biotransformação , Fragmentos de Peptídeos/metabolismo
6.
Neurosci Res ; 188: 75-87, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36368461

RESUMO

Panax notoginseng (Chinese ginseng, Sanqi), one of the major ginseng species, has been traditionally used to alleviate different types of chronic pain. The raw P. notoginseng powder is commonly available in China as a non-prescription drug to treat various aliments including arthritic pain. However, strong scientific evidence is needed to illustrate its pain antihypersensitive effects, effective ingredients and mechanism of action. The oral P. notoginseng powder dose-dependently alleviated formalin-induced tonic hyperalgesia, and its total ginsenosides remarkably inhibited neuropathic pain hypersensitivity. Ginsenoside Rb1, the most abundant ginsenoside of P. notoginseng, dose-dependently produced neuropathic pain antihypersensitivity. Conversely, ginsenosides Rg1, Re and notoginseng R1, the other major saponins from P. notoginseng, failed to inhibit formalin-induced tonic pain or mechanical allodynia in neuropathic pain. Ginsenoside Rb1 metabolites ginsenosides Rg3, Compound-K and protopanaxadiol also had similar antineuropathic pain efficacy to ginsenoside Rb1. Additionally, intrathecal ginsenoside Rb1 specifically stimulated dynorphin A expression which was colocalized with microglia but not neurons or astrocytes in the spinal dorsal horn and primary cultured cells. Pretreatment with microglial metabolic inhibitor minocycline, dynorphin A antiserum and specific κ-opioid receptor antagonist GNTI completely blocked Rb1-induced mechanical antiallodynia in neuropathic pain. Furthermore, the specific glucocorticoid receptor (GR) antagonist Dex-21-mesylate (but not GPR30 estrogen receptor antagonist G15) also entirely attenuated ginsenoside Rb1-related antineuropathic pain effects. All these results, for the first time, show that P. notoginseng alleviates neuropathic pain and ginsenoside Rb1 is its principal effective ingredient. Furthermore, ginsenoside Rb1 inhibits neuropathic pain by stimulation of spinal microglial dynorphin A expression following GR activation.


Assuntos
Ginsenosídeos , Neuralgia , Panax notoginseng , Ginsenosídeos/metabolismo , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Dinorfinas/metabolismo , Dinorfinas/farmacologia , Dinorfinas/uso terapêutico , Panax notoginseng/metabolismo , Microglia/metabolismo , Pós/metabolismo , Pós/farmacologia , Pós/uso terapêutico , Hiperalgesia/metabolismo , Neuralgia/tratamento farmacológico
7.
BMC Neurosci ; 23(1): 58, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36217122

RESUMO

BACKGROUND: Opioids are among the most effective and commonly prescribed analgesics for the treatment of acute pain after spinal cord injury (SCI). However, morphine administration in the early phase of SCI undermines locomotor recovery, increases cell death, and decreases overall health in a rodent contusion model. Based on our previous studies we hypothesize that morphine acts on classic opioid receptors to alter the immune response. Indeed, we found that a single dose of intrathecal morphine increases the expression of activated microglia and macrophages at the injury site. Whether similar effects of morphine would be seen with repeated intravenous administration, more closely simulating clinical treatment, is not known. METHODS: To address this, we used flow cytometry to examine changes in the temporal expression of microglia and macrophages after SCI and intravenous morphine. Next, we explored whether morphine changed the function of these cells through the engagement of cell-signaling pathways linked to neurotoxicity using Western blot analysis. RESULTS: Our flow cytometry studies showed that 3 consecutive days of morphine administration after an SCI significantly increased the number of microglia and macrophages around the lesion. Using Western blot analysis, we also found that repeated administration of morphine increases ß-arrestin, ERK-1 and dynorphin (an endogenous kappa opioid receptor agonist) production by microglia and macrophages. CONCLUSIONS: These results suggest that morphine administered immediately after an SCI changes the innate immune response by increasing the number of immune cells and altering neuropeptide synthesis by these cells.


Assuntos
Morfina , Traumatismos da Medula Espinal , Analgésicos/farmacologia , Analgésicos Opioides/farmacologia , Animais , Dinorfinas/metabolismo , Dinorfinas/farmacologia , Dinorfinas/uso terapêutico , Macrófagos , Microglia/patologia , Morfina/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Opioides kappa/metabolismo , Receptores Opioides kappa/uso terapêutico , Recuperação de Função Fisiológica , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , beta-Arrestinas/metabolismo , beta-Arrestinas/farmacologia , beta-Arrestinas/uso terapêutico
8.
J Physiol ; 600(22): 4897-4916, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36156249

RESUMO

Excitatory inputs drive burst firing of locus coeruleus (LC) noradrenaline (NA) neurons in response to a variety of stimuli. Though a small number of glutamatergic LC afferents have been investigated, the overall landscape of these excitatory inputs is largely unknown. The current study used an optogenetic approach to isolate three glutamatergic afferents: the prefrontal cortex (PFC), lateral hypothalamus (LH) and periaqueductal grey (PAG). AAV5-DIO-ChR2 was injected into each region in male and female CaMKII-Cre mice and the properties of excitatory inputs on LC-NA cells were measured. Notably we found differences among these inputs. First, the pattern of axonal innervation differed between inputs such that LH afferents were concentrated in the posterior portion of the LC-NA somatic region while PFC afferents were denser in the medial dendritic region. Second, basal intrinsic properties varied for afferents, with LH inputs having the highest connectivity and the largest amplitude excitatory postsynaptic currents while PAG inputs had the lowest initial release probability. Third, while orexin and oxytocin had minimal effects on any input, dynorphin strongly inhibited excitatory inputs originating from the LH and PAG, and corticotrophin releasing factor (CRF) selectively inhibited inputs from the PAG. Overall, these results demonstrate that individual afferents to the LC have differing properties, which may contribute to the modularity of the LC and its ability to mediate various behavioural outcomes. KEY POINTS: Excitatory inputs to the locus coeruleus (LC) are important for driving noradrenaline neuron activity and downstream behaviours in response to salient stimuli, but little is known about the functional properties of different glutamate inputs that innervate these neurons We used a virus-mediated optogenetic approach to compare glutamate afferents from the prefrontal cortex (PFC), the lateral hypothalamus (LH) and the periaqueductal grey (PAG). While PFC was predicted to make synaptic inputs, we found that the LH and PAG also drove robust excitatory events in LC noradrenaline neurons. The strength, kinetics, and short-term plasticity of each input differed as did the extent of neuromodulation by both dynorphin and corticotrophin releasing factor. Thus each input displayed a unique set of basal properties and modulation by peptides. This characterization is an important step in deciphering the heterogeneity of the LC.


Assuntos
Dinorfinas , Locus Cerúleo , Masculino , Feminino , Camundongos , Animais , Locus Cerúleo/metabolismo , Dinorfinas/farmacologia , Ácido Glutâmico/farmacologia , Hormônio Liberador da Corticotropina/metabolismo , Norepinefrina/farmacologia , Hormônio Adrenocorticotrópico
9.
Acta Physiol (Oxf) ; 236(3): e13882, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36039689

RESUMO

AIM: Endogenous dynorphin signaling via kappa opioid receptors (KORs) plays a key role in producing the depressive and aversive consequences of stress. We investigated the behavioral effects of the dynorphin/KOR system in the ventral pallidum (VP) and studied the underlying mechanisms. METHODS: To investigate the effects of dynorphin on the VP, we conducted behavioral experiments after microinjection of drugs or shRNA and brain-slice electrophysiological recordings. Histological tracing and molecular biological experiments were used to identify the distribution of KORs and the possible sources of dynorphin projections to the VP. RESULTS: An elevated dynorphin concentration and increased KOR activity were observed in the VP after acute stress. Infusion of dynorphin-A into the VP produced depressive-like phenotypes including anhedonia and despair and anxiety behaviors, but did not alter locomotor behavior. Mechanistically, dynorphin had an inhibitory effect on VP neurons-reducing their firing rate and inhibiting excitatory transmission-through direct activation of KORs and modulation of downstream G-protein-gated inwardly rectifying potassium (GIRK) channels and high-voltage gated calcium channels (VGCCs). Tracing revealed direct innervation of VP neurons by dynorphin-positive projections; potential sources of these dynorphinergic projections include the nucleus accumbens, amygdala, and hypothalamus. Blockade of dynorphin/KOR signaling in the VP by drugs or viral knock-down of KORs significantly reduced despair behavior in rats. CONCLUSIONS: Endogenous dynorphinergic modulation of the VP plays a critical role in mediating depressive reactions to stress.


Assuntos
Prosencéfalo Basal , Dinorfinas , Animais , Camundongos , Ratos , Prosencéfalo Basal/metabolismo , Canais de Cálcio , Dinorfinas/genética , Dinorfinas/metabolismo , Dinorfinas/farmacologia , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Potássio/farmacologia , Receptores Opioides kappa/genética , Receptores Opioides kappa/metabolismo , RNA Interferente Pequeno , Depressão , Comportamento Animal , Estresse Fisiológico
10.
Reprod Biol Endocrinol ; 20(1): 91, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729637

RESUMO

BACKGROUND: Kisspeptin released from Kiss-1 neurons in the hypothalamus plays an essential role in the control of the hypothalamic-pituitary-gonadal axis by regulating the release of gonadotropin-releasing hormone (GnRH). In this study, we examined how androgen supplementation affects the characteristics of Kiss-1 neurons. METHODS: We used a Kiss-1-expressing mHypoA-55 cell model that originated from the arcuate nucleus (ARC) of the mouse hypothalamus. These cells are KNDy neurons that co-express neurokinin B (NKB) and dynorphin A (DynA). We stimulated these cells with androgens and examined them. We also examined the ARC region of the hypothalamus in ovary-intact female rats after supplementation with androgens. RESULTS: Stimulation of mHypoA-55 cells with 100 nM testosterone significantly increased Kiss-1 gene expression by 3.20 ± 0.44-fold; testosterone also increased kisspeptin protein expression. The expression of Tac3, the gene encoding NKB, was also increased by 2.69 ± 0.64-fold following stimulation of mHypoA-55 cells with 100 nM testosterone. DynA gene expression in these cells was unchanged by testosterone stimulation, but it was significantly reduced at the protein level. Dihydrotestosterone (DHT) had a similar effect to testosterone in mHypoA-55 cells; kisspeptin and NKB protein expression was significantly increased by DHT, whereas it significantly reduced DynA expression. In ovary-intact female rats, DTH administration significantly increased the gene expression of Kiss-1 and Tac3, but not DynA, in the arcuate nucleus. Exogenous NKB and DynA stimulation failed to modulate Kiss-1 gene expression in mHypoA-55 cells. Unlike androgen stimulation, prolactin stimulation did not modulate kisspeptin, NKB, or DynA protein expression in these cells. CONCLUSIONS: Our observations imply that hyperandrogenemia affects KNDy neurons and changes their neuronal characteristics by increasing kisspeptin and NKB levels and decreasing DynA levels. These changes might cause dysfunction of the hypothalamic-pituitary-gonadal axis.


Assuntos
Dinorfinas , Hiperandrogenismo , Androgênios/metabolismo , Animais , Dinorfinas/genética , Dinorfinas/metabolismo , Dinorfinas/farmacologia , Feminino , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/farmacologia , Hiperandrogenismo/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Camundongos , Neurocinina B/genética , Neurocinina B/metabolismo , Neurocinina B/farmacologia , Neurônios/metabolismo , Ratos , Taquicininas , Testosterona/metabolismo , Testosterona/farmacologia
11.
Nutr Neurosci ; 25(5): 1105-1114, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33151127

RESUMO

The orexin peptides promote hedonic intake and other reward behaviors through different brain sites. The opioid dynorphin peptides are co-released with orexin peptides but block their effects on reward in the ventral tegmental area (VTA). We previously showed that in the paraventricular hypothalamic nucleus (PVN), dynorphin and not orexin peptides enhance hedonic intake, suggesting they have brain-site-specific effects. Obesity alters the expression of orexin and dynorphin receptors, but whether their expression across different brain sites is important to hedonic intake is unclear. We hypothesized that hedonic intake is regulated by orexin and dynorphin peptides in PVN and that hedonic intake in obesity correlates with expression of their receptors. Here we show that in mice, injection of DYN-A1-13 (an opioid dynorphin peptide) in the PVN enhanced hedonic intake, whereas in the VTA, injection of OXA (orexin-A, an orexin peptide) enhanced hedonic intake. In PVN, OXA blunted the increase in hedonic intake caused by DYN-A1-13. In PVN, injection of norBNI (opioid receptor antagonist) reduced hedonic intake but a subsequent OXA injection failed to increase hedonic intake, suggesting that OXA activity in PVN is not influenced by endogenous opioid activity. In the PVN, DYN-A1-13 increased the intake of the less-preferred food in a two-food choice task. In obese mice fed a cafeteria diet, orexin 1 receptor mRNA across brain sites involved in hedonic intake correlated with fat preference but not caloric intake. Together, these data support that orexin and dynorphin peptides regulate hedonic intake in an opposing manner with brain-site-specific effects.


Assuntos
Dinorfinas , Núcleo Hipotalâmico Paraventricular , Analgésicos Opioides/metabolismo , Analgésicos Opioides/farmacologia , Animais , Encéfalo/metabolismo , Dinorfinas/metabolismo , Dinorfinas/farmacologia , Camundongos , Obesidade/metabolismo , Orexinas/metabolismo
12.
Neuropsychopharmacology ; 47(3): 728-740, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34663867

RESUMO

Reward and reinforcement processes are critical for survival and propagation of genes. While numerous brain systems underlie these processes, a cardinal role is ascribed to mesolimbic dopamine. However, ventral tegmental area (VTA) dopamine neurons receive complex innervation and various neuromodulatory factors, including input from lateral hypothalamic (LH) orexin/hypocretin neurons which also express and co-release the neuropeptide, dynorphin. Dynorphin in the VTA induces aversive conditioning through the Kappa opioid receptor (KOR) and decreases dopamine when administered intra-VTA. Exogenous application of orexin or orexin 1 receptor (oxR1) antagonists in the VTA bidirectionally modulates dopamine-driven motivation and reward-seeking behaviours, including the attribution of motivational value to primary rewards and associated conditioned stimuli. However, the effect of endogenous stimulation of LH orexin/dynorphin-containing projections to the VTA and the potential contribution of co-released dynorphin on mesolimbic dopamine and reward related processes remains uncharacterised. We combined optogenetic, electrochemical, and behavioural approaches to examine this. We found that optical stimulation of LH orexin/dynorphin inputs in the VTA potentiates mesolimbic dopamine neurotransmission in the nucleus accumbens (NAc) core, produces real time and conditioned place preference, and increases the food cue-directed orientation in a Pavlovian conditioning procedure. LH orexin/dynorphin potentiation of NAc dopamine release and real time place preference was blocked by an oxR1, but not KOR antagonist. Thus, rewarding effects associated with optical stimulation of LH orexin/dynorphin inputs in the VTA are predominantly driven by orexin rather than dynorphin.


Assuntos
Dopamina , Área Tegmentar Ventral , Dopamina/fisiologia , Neurônios Dopaminérgicos/fisiologia , Dinorfinas/farmacologia , Região Hipotalâmica Lateral/fisiologia , Optogenética , Orexinas/farmacologia , Recompensa , Transmissão Sináptica
13.
J Immunol Res ; 2021: 4414544, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616852

RESUMO

COVID-19 is a respiratory infection caused by the SARS-CoV-2 virus that can rapidly escalate to life-threatening pneumonia and acute respiratory distress syndrome (ARDS). Recently, extracellular high mobility group box 1 (HMGB1) has been identified as an essential component of cytokine storms that occur with COVID-19; HMGB1 levels correlate significantly with disease severity. Thus, the modulation of HMGB1 release may be vital for treating COVID-19. HMGB1 is a ubiquitous nuclear DNA-binding protein whose biological function depends on posttranslational modifications, its redox state, and its cellular localization. The acetylation of HMGB1 is a prerequisite for its translocation from the nucleus to the cytoplasm and then to the extracellular milieu. When released, HMGB1 acts as a proinflammatory cytokine that binds primarily to toll-like receptor 4 (TLR4) and RAGE, thereby stimulating immune cells, endothelial cells, and airway epithelial cells to produce cytokines, chemokines, and other inflammatory mediators. In this study, we demonstrate that inhaled [D-Ala2]-dynorphin 1-6 (leytragin), a peptide agonist of δ-opioid receptors, significantly inhibits HMGB1 secretion in mice with lipopolysaccharide- (LPS-) induced acute lung injury. The mechanism of action involves preventing HMGB1's hyperacetylation at critical lysine residues within nuclear localization sites, as well as promoting the expression of sirtuin 1 (SIRT1), an enzyme known to deacetylate HMGB1. Leytragin's effects are mediated by opioid receptors, since naloxone, an antagonist of opioid receptors, abrogates the leytragin effect on SIRT1 expression. Overall, our results identify leytragin as a promising therapeutic agent for the treatment of pulmonary inflammation associated with HMGB1 release. In a broader context, we demonstrate that the opioidergic system in the lungs may represent a promising target for the treatment of inflammatory lung diseases.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Dinorfinas/farmacologia , Proteína HMGB1/metabolismo , Acetilação , Lesão Pulmonar Aguda/metabolismo , Animais , COVID-19/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Receptores Opioides/metabolismo , Sirtuína 1/metabolismo , Tratamento Farmacológico da COVID-19
14.
Cells ; 10(10)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34685631

RESUMO

Oxytocin (OT) influences various physiological functions such as uterine contractions, maternal/social behavior, and analgesia. Opioid signaling pathways are involved in one of the analgesic mechanisms of OT. We previously showed that OT acts as a positive allosteric modulator (PAM) and enhances µ-opioid receptor (MOR) activity. In this study, which focused on other opioid receptor (OR) subtypes, we investigated whether OT influences opioid signaling pathways as a PAM for δ-OR (DOR) or κ-OR (KOR) using human embryonic kidney-293 cells expressing human DOR or KOR, respectively. The CellKeyTM results showed that OT enhanced impedance induced by endogenous/exogenous KOR agonists on KOR-expressing cells. OT did not affect DOR activity induced by endogenous/exogenous DOR agonists. OT potentiated the KOR agonist-induced Gi/o protein-mediated decrease in intracellular cAMP, but did not affect the increase in KOR internalization caused by the KOR agonists dynorphin A and (-)-U-50488 hydrochloride (U50488). OT did not bind to KOR orthosteric binding sites and did not affect the binding affinities of dynorphin A and U50488 for KOR. These results suggest that OT is a PAM of KOR and MOR and enhances G protein signaling without affecting ß-arrestin signaling. Thus, OT has potential as a specific signaling-biased PAM of KOR.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Ocitocina/farmacologia , Receptores Opioides delta/metabolismo , Receptores Opioides kappa/metabolismo , Transdução de Sinais , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/farmacologia , Regulação Alostérica/efeitos dos fármacos , Animais , Sítios de Ligação , Células CHO , Cricetulus , AMP Cíclico/metabolismo , Diprenorfina/farmacologia , Dinorfinas/farmacologia , Impedância Elétrica , Endocitose/efeitos dos fármacos , Células HEK293 , Humanos , Concentração Inibidora 50 , Receptores Opioides delta/agonistas , Receptores Opioides kappa/agonistas , Transdução de Sinais/efeitos dos fármacos
15.
Biomed Pharmacother ; 143: 112173, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34536757

RESUMO

We explored the utility of the real-time FLIPR Membrane Potential (FMP) assay as a method to assess kappa opioid receptor (KOR)-induced hyperpolarization. The FMP Blue dye was used to measure fluorescent signals reflecting changes in membrane potential in KOR expressing CHO (CHO-KOR) cells. Treatment of CHO-KOR cells with kappa agonists U50,488 or dynorphin [Dyn (1-13)NH2] produced rapid and concentration-dependent decreases in FMP Blue fluorescence reflecting membrane hyperpolarization. Both the nonselective opioid antagonist naloxone and the κ-selective antagonists nor-binaltorphimine (nor-BNI) and zyklophin produced rightward shifts in the U50,488 concentration-response curves, consistent with competitive antagonism of the KOR mediated response. The decrease in fluorescent emission produced by U50,488 was blocked by overnight pertussis toxin pretreatment, indicating the requirement for PTX-sensitive G proteins in the KOR mediated response. We directly compared the potency of U50,488 and Dyn (1-13)NH2 in the FMP and [35S]GTPγS binding assays, and found that both were approximately 10 times more potent in the cellular fluorescence assay. The maximum responses of both U50,488 and Dyn (1-13)NH2 declined following repeated additions, reflecting receptor desensitization. We assessed the efficacy and potency of structurally distinct KOR small molecule and peptide ligands. The FMP assay reliably detected both partial agonists and stereoselectivity. Using KOR-selective peptides with varying efficacies, we found that the FMP assay allowed high throughput quantification of peptide efficacy. These data demonstrate that the FMP assay is a sensitive method for assessing κ-opioid receptor induced hyperpolarization, and represents a useful approach for quantification of potency, efficacy and desensitization of KOR ligands.


Assuntos
(trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/farmacologia , Analgésicos Opioides/farmacologia , Bioensaio , Dinorfinas/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Receptores Opioides kappa/agonistas , Animais , Células CHO , Cricetulus , Relação Dose-Resposta a Droga , Corantes Fluorescentes/química , Ensaios de Triagem em Larga Escala , Ligantes , Receptores Opioides kappa/genética , Receptores Opioides kappa/metabolismo , Espectrometria de Fluorescência , Fatores de Tempo
16.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34360762

RESUMO

Peptide therapeutics offer numerous advantages in the treatment of diseases and disorders of the central nervous system (CNS). However, they are not without limitations, especially in terms of their pharmacokinetics where their metabolic lability and low blood-brain barrier penetration hinder their application. Targeted nanoparticle delivery systems are being tapped for their ability to improve the delivery of therapeutics into the brain non-invasively. We have developed a family of mannosylated glycoliposome delivery systems for targeted drug delivery applications. Herein, we demonstrate via in vivo distribution studies the potential of these glycoliposomes to improve the utility of CNS active therapeutics using dynantin, a potent and selective dynorphin peptide analogue antagonist of the kappa opioid receptor (KOR). Glycoliposomal entrapment protected dynantin against known rapid metabolic degradation and ultimately improved brain levels of the peptide by approximately 3-3.5-fold. Moreover, we linked this improved brain delivery with improved KOR antagonist activity by way of an approximately 30-40% positive modulation of striatal dopamine levels 20 min after intranasal administration. Overall, the results clearly highlight the potential of our glycoliposomes as a targeted delivery system for therapeutic agents of the CNS.


Assuntos
Dinorfinas , Peptídeos , Receptores Opioides kappa/antagonistas & inibidores , Corpo Estriado/metabolismo , Dopamina , Dinorfinas/química , Dinorfinas/farmacocinética , Dinorfinas/farmacologia , Humanos , Lipossomos , Peptídeos/química , Peptídeos/farmacocinética , Peptídeos/farmacologia
17.
Neuropeptides ; 89: 102182, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34298371

RESUMO

The contents of Dynorphin A(1-8) decreased gradually in ischemic cortices in rats and an intracerebroventricular administration of synthetic Dynorphin A(1-8) reduced the volume of cerebral infarction in our previous research. However, the specific protective mechanism is unclear and Dynorphin A(1-8) is unlikely to cross the blood-brain barrier (BBB) by noninvasive oral or intravenous administration as a macromolecule neuropeptide. In this study, intranasal administration was used to middle cerebral artery occlusion(MCAO) rats to assessed the therapeutic effects of Dynorphin A(1-8) by evaluating behavior, volume of cerebral infarct, cerebral edema ratio, histological observation. Then apoptosis neuron rate was detected by TUNEL staining. Immunohistochemical staining was carried out to explore the alteration of Bcl-2, Bax and Caspase-3. Finally, κ-opioid receptor antagonist and N-methyl-d-aspartate(NMDA) receptor antagonist were used to explore its possible mechanism. We found that MCAO rats under intranasal administration of Dynorphin A(1-8) showed better behavioral improvement, higher extent of Bcl-2, activity of SOD along with much lower level of infarction volume, brain water content, number of cell apoptosis, extent of Bax and Caspase-3, and concentration of MDA compared with those in MCAO model group and intravenous Dynorphin A(1-8) group. Administration of nor-BNI or MK-801 reversed these neuroprotective effects of intranasal Dynorphin A(1-8). In summary, Dynorphin A(1-8), with advantages of intranasal administration, could be effectively delivered to central nervous system(CNS). Dynorphin A(1-8) inhibited oxidative stress and apoptosis against cerebral ischemia/reperfusion injury, affording neuroprotection through NMDA receptor and κ-opioid receptor channels.


Assuntos
Apoptose/efeitos dos fármacos , Dinorfinas/farmacologia , Infarto da Artéria Cerebral Média/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Opioides kappa/metabolismo , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Caspase 3/metabolismo , Malondialdeído/metabolismo , Ratos , Superóxido Dismutase/metabolismo
18.
Int J Mol Sci ; 22(5)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33671048

RESUMO

Previous studies have shown that genetically selected Marchigian Sardinian alcohol-preferring (msP) rats consume excessive amounts of ethanol to self-medicate from negative moods and to relieve innate hypersensitivity to stress. This phenotype resembling a subset of alcohol use disorder (AUD) patients, appears to be linked to a dysregulation of the equilibrium between stress and antistress mechanisms in the extended amygdala. Here, comparing water and alcohol exposed msP and Wistar rats we evaluate the transcript expression of the anti-stress opioid-like peptide nociceptin/orphanin FQ (N/OFQ) and its receptor NOP as well as of dynorphin (DYN) and its cognate κ-opioid receptor (KOP). In addition, we measured the transcript levels of corticotropin-releasing factor (CRF), CRF receptor 1 (CRF1R), brain-derived neurotrophic factor (BDNF) and of the tropomyosin receptor kinase B receptor (Trk-B). Results showed an innately up-regulation of the CRFergic system, mediating negative mood and stress responses, as well as an inherent up-regulation of the anti-stress N/OFQ system, both in the amygdala (AMY) and bed nucleus of the stria terminalis (BNST) of msP rats. The up-regulation of this latter system may reflect an attempt to buffer the negative condition elicited by the hyperactivity of pro-stress mechanisms since results showed that voluntary alcohol consumption dampened N/OFQ. Alcohol exposure also reduced the expression of dynorphin and CRF transmissions in the AMY of msP rats. In the BNST, alcohol intake led to a more complex reorganization of these systems increasing receptor transcripts in msP rats, along with an increase of CRF and a decrease of N/OFQ transcripts, respectively. Moreover, mimicking the effects of alcohol in the AMY we observed that the activation of NOP receptor by intracerebroventricular administration of N/OFQ in msP rats caused an increase of BDNF and a decrease of CRF transcripts. Our study indicates that both stress and anti-stress mechanisms are dysregulated in the extended AMY of msP rats. The voluntary alcohol drinking, as well as NOP agonism, have a significant impact on neuropeptidergic systems arrangement, bringing the systems back to normalization.


Assuntos
Consumo de Bebidas Alcoólicas/fisiopatologia , Alcoolismo/patologia , Tonsila do Cerebelo/patologia , Dinorfinas/farmacologia , Etanol/toxicidade , Peptídeos Opioides/farmacologia , Fragmentos de Peptídeos/farmacologia , Receptores Opioides/metabolismo , Alcoolismo/etiologia , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Animais , Comportamento Animal , Masculino , Neurotransmissores/farmacologia , Ratos , Ratos Wistar , Receptores Opioides/genética
19.
J Med Chem ; 64(6): 3153-3164, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33688737

RESUMO

Kappa opioid receptor (KOR) antagonists have recently shown potential for treating drug addiction and mood disorders. The linear acetylated dynorphin A analog arodyn (Ac[Phe1,2,3,Arg4,d-Ala8]dynorphin A-(1-11)NH2), synthesized in our laboratory, demonstrated potent and selective KOR antagonism. Cyclization of arodyn could potentially stabilize the bioactive conformation and enhance its metabolic stability. The cyclization strategy employed involved ring closing metathesis between adjacent meta- or para-substituted Tyr(allyl) residues in the "message" sequence that were predicted in a docking study to yield analogs that would bind to the KOR with binding poses similar to arodyn. Consistent with the modeling, the resulting analogs retained KOR affinity similar to arodyn; the peptides involving cyclization between para O-allyl groups also retained high KOR selectivity, with one analog exhibiting KOR antagonist potency (KB = 15 nM) similar to arodyn. These promising cyclized analogs with constrained aromatic residues represent novel leads for further exploration of KOR pharmacology.


Assuntos
Dinorfinas/química , Dinorfinas/farmacologia , Receptores Opioides kappa/antagonistas & inibidores , Ciclização , Dinorfinas/síntese química , Humanos , Modelos Moleculares , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Receptores Opioides kappa/metabolismo
20.
Stem Cells ; 39(5): 600-616, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33452745

RESUMO

Although the roles of opioid receptors in neurogenesis have been implicated in previous studies, the mechanism by which κ-opioid receptor (OPRK1) regulates adult neurogenesis remains elusive. We now demonstrate that two agonists of OPRK1, U50,488H and dynorphin A, inhibit adult neurogenesis by hindering neuronal differentiation of mouse hippocampal neural stem cells (NSCs), both in vitro and in vivo. This effect was blocked by nor-binaltorphimine (nor-BNI), a specific antagonist of OPRK1. By examining neurogenesis-related genes, we found that OPRK1 agonists were able to downregulate the expression of Pax6, Neurog2, and NeuroD1 in mouse hippocampal NSCs, in a way that Pax6 regulates the transcription of Neurog2 and Neurod1 by directly interacting with their promoters. Moreover, this effect of OPRK1 was accomplished by inducing expression of miR-7a, a miRNA that specifically targeted Pax6 by direct interaction with its 3'-UTR sequence, and thereby decreased the levels of Pax6, Neurog2, and NeuroD1, thus resulted in hindrance of neuronal differentiation of NSCs. Thus, by modulating Pax6/Neurog2/NeuroD1 activities via upregulation of miR-7a expression, OPRK1 agonists hinder the neuronal differentiation of NSCs and hence inhibit adult neurogenesis in mouse hippocampus.


Assuntos
MicroRNAs/genética , Células-Tronco Neurais/citologia , Neurogênese/genética , Fator de Transcrição PAX6/genética , Receptores Opioides kappa/genética , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/farmacologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Dinorfinas/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Humanos , Camundongos , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Proteínas do Tecido Nervoso/genética , Neurogênese/efeitos dos fármacos , Receptores Opioides kappa/agonistas , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA